## **Inorganic Chemistry**

# O-Atom Exchange between H<sub>2</sub>O and CO<sub>2</sub> Mediated by a Bis(dithiolene)tungsten Complex

Junhyeok Seo and Eunsuk Kim\*

Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States

## **Supporting Information**

**ABSTRACT:** Inspired by the CO<sub>2</sub>-reductatse activity of tungsten-dependent formate dehydrogenases (W-FDHs), a reduced W-FDH model,  $[W^{IV}(OH)(S_2C_2Ph_2)_2]^-$ , was prepared in situ through hydrolysis of  $[W^{IV}(OPh)-(S_2C_2Ph_2)_2]^-$  (1) and its reactivity with CO<sub>2</sub> was investigated. The reaction between  $[W^{IV}(OH)-(S_2C_2Ph_2)_2]^-$  and CO<sub>2</sub> at room temperature leads to the formation of  $[W^{IV}(O)(S_2C_2Ph_2)_2]^{2-}$  (2), which slowly oxidizes to  $[W^{V}(O)(S_2C_2Ph_2)_2]^-$  (3). Isotopic labeling experiments reveal that the O atom in CO<sub>2</sub> incorporates into 3. This implies that there is carbonic anhydrase like activity, in which carbonation and decarboxylation are mediated by a bis(dithiolene)tungsten complex.

arbon dioxide (CO<sub>2</sub>) has been implicated as one of the main causes for global warming,<sup>1</sup> thus, the transformation of CO<sub>2</sub> into environmentally friendly and valuable chemicals is of great interest. Among the various chemical transformations, the reduction of CO<sub>2</sub> is particularly significant because the reduced forms of CO2 such as formic acid, methanol, or methane can be directly used as fuels, which establishes CO<sub>2</sub> as an abundant and inexpensive source for alternative energy.<sup>2,3</sup> Conversion of CO<sub>2</sub> to formic acid can be achieved (electro)chemically. The development of efficient catalysts for such a transformation comprises an active area of research.<sup>2-5</sup> There have been continuing efforts in developing coordination complexes that can catalyze the reduction of  $CO_2$  with  $H_2$ , insertion of CO<sub>2</sub> into an M-H bond,<sup>2,5</sup> or electrochemical reduction of CO2.3 Although these complexes show much promise, none has shown the comparable efficiency and selectivity of the CO<sub>2</sub>-reducing enzymes found in nature.

Formate dehydrogenase (FDHs) are enzymes that catalyze the two-electron oxidation of formate  $(HCO_2^{-})$  to  $CO_2$ coupled with the reduction of  $NAD(P)^+$  to NAD(P)H.<sup>6</sup> In some prokaryotes, the FDHs contain molybdenum (Mo) or tungsten (W) cofactors, by which an efficient  $CO_2$ -reductase activity (reduction of  $CO_2$  to formate) has been also observed.<sup>7</sup> Recently, Hirst and co-workers have shown that a purified W-FDH can activate an electrode to reduce  $CO_2$  to formate more efficiently than any of the known synthetic catalysts.<sup>8</sup>

The X-ray structures of several Mo- or W-containing FDHs are known.<sup>9</sup> In the oxidized state, the active site contains a  $Mo^{VI}$  or  $W^{VI}$  ion in a trigonal-prism geometry with two pyranopterin molecules, one selenocysteine (SeCys), and a sixth –SH (or OH) ligand.<sup>9a-c</sup> The coordination geometry of the reduced FDHs was first determined from *Escherichia coli* 

Mo-FDH<sub>H</sub>, in which Mo<sup>IV</sup> was in a square-pyramidal geometry with two equatorial pyranopterins and a SeCys axial ligand.<sup>9a</sup> However, the same crystallographic data have been reevaluated more recently,<sup>9d</sup> revealing that the SeCys in the reduced state is no longer coordinated to the metal center. Instead, the –SH (or –OH) has been proposed for the axial ligand<sup>9d</sup> (Figure 1).

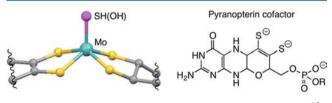



Figure 1. Active-site structures in the reduced Mo-FDH (E. coli).9d

In light of the reexamined FDH structure<sup>9d</sup> and the efficient electrocatalytic activity of W-FDH,<sup>8</sup> here we report our studies on the  $CO_2$  reactivity of a synthetic model complex of W-FDH.

Synthetic models for FDHs are limited,<sup>10</sup> although a significant number of bis(dithiolene)molybdenum and -tungsten complexes are known.<sup>11</sup> Our own attempts to directly synthesize discrete HO- or HS-bound bis(dithiolene)tungsten analogues have not been successful. However, Holm and coworkers have previously reported<sup>12</sup> that a group of phenolatebound tungsten or molybdenum bis(dithiolene) complexes undergo hydrolysis in the presence of excess H<sub>2</sub>O to yield  $W^{IV}$ =O complexes via the formation of { $W^{IV}$ OH} species. These reports inspired us to explore the CO<sub>2</sub> reactivity of [ $W^{IV}$ (OH)(S<sub>2</sub>C<sub>2</sub>Ph<sub>2</sub>)<sub>2</sub>]<sup>-</sup>, which can be prepared in situ through hydrolysis of [ $W^{IV}$ (OPh)(S<sub>2</sub>C<sub>2</sub>Ph<sub>2</sub>)<sub>2</sub>]<sup>-</sup> (1) in the presence of H<sub>2</sub>O.

We first sought a hydrolysis condition that can be achieved with the minimum amount of  $H_2O$  possible in order to favor the binding of  $CO_2$  over  $H_2O$  to  $[W^{IV}(OH)(S_2C_2Ph_2)_2]^-$ . We found that a relatively small amount (10 equiv) of  $H_2O$  was sufficient enough to induce hydrolysis of  $1^{12b}$  in acetonitrile to yield  $[W^{IV}(O)(S_2C_2Ph_2)_2]^{2-}$  (2). However, we noticed that 2 was not stable over 12 h in our reaction conditions, and it slowly converted into another well-known<sup>13</sup> compound,  $[W^V(O)(S_2C_2Ph_2)_2]^-$  (3; Scheme 1), which is likely associated with the reduction of  $H^+$  to hydrogen (vide infra).

IR spectroscopy provides us with rich information that supports the generation of **3** as the final hydrolysis product as well as the released free phenol (Figure 2). The IR spectrum of

**Received:** May 3, 2012 **Published:** July 26, 2012

## **Inorganic Chemistry**

#### Scheme 1

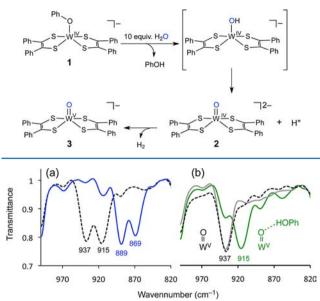



Figure 2. IR spectra (Nujol) of (a) the crude reaction products of 1 and 10 equiv of  $H_2O$  (black dotted line) and those of 1 and 10 equiv of  $H_2^{18}O$  (blue solid line), (b) the isolated reaction product 3 (black dotted line), 3 in the presence of 2 equiv of externally added phenol (green solid line), and reisolated 3 after removal of phenol by precipitation (gray solid line).

the crude reaction products of 1/H2O exhibits two strong  $W^{V}$ =O frequencies at 937 and 915 cm<sup>-1</sup>, both of which shift to 889 and 869 cm<sup>-1</sup> when the reaction is carried out using H<sub>2</sub><sup>18</sup>O (Figure 2a). No such isotopic shifts were observed when independently synthesized 2 or 3 was treated with 10 equiv of  $H_2^{18}O.^{14}$  This indicates that the O atoms in the reaction products originate from H<sub>2</sub>O through hydrolysis of 1, during which the intermediate  $[W^{IV}(OH)(S_2C_2Ph_2)_2]^-$  must have been generated. The 937 cm<sup>-1</sup> peak from the crude reaction products is assigned to the stretching frequency of W<sup>V</sup>=O in 3, consistent with the literature value.<sup>13</sup> The presence of the additional peak at 915 cm<sup>-1</sup> is presumably due to the W<sup>V</sup>=O moiety hydrogen-bonded to free phenol that is released from 1. Mass spectrometry further confirms the presence of free phenol in the reaction mixture. When 3 was isolated by precipitation with diethyl ether, only the 937 cm<sup>-1</sup> band was observed in the IR spectrum as expected. However, when the isolated 3 is redissolved in acetonitrile, followed by the addition of phenol, the 915 cm<sup>-1</sup> peak reappears (Figure 2b).<sup>15</sup> The appearance of the 915 cm<sup>-1</sup> band is not observed when phenolate (PhO<sup>-1</sup>) is added to a solution of 3, which supports the assignment of the 915  $\text{cm}^{-1}$  peak for the hydrogen-bonded W<sup>V</sup>=O moiety. This cycle can be repeated multiple times without causing decomposition of 3.

To gain insight into the unexpected oxidation of 2 to 3 during hydrolysis, we studied the reactivity of independently synthesized 2 with a proton source. When 1 equiv of HBF<sub>4</sub> was added to an acetonitrile solution of 2 at room temperature, the absorption bands at 350, 449, and 527 nm from 2 decayed with a concomitant formation of 3 ( $\lambda_{max} = 720$  nm) in the UV–vis spectrum.<sup>16</sup> In addition, the H<sub>2</sub> evolution from the reaction was qualitatively detected from the headspace gas of the reaction flask with a commercial H<sub>2</sub> dosimeter.<sup>16</sup>

Because the formation of  $[W^{IV}(OH)(S_2C_2Ph_2)_2]^-$  was implied as an intermediate during our hydrolysis reaction, we studied the desired CO<sub>2</sub> reactivity of 1 in the presence of H<sub>2</sub>O. An acetonitrile solution of 1 containing 10 equiv of H<sub>2</sub>O was exposed to 1 atmospheric pressure of CO<sub>2</sub> at room temperature for 12 h.<sup>16</sup> To our surprise, **3** was again identified as the final reaction product from the  $1/H_2O/CO_2$  reaction, with no indication of generating either the reduced CO<sub>2</sub> products (e.g., formate, CO, oxalate, etc.) or a hydrated product (HCO<sub>3</sub><sup>-</sup>).<sup>17</sup> However, when we carry out the same reaction using 10 equiv of H<sub>2</sub><sup>18</sup>O, we observe that only ~32% of **3** contains the W=<sup>18</sup>O moiety (889 and 869 cm<sup>-1</sup>; Figure 3), suggesting that

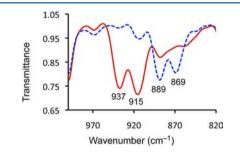
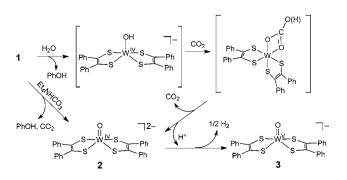
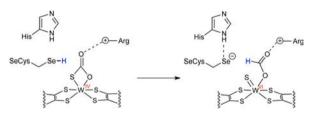




Figure 3. IR spectra (Nujol) of the crude reaction products of  $1/H_2^{18}O$  (10 equiv)/CO<sub>2</sub> (red solid line) and those of  $1/H_2^{18}O$  (10 equiv) (blue dotted line).

 $\rm H_2O$  is no longer the major source of oxygen in 3. Because  $\rm CO_2$  is the only other possible O-atom donor in the reaction mixture, the reaction was further evaluated by using  $\rm C^{18}O_2$ . When the reaction was carried out using  $\rm ^{18}O$ -enriched  $\rm CO_2$  (85%  $\rm C^{18}O_2$ ) and  $\rm H_2O$ , ~50% of W= $\rm ^{18}O$  complexes were observed in the reaction products, confirming that the O atom in  $\rm CO_2$  incorporates into 3. $\rm ^{16}$ 

Complex 1 does not react with  $CO_2$  in dry solvent under the same experimental conditions, suggesting that the formation of the { $W^{IV}OH$ } moiety is crucial to initiating reactivity with  $CO_2$ . This behavior along with the absence of any carbon-containing reaction products derived from  $CO_2$  lead us to conclude that the reaction of  $1/CO_2/H_2O$  does not exhibit the anticipated FDH activity. Instead,  $[W^{IV}(OH)(S_2C_2Ph_2)_2]^-$  reacts with  $CO_2$  to form a presumable bicarbonato or carbonato intermediate, which immediately undergoes decarboxylation to generate  $[W^{IV}(O)(S_2C_2Ph_2)_2]^-$  (2) and  $CO_2$  (Scheme 2). The formation of (bi)carbonato species from  $CO_2$  with a metal hydroxide is common for many transition-metal complexes,<sup>18</sup> and examples of tungsten(IV) carbonato species does not appear to be stable probably because of the oxophilic character






## **Inorganic Chemistry**

of tungsten(IV) in a bis(dithiolene) ligand environment. In fact, with the only exception of FDHs, all other known bis(pyranopterin)-bound tungsten/molybdenum enzymes catalyze the O-atom-abstraction chemistry.<sup>6</sup> In order to evaluate the prospect of the proposed (bi)carbonato intermediate during the reaction (Scheme 2), 1 was reacted with 1 equiv of  $Et_4NHCO_3$ . Upon the addition of bicarbonate to 1, the oxo compound 2 formed immediately, as monitored by UV–vis spectroscopy.<sup>16</sup> The result supports a notion that the O atom of  $CO_2$  is inserted into 2 through a (bi)carbonate-bound tungsten intermediate.

The FDHs utilize a bis(dithiolene)-bound  $M^{IV}$  (M = Mo or W) ion to reduce CO<sub>2</sub> to formate. The use of higher-valent metal ions with noninnocent ligands by the enzyme is a strategy very different from that of most synthetic systems in which the metal ions in much lower valences, 0, 1+, and 2+, are utilized to activate CO<sub>2</sub>.<sup>20</sup> Our current study shows that the presence of a nucleophilic ligand such as OH<sup>-</sup> is crucial to initiating CO<sub>2</sub> reactivity with a bis(dithiolene)tungsten(IV) species to likely form a tungsten (bi)carbonate intermediate. Indeed, a recent calculation study<sup>21</sup> on the mechanism of Mo-FDH suggests that a Mo(IV) thiocarbonato intermediate forms during the oxidation cycle of formate to CO<sub>2</sub>. With respect to the reverse reaction by W-FDH, one can expect the conversion of W(IV) thiocarbonate species to W(VI) formate (Scheme 3), similar to

#### Scheme 3



the typical O-atom-abstraction chemistry known for this class of enzyme.<sup>6</sup> In our current synthetic model system, however, we were not able to imitate the reduction step. This may be due to the lack of a proton delivery channel near the metal active site, i.e., selenocysteine and histidine, that is strictly conserved in the FDH proteins.

In summary, we have studied the  $CO_2$  reactivity of a structural analogue of W-FDH. A bis(dithiolene)tungsten complex 1 itself does not react with  $CO_2$  at ambient temperature. However, an in situ generated hydrolysis product,  $[W^{IV}(OH)(S_2C_2Ph_2)_2]^-$ , reacts with  $CO_2$  and displays a carbonic anhydrase like activity. A tungsten (bi)carbonate species is presumed to form during the reaction. Future studies will focus on the factors critical to inducing an O-atom abstraction from a putative tungsten (bi)carbonate intermediate over the oxide ( $O^{2-}$ ) abstraction chemistry observed in this study.

#### ASSOCIATED CONTENT

#### **S** Supporting Information

Experimental details and UV-vis and IR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

### AUTHOR INFORMATION

## **Corresponding Author**

\*E-mail: Eunsuk Kim@brown.edu.

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

We are grateful for support provided by the ACS-PRF (50840-DNI3) and Brown University.

## REFERENCES

(1) Crowley, T. J. Science 2000, 289, 270-277.

(2) Sakakura, T.; Choi, J. C.; Yasuda, H. Chem. Rev. 2007, 107, 2365–2387.

(3) (a) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. *Chem. Soc. Rev.* **2009**, *38*, 89–99. (b) Rakowski DuBois, M.; DuBois, D. L. *Acc. Chem. Res.* **2009**, *42*, 1974–1982.

(4) Jessop, P. G.; Joo, F. Coord. Chem. Rev. 2004, 248, 2425-2442.

(5) Darensbourg, D. J. Inorg. Chem. 2010, 49, 10765-10780.

(6) (a) Hille, R. Chem. Rev. **1996**, 96, 2757–2816. (b) Moura, J. J.; Brondino, C. D.; Trincao, J.; Romao, M. J. J. Biol. Inorg. Chem. **2004**, 9, 791–799. (c) Andreesen, J. R.; Makdessi, K. Ann. N.Y. Acad. Sci. **2008**, 1125, 215–229.

(7) (a) de Bok, F. A.; Hagedoorn, P. L.; Silva, P. J.; Hagen, W. R.; Schiltz, E.; Fritsche, K.; Stams, A. J. *Eur. J. Biochem.* **2003**, 270, 2476– 2485. (b) Axley, M. J.; Grahame, D. A. *J. Biol. Chem.* **1991**, 266, 13731–13736. (c) Yamamoto, I.; Saiki, T.; Liu, S. M.; Ljungdahl, L. G. *J. Biol. Chem.* **1983**, 258, 1826–1832.

(8) Reda, T.; Plugge, C. M.; Abram, N. J.; Hirst, J. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 10654–10658.

(9) (a) Boyington, J. C.; Gladyshev, V. N.; Khangulov, S. V.; Stadtman, T. C.; Sun, P. D. Science 1997, 275, 1305–1308.
(b) Jormakka, M.; Tornroth, S.; Byrne, B.; Iwata, S. Science 2002, 295, 1863–1868. (c) Raaijmakers, H.; Macieira, S.; Dias, J. M.; Teixeira, S.; Bursakov, S.; Huber, R.; Moura, J. J.; Moura, I.; Romao, M. J. Structure 2002, 10, 1261–1272. (d) Raaijmakers, H. C.; Romao, M. J. J. Biol. Inorg. Chem. 2006, 11, 849–854.

(10) (a) Groysman, S.; Holm, R. H. Inorg. Chem. 2007, 46, 4090–4102. (b) Sarkar, S.; Das, S. K. Proc.—Indian Acad. Sci., Chem. Sci. 1992, 104, 533–534.

(11) (a) Enemark, J. H.; Cooney, J. J.; Wang, J. J.; Holm, R. H. Chem. Rev. 2004, 104, 1175–1200. (b) Groysman, S.; Holm, R. H. Biochemistry 2009, 48, 2310–2320.

(12) (a) Lim, B. S.; Holm, R. H. J. Am. Chem. Soc. 2001, 123, 1920–1930.
(b) Sung, K. M.; Holm, R. H. J. Am. Chem. Soc. 2001, 123, 1931–1943.

(13) Goddard, C. A.; Holm, R. H. Inorg. Chem. 1999, 38, 5389-5398.

(14) Syntheses of 2 and 3 are known.<sup>13</sup>

(15) The complete conversion of the 937 to 915 cm<sup>-1</sup> peak requires at least 3 equiv of phenol.<sup>16</sup> Upon substitution of phenol with *p*-nitrophenol, the 915 cm<sup>-1</sup> peak further shifts to 910 cm<sup>-1</sup>.<sup>16</sup>

(16) See the Supporting Information.

(17) The <sup>13</sup>C NMR and IR spectra of the reaction mixtures of  $1/H_2O/^{13}CO_2$  did not display any signals for the CO<sub>2</sub>-redrived products. The chemical detections for CO using Fe<sup>II</sup>(TPP) and Cp\*RuCl(PCy<sub>3</sub>) were also negative.

(18) Palmer, D. A.; Vaneldik, R. Chem. Rev. 1983, 83, 651-731.

(19) (a) Ito, T.; Sugimoto, S.; Ohki, T.; Nakano, T.; Osakada, K. J. Organomet. Chem. 1992, 428, 69–83. (b) Alvarez, R.; Carmona, E.; Galindo, A.; Gutierrez, E.; Marin, J. M.; Monge, A.; Poveda, M. L.; Ruiz, C.; Savariault, J. M. Organometallics 1989, 8, 2430–2439.
(c) Green, M. L. H.; Parkin, G.; Ohare, D.; Wong, L. L.; Derome, A. E. J. Organomet. Chem. 1986, 317, 61–68.

(20) Gibson, D. H. Chem. Rev. 1996, 96, 2063-2095.

(21) Mota, C. S.; Rivas, M. G.; Brondino, C. D.; Moura, I.; Moura, J. J.; Gonzalez, P. J.; Cerqueira, N. M. J. Biol. Inorg. Chem. 2011, 16, 1255–1268.