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ABSTRACT: The present work is aimed at the elaboration of the
model of magnetic properties and magnetic relaxation in the
mononuclear [Pc2Tb]

−TBA+ complex that displays single-molecule
magnet properties. We calculate the Stark structure of the ground 7F6
term of the Tb3+ ion in the exchange charge model of the crystal field,
taking account for covalence effects. The ground Stark level of the
complex possesses the maximum value of the total angular
momentum projection, while the energies of the excited Stark levels
increase with decreasing |MJ| values, thus giving rise to a barrier for
the reversal of magnetization. The one-phonon transitions between
the Stark levels of the Tb3+ ion induced by electron-vibrational interaction are shown to lead to magnetization relaxation in the
[Pc2Tb]

−TBA+ complex. The rates of all possible transitions between the low-lying Stark levels are calculated in the temperature
range 14 K<T < 40 K. With the purpose of calculation of the temperature dependence of the relaxation time of magnetization, we
solve the set of master equations for the populations of the Stark levels. The relaxation time is shown to diminish from 3.2 × 10−2

s to 1.52 × 10−4 s as the temperature increases from 27 K to 40 K. The obtained values of the relaxation time are in satisfactory
agreement with the observed ones. The developed model also provides satisfactory description of the dc-magnetic data and
paramagnetic shifts.

1. INTRODUCTION

Because of nanometric size, quantum effects in the magnetic
properties, and extremely long magnetic relaxation times,
single-molecule magnets (SMMs)1 have been considered as
promising candidates for the development of high-density
magnetic memories, molecular spintronic applications,2 and
quantum computing devices.3 The majority of known SMMs
contains transition-metal ions with orbitally nondegenerate
ground states (spin clusters). The Mn12 cluster derivatives
[Mn12O12(O2CR)16(H2O)x]

n− (n = 0, 1, 2; x = 3, 4),4−12

distorted cubane complexes with [MIVMIII
4O3X] cores,13−15

tetranuclear vanadium complexes [V4O2(O2CR)7(L)2]
n,16 and

iron complexes17 [Fe8O2(OH)12(L)6]
8+ exemplify this type of

SMMs. The exchange interaction couples the spins of
individual ions in these clusters and promotes the appearance
of the ground state with a large spin S. Thus, the energy barrier
for magnetization reversal in spin clusters appears as a result of
the combination of a large ground-state spin S of the cluster
and a negative zero-field splitting parameter DS. Particularly, the
increase of the full spin S seemed to be a promising way to
design SMMs with higher blocking temperatures. However, as
has been recently demonstrated,18 the zero-field splitting
parameter DS proves to be proportional to S−2 and, hence,
the barrier Δb = DSS

2 does not rise with the increase of S.
Probably for this conceptually important reason, the attempts
to increase S by the synthesis of big spin clusters with high
values of the ground state spin have not yet produced better
SMMs. As a result, the relaxation of magnetization in existing

transition-metal clusters with SMM properties is still very fast.
For instance, for the Mn12Ac

4,5 cluster having a barrier of ∼61
K, the relaxation time at T = 2 K is 3.7 × 106 s (1.5 month).
Meanwhile, the relaxation time acceptable for applications
should be at least 4.7 × 108 s (15 years) at room temperature.
In an attempt to increase both the energy barrier for

magnetization reversal and the lifetime of magnetization,
researchers have turned to SMMs that contain transition-
metal ions with unquenched orbital angular momenta in the
ground state.19−22 We demonstrated23−28 that, for SMMs of
this type, the first-order single-ion anisotropy and the
anisotropy of exchange interaction are responsible for the
formation of the barrier for magnetization reversal. At the same
time, the presence of unquenched orbital angular momenta
plays an ambivalent role. On the one hand, it gives rise to the
magnetic anisotropy that is much stronger than in spin clusters.
From the other hand, transition-metal ions with orbitally
degenerate ground states strongly interact with different
symmetry vibrations of the nearest ligand surrounding and
also show slow relaxation of magnetization in a narrow
temperature range.
Considerable effort has been focused on the design of SMMs

functioning at higher temperatures than those demonstrated by
SMMs based on transition-metal ions. In refs 29−32, a new
class of SMMs, comprised of lanthanide ions, has been
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reported. This class is represented by three phthalocyanine
double-decker mononuclear complexes [Pc2Ln]

−TBA+ (Pc =
dianion of phthalocyanine, TBA+ = N(C4H9)4

+, Ln = Tb, Dy,
Ho) containing trivalent lanthanide ions. Later, it was shown
that polyoxometalates encapsulating lanthanides with coordi-
nation geometries similar to those in phthalocyanides can also
exhibit SMM behavior.33,34 In ref 35, a new heteroleptic
bis(phthalocyaninato) terbium(III) complex, bearing a pyrenyl
group, was shown to exhibit temperature and frequency
dependence of ac magnetic susceptibility, typical of SMMs.
The attachment of this complex to single-walled carbon
nanotubes (SWCNTs) using π−π interactions yielded a
SMM−SWCNT magnetic conjugate that demonstrates im-
proved SMM behavior. An original supramolecular spin valve
consisting of TbPc2 SMMs and SWCNT components has been
presented in ref 36. Upon reversing the magnetic field, the
device exhibits magnetoresistance ratios up to 300% at
temperatures less than 1 K. These results open up prospects
for new spintronic devices with quantum properties. Electronic
transport studies on a TbPc2 SMM in a transistor-like setup,
taking measurements of a single nuclear spin have been
performed in ref 37. It was predicted that the observed long
lifetimes (tens of seconds) and relaxation characteristics of
nuclear spin at the single-atom scale may give rise to a
completely new world of devices in which quantum logic may
be implemented.
The magnetic properties of mononuclear lanthanide

magnets29−34 are determined both by the total angular
momentum J of the ground state and the strength of the
axial crystal field. In these magnets, the ground state with a high
value of the total angular momentum projection |MJ| is
generated for a single ion, because of the strong magnetic
anisotropy easily derived from the 4f-component. Actually, the
single-ion anisotropy of 4f ions is usually much stronger,
compared with those exhibiting by 3d, 4d, and 5d ions. One
more advantage of the mononuclear lanthanide-based com-
plexes is the possibility to improve their SMM properties
drastically by controlling the Stark structure of the ground
multiplet with the aid of the proper change of the nearest ligand
surrounding.
The interaction of lanthanide ions with the vibrations of the

ligand surrounding is much weaker than that for transition-
metal ions and, consequently, the relaxation is much slower in
lanthanide-based SMMs, compared to those based on
transition-metal ions. In fact, mononuclear lanthanide com-
plexes demonstrate slow magnetization relaxation in temper-
ature ranges significantly higher than those of previously known
transition-metal SMMs. Thus, the [Pc2Ln]

−TBA+ and [Pc2Dy]
−TBA+ complexes exhibit out-of-phase ac susceptibility χM″
peaks at 40 and 10 K with a 103 Hz ac field, respectively,
while there has been no report on polynuclear transition-metal
complexes with a χM″ peak temperature higher than 7 K.
At the same time, neither fluorescence nor absorption spectra

associated with lanthanide centers are obtainable in phthalo-
cyanine double-decker complexes, because of the low-lying Pc-
centered energy levels quenching the lanthanide fluorescence,
and the extremely intense Pc-centered absorption bands
concealing the lanthanide-centered bands. Therefore, the
theoretical analysis of binuclear and mononuclear lanthanide
phthalocyanine complexes performed in refs 29−32, 38, and 39
is limited to the determination of the Stark structure of
lanthanide ions, using NMR paramagnetic shifts and magnetic
susceptibility data, instead of f-f spectroscopic ones. In the

approach suggested in refs 29−32, 38, and 39, the set of ligand
field parameters that gives the least-squares fit to the
experimental data is determined under the restriction that
each parameter represents a linear function of the number of f-
electrons in the lanthanide ion. Such an assumption is not quite
justified and actually leads to 10 fitting parameters in the crystal
field model for [Pc2Ln]

−TBA+. Thus, the problem of
microscopic calculation of the energy spectrum of lanthanides
in [Pc2Ln]

−TBA+ complexes requires special consideration.
The microscopic calculation of the Stark structure of
lanthanides will give the possibility to model the magnetic
and relaxation properties.
In ref 30, the first attempt was made to understand the

mechanism of magnetic relaxation in lanthanide-based SMMs
qualitatively, examining the temperature dependence of the
relaxation time τ extracted from the χ″ component of the ac
susceptibility. The experimental study and semiempirical
interpretation of the electron spin dynamics in the anionic
form of the bis-phthalocyaninato terbium(III) molecule
[Pc2Ln]

−TBA+ has been addressed in ref 40 by means of
solid-state 1H NMR spectroscopy. For the [Pc2Tb]

−TBA+

complex in ref 30, the observed values of τ in the temperature
range of 25−40 K were fitted to those corresponding to the
two-phonon Orbach process, while at temperatures below 25 K,
the direct or Raman process was supposed to be the
determinative one in relaxation. In fact, the semiempirical
analysis performed in ref 30 does not allow one to distinguish
between the contributions of the direct, Orbach, and Raman
processes to magnetization relaxation. However, it is well-
known that, for lanthanide ions, the contribution of direct one-
phonon transitions is dominating and should be taken into
account27,41−44 in the first place. Therefore, in the present
work, we are going to address the problem of relaxation in the
[Pc2Ln]

−TBA+ complexes and, at first stage, to evaluate
microscopically the values of the relaxation time taking into
account only the one-phonon processes.27,41−44

Summarizing the aforementioned introduction, it should be
mentioned that the articles dealing with 4f SMMs29−34 do not
contain comprehensive theoretical models that are able to
explain the observed SMM behavior of these systems.
Meanwhile, the accurate theoretical description of the 4f
SMMs requires a crystal field model, taking into account the
structural lattice parameters and the point charges of the
ligands, as well as the covalence of the lanthanide−ligand bond.
No less important is the examination of the interaction between
the localized 4f electrons and lattice vibrations and establishing
the role of this interaction in magnetization relaxation. Thus,
the goal of the present article is to develop a model for
explanation of the strong magnetic anisotropy and slow
relaxation of magnetization exhibited by [Pc2Ln]

−TBA+

complexes demonstrating SMM properties. On the basis of
this model, the temperature dependence of the magnetic
susceptibility and relaxation time for the [Pc2Ln]

−TBA+

complex will be calculated and compared with experimental
ones.

2. THE MODEL
2.1. Crystal-Field Operator for the Tb3+ Ion. For

strongly screened f-electrons of lanthanide ions, a sufficiently
adequate approximation is the allowance for the interaction
with the ions of the nearest surrounding. The nearest local
environment of the Tb3+ ion in the [Pc2Ln]

−TBA+ compound
consists of eight N atoms. Their spherical coordinates, with
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respect to the central Tb3+ ion45 placed at the origin of

spherical coordinate system, are given in Table 1. From this

data,45 it is seen that the skew angle made by the two Pc rings is

34.5°, and the real site symmetry of the Tb3+ ion is C4.
In this case, the crystal field Hamiltonian acting within the

space of the 4f orbitals of the lanthanide ion can be written in

the following form:
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where Ap
m and Bp

m are the crystal field parameters, Cp
m(ϑ,φ) =

[4π/(2p + 1)]1/2Yp m(ϑ,φ) are the tensor spherical operators

(Yp m(ϑ,φ) are the normalized spherical harmonics).
The crystal field parameters can be evaluated in the

framework of the exchange-charge model46−54 that takes into

account two contributions to the energy of the 4f valent

electrons in the crystal field, namely, the contribution arising

from the interaction of the 4f electrons with the point charges

(pc) of the surrounding ligands and the contribution coming

from the overlap of the 4f orbitals with the ligand orbitals. The

latter is referred to as the contribution of exchange charges (ec).

In the exchange-charge model of the crystal field the parameters
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where Zαe is the effective charge of ligand α with the spherical

coordinates Rα,ϑα,φα, ⟨r
p⟩ is the radial integral for the Tb3+ ion,

σp is the shielding factor. In the subsequent calculations, the

values ⟨r2⟩ = 0.893 au, ⟨r4⟩ = 2.163 au, ⟨r6⟩ = 11.75 au, and σ2 =

0.523, σ4 = −0.0107, σ6 = −0.031855 have been used.
The parameters Ap

|m|(ec) and Bp
|m|(ec) are given by the following

relations:46−54
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where Sp(Rα) are the overlap integrals, determined as

γ
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where the values Gs, Gσ, and Gπ are the dimensionless
phenomenological parameters of the model, and Ss(Rα), Sσ(Rα),
Sπ(Rα) are the overlap integrals of the 4f wave functions of the
Tb3+ ion with 2s, 2p wave functions of the nitrogen atom
(Ss(Rα) = ⟨4f,m = 0|2s⟩, Sσ(Rα) = ⟨4f,m = 0|2p,m = 0⟩, Sπ(Rα) =
⟨f,m = 1|2p,m = 1⟩). Numerical values of the overlap integrals
have been computed with the aid of the radial 4f wave functions
of Tb3+ and 2s, 2p functions of N given in refs 56 and 57.
We then record the crystal field potential (eq 1), in terms of

equivalent operators:58
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where the parameters al
m and bl

m are associated with the
parameters Al

m and Bl
m of the Hamiltonian Hcf (eq 1) by the

relations
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Here, the parameters ⟨J||ξl||J|⟩ (l = 2, 4, 6) are the so-called
Stevens constants α, β, γ, which take on the values α = −1/(32
× 11), β = 2/(33 × 5 × 112) and γ = −1/(34 × 7 × 112 × 13).59

The expressions of the crystal field parameters alm, blm as
functions of Gs, Gσ, and Gπ and the numerical values of the
constants γlm are given in Appendix A.

2.2. Electron−Phonon Interaction. Probabilities of
One-Phonon Transitions. The evaluation of the probabilities
of nonradiative transitions that facilitate magnetic relaxation
requires a model of electron−phonon interaction Hamiltonian
and phonon dispersion law. Therefore, later in this paper, in
correspondence with the real experimental situation, we
consider a crystal consisting of noninteracting [Pc2Tb]

−TBA+

Table 1. Ligand Positions

real symmetry 1 2 3 4 5 6 7 8

R (Å) 2.44 2.44 2.44 2.44 2.43 2.43 2.43 2.43
θ (°) 126.5 126.5 126.5 126.5 53.8 53.8 53.8 53.8
φ (o) 34.5 124.5 214.5 304.5 0 90 180 270
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complexes. For lanthanide ions, being an example of a small-
radius center, the Hamiltonian of electron−phonon interaction
is based on the ligand-field theory. In the above employed
quasi-molecular (cluster) model that considers the lanthanide
ion as a complex formed by the central ion and the adjacent
ions of the lattice the displacements of the ligands are assumed
to appear because of modulation of the crystal field by lattice
vibrations. The operator HeL of electron−vibrational interaction
consists of parts corresponding to the irreducible vibrational
representations Γ̅ of the point group of the Tb center42,60

∑=
μ γ

μ γ μ γ
Γ

̅ Γ̅ ̅ ̅ Γ̅ ̅
H V QeL

(8)

Here, γ ̅ is the row index of Γ̅, μ̅ enumerates the repeating
vibrational representations, Qμ̅Γ̅γ ̅ are the symmetrical displace-
ments of the complex, Vμ̅Γ̅γ ̅ are the irreducible tensor operators,
which transform according to the Γ̅-representation. The
operators Vμ̅Γ̅γ ̅ (possessing the dimension of energy) can be
expressed as derivatives of the potential energy W(ri − Rα) of
the interaction of the electrons of the Tb3+ ion and the nitrogen
ligands:
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The operators Vμ̅Γ̅γ ̅ for the complex formed by the Tb3+ ion and
its nearest surrounding can be obtained by substitution of the
crystal field potential (eqs 1−3) at arbitrary Rα into eq 9 with
the subsequent differentiation of the parameters Ap

|m|(pc), Ap
|m|(ec)

and Bp
|m|(pc), Bp

|m|(ec) over the projections of the position vectors
Rα of the ligands. Just like the overlap integrals Sp(R), their
derivatives Sp′(R), which are necessary to obtain the operators
Vμ̅Γ̅γ,̅ can be calculated with the aid of the radial wave functions
of terbium and nitrogen, given in refs 56 and 57.
The Hamiltonian of electron−phonon interaction is taken in

the form

∑= + *
κ

κ κ κ κ
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η η η η
+H V a V a( )eL

(10)

where aκη
+ (aκη) is the creation (annihilation) operator of the

phonon having the wave vector κ and the index of the vibration
branch η. The operators Vκη are associated with the operators
Vμ̅Γ̅γ(̅r) by the relation43,44
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where N is the number of unit cells in the crystal, M0 is the
mass of the nitrogen ligand, the coefficients fμ̅Γ̅γ(̅κη) perform
the transformation from the symmetric displacements Qμ̅Γ̅γ ̅ to
the normal modes of the crystal.
Furthermore, we assume that one-phonon transitions are

responsible for the relaxation of magnetization in the system
under examination. The probability of one-phonon transition
between the states |Γ̃γ⟩̃ and |Γγ⟩ of the Tb complex is given by
the relation27,41−44
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where the phonon occupation numbers are given as
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1
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In the process with one-phonon absorption, the probability
WΓ̃γ→̃Γγ is proportional to n ̅(|ΔΓγ,Γ̃γ|̃); when one phonon is
emitted, WΓ̃γ→̃Γγ ≈ n ̅(|ΔΓγ,Γ̃γ|̃) + 1.
With the aid of eq 11 and transformations described in refs

43 and 44, one can present eq 12 in the following form:
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At low temperatures, which are actual for the problem under
consideration, only acoustic vibrational modes are excited in the
crystal. For consideration of these modes, we employ the
Debye model in which the phonon frequencies are independent
of the direction of the wave vector κ and obey the dispersion
law ωκη = κυeff. Here, υeff is the effective speed of sound in the
crystal. Replacing in eq 14, the summation over κ by
integration, with the aid of the relations
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one can present eq 14 in the following form:
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where M is the mass of the unit cell, ρ is the density of the
crystal, and Uα

μ̅Γ̅γ ̅ is the unitary matrix43,44 for the trans-
formation of the Cartesian displacements ΔRα of the ligands
into the symmetrical coordinates Qμ̅Γ̅γ ̅ of the complex (see
Appendix B).

2.3. Calculation of the Magnetic Properties and
Paramagnetic Shifts. With the aid of eqs 1−4, we perform
the calculation of the parameters of the operator of the crystal
field acting on the Tb3+ ion and obtain the expressions for these
parameters as functions of three exchange-charge model
parameters (Gs, Gσ, Gπ) and the effective ligand charge (Z).
The advantage of this approach, based on the exchange-charge
model, is that it allows one to achieve a significant reduction of
the number of parameters of the model from seven parameters
(al

m and bl
m) of the crystal field for the Tb3+ ion to only three

parameters (Gs, Gσ, Gπ) that characterize the exchange-charge
contribution. Typically, the parameters Gs, Gσ, Gπ are
determined by simulating the observed Stark structure of the
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J-multiplet of a single lanthanide ion in the crystal field induced
by its ligand surrounding. However, as already mentioned, the
usual procedure of extracting the Stark structure of lanthanides
from the optical spectra is not available for the Tb3+ complex
under study. That is why we have applied the best-fit procedure
for the simultaneous description of the magnetic susceptibility,
paramagnetic shifts, and relaxation characteristics of the
[Pc2Tb]

−TBA+ complexes and considered the parameters Gs,
Gσ, Gπ as fitting ones, keeping in mind that Gs, Gσ, Gπ are
positive.46,47 The simultaneous fit of the magnetic susceptibility,
paramagnetic shifts, and relaxation times to the experimental
data gave us the possibility to avoid superfluous approximating
flexibility in the determination of the crystal field parameters.
The fitting procedure included the following stages. First, for

the initial set of the parameters Gs, Gσ, Gπ, we compute the
energies and the wave functions of the Stark levels, which arise
from the splitting of the ground 7F6-multiplet of the Tb3+ ion
by the crystal field (eq 1). In the basis of the wave functions of
the ground 7F6 term of the Tb3+ ion, we then construct and
diagonalize the matrix of the Hamiltonian:

μ= +H H gH Jcf B J (18)

where the second term is the operator of interaction of the
Tb3+ ion with the external magnetic field H, μB is the Bohr
magneton, gJ is the Lande factor for the ground multiplet 7F6 of
the Tb3+ ion (gJ =

3/2), and J = L + S is the total angular
momentum of the Tb3+ ion (L = 3, S = 3, and J = 6). Next,
using the eigenfunctions and eigenvalues of the Hamiltonian
described by eq 18, the principal values χαα (α = x,y,z) of the
magnetic susceptibility tensor and the magnetic susceptibility χ
for the powder sample are calculated with the aid of the
following formulas:

χ

χ χ χ χ

= ∂
∂

= + +

αα
α

α →α
N kT

H
Z H[ln ( )]

1
3

( )

A H

XX YY ZZ

2

2 0

(19)

where

∑= −α
α⎡

⎣⎢
⎤
⎦⎥Z H

E H
kT

( ) exp
( )

i

i

(20)

is the partition function and Ei(Hα) are the energies of the Tb
3+

ion in the external magnetic field.
In order to obtain a more reliable and complete description

of the physical properties of the [Pc2Tb]
−TBA+ complex and to

reduce the flexibility in the determination of the exchange-
charge model parameters Gs, Gσ, Gπ, we also calculate the
paramagnetic shifts. In ref 61, the paramagnetic shift Δδ for the
[Pc2Tb]

−TBA+ complex was defined as the deviation of the
chemical shift δ of a paramagnetic species from that of the
diamagnetic [Pc2Y]

−TBA+ complex. Since the protons are
separated from the lanthanide ions by at least four atoms, it is
anticipated that the Fermi contact contribution to the

paramagnetic shift is much smaller than the magnetic dipolar
contribution. The dipolar contribution in the 1H NMR
paramagnetic shift Δδ is determined as

δ ν
ν

θ χ χΔ = Δ = − −
⎛
⎝⎜

⎞
⎠⎟R

3 cos 1
2

( )zz

2

3
(21)

where ν is the resonance frequency in the reference
diamagnetic molecule, Δν is the change in the frequency in
the paramagnetic molecule, θ is the azimuth angle, which takes
on different values for the protons near and far from the center
and referred to as α and β protons, respectively, R is the
distance between the paramagnetic center and the proton to be
considered. In our calculations, we used R and θ values
estimated from the X-ray crystal structures of the
[Pc2Tb]

−TBA+ compound.45

3. RESULTS AND DISCUSSION
3.1. Magnetic Susceptibility. For the calculation of the

cluster energy levels that determine the magnetic susceptibility,
the 1H NMR paramagnetic shifts, and the relaxation times, it is
necessary to determine the charges of the ligands surrounding
the Tb ion. Actually, to get accurate values of atomic charges, a
calculation of the full electronic structure of the crystal is
needed, which represents a separate problem. In our
calculations, the numerical values of the ligand point charges
have been identified approximately with the oxidation states
and determined from the following considerations. Since the
oxidation state of the Pc ligand is −2,61 the oxidation state of
the each of four nitrogen ligands constituting the Pc ring was
taken to be equal to −0.5. The best-fit parameters providing a
satisfactory agreement between the calculated and experimental
values of the magnetic susceptibility, 1H NMR paramagnetic
shifts, and relaxation times were found to be Gs = 6.2, Gσ =
38.2, Gπ = 49.5. The obtained numerical values of the crystal
field parameters are listed in Table 2. For each parameter, the
contribution of the point and exchange charges is indicated. It
is seen that the main contribution to the crystal field parameters
comes from the exchange charge field. At first glance, this result
appears to be unclear because for lanthanide ions the covalence
effects are usually weak. On the other hand, the Tb3+ ion is
placed between two π-conjugated planar ligands and the
electronic density is mainly distributed among the N atoms
within each of the two Pc rings. The latter probably leads to the
dominance of the exchange-charge contribution.
The temperature dependences of the powder magnetic

susceptibility and the principal values of the magnetic
susceptibility tensor calculated with the best-fit parameters are
shown in Figure 1. The most remarkable feature of the
[Pc2Tb]

−TBA+ complex is the significant magnetic anisotropy
exhibited by this system. At temperatures below 100 K, the
components χxxT and χyyT are close to zero, while the
component χzzT maintains a constant value of ∼30 emu K
mol−1. With further temperature increases, the χzzT component
slightly decreases, while the χxxT and χyyT components increase

Table 2. Numerical Values of the Crystal Field Parameters

Crystal Field Parameters (cm−1)

a2
0/α a4

0/β a4
4/β b4

4/β a6
0/γ a6

4/γ b6
4/γ

point 51.8 −46.7 29.0 70.6 2.9 9.3 24.0
exchange 121.2 −584.7 368.4 882.4 76.8 247.1 643.0
total 173.0 −631.4 397.4 953.0 79.7 256.4 667.0
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insignificantly. Thus, the difference ΔχT = χ||T − χ⊥T is large in
a wide temperature range, and this observation is consistent
with the experimental finding that the [Pc2Tb]

−TBA+ complex
exhibits the ac susceptibility signal at temperatures up to 40
K.29 It should be also noted that very good agreement is
obtained between the observed61 and calculated χT values.
3.2. Barrier for Magnetization Reversal. The other

manifestation of the strong axial magnetic anisotropy of the
[Pc2Tb]

−TBA+ complex is the significant height of the barrier
for magnetization reversal. In order to construct this barrier, we
examine the low-lying part of the energy pattern of the
[Pc2Tb]

−TBA+ complex in the absence of the external magnetic
field calculated with the found set of the best-fit parameters. We
find that the energy levels of the complex are nearly doubly
degenerate. We then characterize each state ν of the cluster
with the wave function ψν = ΣjzCJz

ν |Jz⟩ by the expectation value Jz̅
ν

= ⟨ψν|Jẑ|ψν⟩ of the total angular momentum projection of the
complex. Figure 2 shows the low-lying energy levels of the Tb
complex; for each level the corresponding Jz̅

ν value is indicated.
The doubly degenerate ground level corresponds to Jẑ = ± 6,
while, for the first excited doublet the value Jz̅ = 0. It is clearly
seen that the energies of the first doublets with Jz̅ = ± 6 and Jz̅ =
0 tend to decrease with enhance of Jz̅. Thus, in this case, the
barrier for magnetization reversal is formed only by two levels.

The height of the barrier is approximately equal to 282 cm−1.
This value differs significantly from that of 420 cm−1 obtained
in ref 61 under assumption of the linear dependence of the
crystal field parameters on the number of 4f electrons. It should
be also mentioned that the barrier height discussed in the
model suggested above is estimated in the static approximation
based on the crystal field calculations of the energy spectrum of
the terbium(III) ion and, therefore, it differs from that obtained
in ref 40 from the analysis of the nuclear spin−lattice relaxation
rates.
Finally, in Table 3, the coefficients characterizing the main

contributions of the basis states |Jz⟩ to the wave functions of the

ground and first excited levels of the [Pc2Tb]
−TBA+ complex

are listed. Since the states of the complex are practically doubly
degenerate, only the squares of the coefficients |CJz

ν |2 for one of
the two wave functions corresponding to each level are given.
From Table 3, it is seen that the ground state corresponds with
Jz = ±6. The main contribution to the wave function of the first
excited state comes from the component of the wave function
complying with Jz = 0. All other contributions to this wave
function are negligibly small, compared to this contribution.

3.3. Paramagnetic Shifts. Now, with the aid of eq 21, we
perform the numerical evaluation of the paramagnetic shifts in
the complex under examination. The distances and the azimuth
angles for the α and β protons are Rα = 6.16 Å and θα = 69.3°,
and Rβ = 7.73 Å and θβ = 69.8°,45 respectively. With the aid of
the calculated room-temperature χT = 11.03 emu K mol−1 and
χzzT = 21.95 emu K mol−1 for the paramagnetic shifts (see eq
21) of the α and β protons, we obtain the following: Δδcalc(α)
= −80.3, Δδcalc(β) = −41.8. These values are in a satisfactory
agreement with those observed experimentally:61 Δδcalc(α) =
−94.2, Δδcalc(β) = −48.7.

3.4. Relaxation Characteristics of the [Pc2Tb]
−TBA+

Complex. For calculation of the relaxation characteristics of
the complex under examination, the following simplifying
assumptions have been accepted. First, the local symmetry of
the Tb ion was supposed to differ insignificantly from that
described by the point group D4d. Second, an idealized model
of the phonon spectrum with the Debye dispersion law (see eq
17) was employed. In order to justify the first assumption, the
energy pattern of the [Pc2Tb]

−TBA+ complex was calculated,
neglecting the rhombic distortion of the complex. In this case,
the crystal field Hamiltonian described by eq 6 only contains
the first three terms, and the energy pattern of the system
consists of 7 levels, which correspond to the irreducible
representations A1, (B1, B2), E1, E2, and E3

62 of the D4d point
group (see Figure 3a). The energy gap between the ground
state and the first excited state amounts to 300 cm−1.

Figure 1. χT as a function of temperature for the [Pc2Tb]
−TBA+

cluster calculated with the set of the best-fit parameters Gs = 6.2, Gσ =
38.2, Gπ = 49.5. The dashed line represents the χzzT component, the
dash-dotted line represents χxxT, χyyT components, the black solid line
represents χT, and the circles denote experimental data.61 Agreement
criteria: δ = {(1/N)∑i = 1

N [(χT)i
theor − (χT)i

exp)2/((χT)i
exp)2]}1/2 =

2.1%.

Figure 2. Energy levels of the single Tb3+ ion as functions of the total
angular moment projection Jz̅ calculated with Gs = 6.2, Gσ = 38.2, Gπ =
49.5.

Table 3. Squares (|CJz
ν |2) of the Coefficients Characterizing

the Main Contributions of the Basis States | JZ⟩ to the
Wavefunctions of the Ground and First Excited States of the
Tb3+ Ion

Jz |CJz
ν |2

Ground State
6 1.0

First Excited State
−4 0.0117
0 0.9765
4 0.0117
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Considering the last four terms of the Hamiltonian described
by eq 6 as a perturbation and calculating the corrections to the
energy levels depicted in Figure 3a within the second-order
approximation, we obtain the Stark structure of the multiplet
7F6 shown in Figure 3b. Finally, the energy pattern calculated
by diagonalization of the total Hamiltonian described by eq 6 is
shown in Figure 3c. It is worth noting that the energies of the
levels presented in Figures 3b and 3c practically coincide. This
means that, to a great extent, the last four terms of the
Hamiltonian described by eq 6 represent a small perturbation,
which removes the degeneracy of the energy levels shown in
Figure 3a. It is also worth noting that the energy gap between
the ground state and the first excited Stark levels in the real
symmetry differs from that in the idealized symmetry only by 8
cm−1. The performed analysis of the Stark structure allows one
to conclude that the symmetry of the complex can be described
to a good approximation by the D4d point group. In the
subsequent calculations of the operators Vμ̅Γ̅γ(̅κη) and
coefficients fμ̅Γ̅γ(̅κη) for the average bond length R and the
skew angle φ, we use the values of 2.44 Å and 45°, respectively.
At the same time, for the spherical angles θi characterizing the
ligand positions, we retain the values given in Table 1.
The simplifications made allow us to take advantage of the

group theory in the description of the relaxation characteristics
of the [Pc2Tb]

−TBA+ complex. In order to calculate the
probabilities of the transitions WΓ̃γ→̃Γγ given by eq 17, it is
necessary to determine the symmetry of all possible vibrational
modes of the system. For the idealized system of D4d symmetry,
the nearest ligand surrounding of the Tb3+ ion formed by eight
N atoms possesses the following 18 active vibrational modes:

Γ = A B B E E E2 , , , 2 , 3 , 21 1 2 1 2 3 (22)

Among them, 14 descend from 7 doubly degenerate
representations, while the other 4 vibrational modes are
nondegenerate and belong to the irreducible representations
A1, B1, B2. For each of the vibrational modes, the corresponding
symmetrized coordinates Qμ̅Γ̅γ,̅ Van Vleck coefficients fμ̅Γ̅γ(̅κη),
and vibronic operators Vμ̅Γ̅γ ̅ have been obtained. The analytical
expressions for Qμ̅Γ̅γ ̅ are listed in Appendix B, and the
coefficients fμ̅Γ̅γ(̅κη) and the operators Vμ̅Γ̅γ ̅ are given in the
Supporting Information. It should be highlighted that the
vibrational operators Vμ̅Γ̅γ ̅ (see the Supporting Information)
take into account both the contributions from the point and
exchange charges.

Now we are in the position to evaluate the temperature
dependence of the relaxation time for magnetization from the
solution of the set of master equations. For each state |μΓγ⟩
depicted in Figure 3a, we take into account all transitions
populating and depopulating this state. Since the levels
corresponding to the irreducible representations (B1, B2), E1,
E2, and E3 are doubly degenerate, while the A1 level is
nondegenerate in the process of relaxation there are involved
13 states. The probabilities of the transitions between all
mentioned states have been calculated with the aid of
expression 17. The system of the master equations for the
populations nμΓγ of the 13 states of the Tb3+ complex (Figure
3a) appears as follows:

∑ ∑
∂

∂
= − + ·μ γ

μ γ
γ μ

γ γ

μ γ μ γ
γ μ

γ γ

μ γ μ γ μ γ
̃Γ̃ ̃

̃Γ̃ ̃
Γ

≠

̃Γ̃ →̃ Γ
Γ

≠

Γ → ̃Γ̃ ̃ Γ

∼ ∼

n

t
n W W n

, , ,

(23)

Here, Wμ̅Γ̅γ→̅μΓγ is the probability of the transition between the
electronic states |μ̃Γ̃γ⟩̃ and |μΓγ⟩, and the symbols μ̃ and μ have
been introduced to enumerate the repeating electronic
representations. The set of master eqs 23 can be presented in
vector form:

̇ = ̃t W tn n( ) ( ) (24)

where W̃ is the rate matrix and the elements of the vector n(t)
are the populations of the states |μ̃Γ̃γ⟩̃. The relaxation time
then is obtained by numerical diagonalization of the rate matrix.
Denoting the eigenvalues of the rate matrix by wi (i runs over
13 states), we find that the dominant relaxation time of the
system is given by

τ = −
⎧⎨⎩

⎫⎬⎭Re w
max

1
( )i i (25)

In calculations of the relaxation time, for the crystal density the
value ρ = 1.38 g/cm3 (from ref 45 has been used). Our fit of the
sound velocity gives υeff = 3.1 × 105 cm/s. This value is in
satisfactory agreement with that obtained for a Tb3+ complex in
ref 63. As already mentioned in previous sections for the
parameters of the exchange charge model, the same values as
those used in calculations of the magnetic susceptibility and
paramagnetic shifts have been taken: Gs = 6.2, Gσ = 38.2, Gπ =
49.5. The calculated and experimental values of the relaxation
times at different temperatures are listed in Table 4.
The best agreement between theoretical and experimentally

observed relaxation times is observed at T = 40 K. In this case,
the theoretical value of the relaxation time (τtheor = 1.52 × 10−4

s) is only 5.6% less than the experimental one (τexp = 1.61 ×
10−4 s). At temperatures of T = 34 K and T = 27 K, the
differences between the experimental and calculated values of

Figure 3. Energy pattern of the [Pc2Tb]
−TBA+ cluster calculated with

the set of the best-fit parameters Gs = 6.2, Gσ = 38.2, Gπ = 49.5: (a) in
the case of D4d symmetry; (b) with due account of the rhombic
distortion in the second order of the perturbation theory; and (c) in
the case of the real symmetry.

Table 4. Calculated and Experimental30 Values of the
Relaxation Times (τ) of the [Pc2Tb]

−TBA+ Cluster

Relaxation Time, τ

temperature, T (K) theory experimental dataa

14 9.7 × 105 s 0.157 s
27 3.20 × 10−2 s 1.58 × 10−2 s
34 1.11 × 10−3 s 1.57 × 10−3 s
40 1.52 × 10−4 s 1.61 × 10−4 s

aData taken from ref 30.
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the relaxation times are more significant, but the experimental
and theoretical values still are of the same order of magnitude.
Finally, at T = 14 K, the calculated value of the relaxation time
significantly exceeds the corresponding experimental value.
Probably, the agreement between the theoretical and
experimental values of the relaxation times at low temperatures
can be achieved by taking into account the higher-order Orbach
and Raman relaxation processes, as well as the phonon-assisted
tunneling induced by the rhombic part of the crystal field
Hamiltonian and hyperfine interactions. These are problems
that we will address in the future.

4. CONCLUDING REMARKS

The results obtained can be summarized as follows. A general
scheme for the microscopic calculation of the parameters of the
ligand field for lanthanide ions was elaborated. The covalence
effects and the real symmetry of the crystal surrounding of the
Tb ion in [Pc2Tb]

−TBA+ have been taken into account. The
energies and wave functions of the Stark levels arising from the
splitting of the ground 7F6 multiplet of the Tb3+ ion in the
ligand field have been computed. On this basis, the principal
values of the magnetic susceptibility tensor have been found. A
reasonable agreement between the calculated and observed
magnetic susceptibility61 has been obtained. In the tetragonal
crystal field induced by nitrogen ligands, the energies of low-
lying Stark levels of the Tb3+ ion increase as the mean value of
the z-projection of the total angular momentum decreases,
which is a situation that leads to a barrier for the reversal of
magnetization. Thus, the model explains the discovered single-
molecule magnet (SMM) behavior of the [Pc2Tb]

−TBA+

complex arising from the strong single-ion anisotropy
associated with the unquenched orbital angular momenta of
the lanthanide ions.
The Hamiltonian of the electron−phonon interaction for the

Tb3+ ion in [Pc2Tb]
−TBA+ was obtained. The direct one-

phonon transitions between the low-lying Stark levels of the Tb
ion have been assumed to be responsible for magnetization
relaxation. The calculated relaxation times in the temperature
range of 27−40 K are in very good agreement with the
experimental ones. In order to explain the observed temper-
ature dependence of the relaxation time in a wide temperature
range in the future, we will estimate the contributions of
relaxation processes facilitated by quadratic terms of electron−
phonon interaction and phonon-assisted tunneling induced by
hyperfine interactions and deviations of the crystal field
symmetry from the axial one.
At the same time, the unified microscopic approach

developed in the present paper provides a reasonable qualitative
and quantitative explanation of the comprehensive experimen-
tal data61 on the magnetic susceptibility, relaxation character-
istics, and paramagnetic shifts of the [Pc2Tb]

−TBA+ SMM.

■ APPENDIX A. CRYSTAL FIELD HAMILTONIAN

In order to simplify the calculation of the energies and wave
functions of the Stark levels arising from the splitting of the
ground 7F6 multiplet of the Tb3+ ion by the crystal field, we
pass to the equivalent operators.58 With this objective, at the
first stage, we introduce the tesseral harmonics:64
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which are determined as follows:
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Here, Vl
m and Wl

m are homogeneous polynomials of Cartesian
coordinates, and γl,0 and γl,m are numerical coefficients quoted
in Table A1.

The polynomials Vl
m and Wl

m correspond to equivalent

operators Ol
m and Ql

m, which possess the same transformational

properties.58,65 This means that, within the set of functions

belonging to the same total angular momentum J, the following

relation can be written:

∑ ξ⟨ | | ′⟩ = ⟨ || || ⟩⟨ | | ′ ⟩J M V J M J J J M O J Mr, ( ) , , ,J
i

l
m

i J l J l
m

J

(A3)

where the Stevens constant ⟨J||ξl||J⟩ depends on the electronic

structure of the lanthanide ion as well as on the quantum

numbers L, S, and J characterizing the LSJ multiplet of this ion.

The commonly accepted notations for the Stevens constants

are ⟨J||ξ2||J⟩ = α, ⟨J||ξ4||J⟩ = β, ⟨J||ξ6||J⟩ = γ. The explicit forms of

the equivalent operators are given in ref 66. The matrix

elements of operators Ol
m in the |J,MJ⟩ basis are tabulated and

can be found in a series of monographs and articles (see, for

instance, ref 66). A simple relationship between the matrix

elements of the operators Ol
m and Ql

m takes place:

⟨ ± | | ⟩ = ± ⟨ ± | | ⟩J M m Q J M i J M m O J M, , , ,J l
m

J J l
m

J (A4)

The operators Ol
m and Ql

m are connected with combinations of

the spherical harmonics in the following way:

Table A1. Coefficients γl,m

l 2 2 2 4 4 4 4 4

m 0 1 2 0 1 2 3 4

γl,m
π

5
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2 6
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6 π

3
16
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1
4 35

1
70

l 6 6 6 6 6 6 6

m 0 1 2 3 4 5 6

γl,m
π

13
32

1
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1
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1
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1
3 14

1
6 77

1
231
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Calculating the overlap integrals and substituting the radia Rα

and angles ϑα, φα into eqs 3 and 4 and then, passing to the
equivalent operators, one obtains the following expressions for
the parameters al

m and bl
m:
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■ APPENDIX B. SYMMETRICAL DISPLACEMENTS OF
THE COMPLEX
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where xi, yi, and zi are Cartesian displacements of the ith ligand.
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