Inorganic Chemistry

A Series of Lanthanide-Based Cluster Organic Frameworks Made of Heptanuclear Trigonal-Prismatic Cluster Units

Wei-Hui Fang,[†] Lin Cheng,[†] Ling Huang,[†] and Guo-Yu Yang^{*,†,‡}

[†]State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

[‡]DOE Key Laboratory of Cluster Science, School of Chemistry, Beijing Institute of Technology, Beijing 100083, China

Supporting Information

ABSTRACT: A series of lanthanide-based cluster organic frameworks, $[Ln_7(\mu_3-OH)_8L_9(H_2O)_6]\cdot4ClO_4\cdot3HL\cdot nH_2O$ [HL = 4-pyridin-4-ylbenzoic acid; Ln = Y (1), La (2), Gd (3), Yb (6), n = 6; Ln = Dy (4), Er (5), n = 4], were hydrothermally made and characterized. It is the first example of heptanuclear trigonal-prismatic lanthanide clusters via a hydrothermal reaction. The magnetic properties of 3 and 4 show typical antiferromagnetic interactions.

H igh-nuclearity lanthanide (Ln) clusters continue to attract considerable attention because of their fascinating structures and rich optical and magnetic properties associated with their size effects.¹ As a result, Ln clusters, such as $Ln_{3,}^{2} Ln_{4,}^{3} Ln_{5,}^{4} Ln_{6,}^{5} Ln_{7,}^{6} Ln_{8,}^{7} Ln_{9,}^{8} Ln_{10,}^{9} Ln_{12,}^{10} Ln_{13,}^{11} Ln_{14,}^{12} Ln_{15,}^{13} Ln_{22,}^{29} dLn_{26,}^{14}$ and Er_{60}^{15} have been reported. Generally, they were made by controlling the hydrolysis of Ln salts in the presence of supporting ligands, while the majority are discrete because they either prevented aggregation by hydrophobic groups or are encapsulated by supporting ligands without further coordination sites. Thus, the choice of organic ligands is critical to the construction and linking of Ln clusters.

The open frameworks based on ${\rm Ln_{14}}^{16}$ and ${\rm Er_{36}}^{17}$ cluster units have been successfully made by using isonicotinic acid (Hin) as a ligand and lanthanide oxide rather than Ln salts as the source of Ln's. To make more open Ln-based cluster organic frameworks for potential applications, that is lengthened Hin, 4-pyridin-4ylbenzoic acid (HL) was introduced. So far, only several coordination polymers containing transition metal, Ln, and mixed 3d-4f heterometal have been made by the HL ligand.¹⁸ Therefore, it is still a challenge to make polynuclear Ln clusters by this ligand. Here, we report the first examples of heptanuclear trigonal-prismatic Ln clusters derived from HL via hydrothermal reaction, $[{\rm Ln}_7(\mu_3-{\rm OH})_8{\rm L}_9({\rm H}_2{\rm O})_6]\cdot 4{\rm ClO}_4\cdot 3 {\rm HL}\cdot n{\rm H}_2{\rm O}$ [Ln = Y (1), La (2), Gd (3), Yb (6), n = 6; Ln = Dy (4), Er (5), n = 4]. To the best of our knowledge, these are the highest-nuclearity Ln clusters linked by this ligand to date.

Yellow hexagonal crystals of 1-6 were made by the hydrothermal treatment of Ln_2O_3 and HL at 190 °C for 7 days in the presence of $HClO_4$ (pH 2).¹⁹ X-ray structure analyses reveal that 1-6 are isostructural and crystallize in the high-symmetry trigonal space group $P321.^{20}$ Therefore, only the structure of 1 is described in detail. The asymmetric unit of 1 consists of two distinct motifs (Figure 1), two perchlorates, and

2 01 N3 N2 04 04 002B 03 V1 01W 04B 002B 003 V1 006 03C 05C 05 05F

Figure 1. ORTEP of the asymmetric unit of **1** (30%), showing the coordination environments of Y1 and Y2 atoms, in which all H atoms and ClO_4^- ions are omitted for clarity. Atoms with A–G in their labels are symmetry-generated.

three lattice water molecules. Motif I contains two unique Y³⁺ ions and two L ligands; motif II has only one free HL ligand. In the structure, the linkers present two types of coordination modes: μ_3 -L- κ^1 N, κ^1 O, κ^1 O' and μ_2 -L- κ^1 O, κ^1 O' (Scheme 1). The

N1 atoms in mode I bond to Y1³⁺ ions, while the N2 atoms in mode II are free. Thus, the N1 atoms play a key role in the formation of 1. Y1 is eight-coordinated, and its geometry is close to that of a bicapped trigonal prism: three μ_3 -OH groups, one N atom, three carboxylate O atoms (O_{COO}⁻) from four ligands (N1/O1/O2 in mode I and O3 in mode II), and a terminal water molecule. The Y2³⁺ ion located at the 6-fold axis links six hydroxyl bridges, and its geometry can be described as a trigonal prism (Figure S1 in the Supporting Information, SI).

```
Received: September 7, 2012
Published: December 12, 2012
```

Inorganic Chemistry

In motif I, three Y1³⁺ ions are linked by μ_3 -OH to give a trinuclear unit $[Y_3(\mu_3$ -OH)]^{8+} (Y_3). Two Y₃ units are joined by the central Y2³⁺ ion via six μ_3 -OH groups to form a cationic heptanuclear cluster core, $[Y_7(\mu_3$ -OH)_8]^{13+} (Y_7; Figure 2a). The

Figure 2. (a) Ball-and-stick view of the vertex-sharing dicubane cluster. (b) Metal skeleton for the trigonal-prismatic cluster. (c and d) Side and top views of the coordination environment of the Y_7 and Y_3 cores, respectively.

 Y_7 core can also be described as two $Y_4(OH)_4$ cubanes sharing a Y2 atom. In contrast to previously reported trigonal antiprismatic Ln_7 cores, ^{6a,b} the metal skeleton of the Y_7 core in 1 is a well regular trigonal prism, in which six Y1 and one Y2 atoms locate in the vertex and body center, respectively (Figure 2b). As shown in Figure 2c, 15 L ligands link the Y_7 core with two coordination modes. To each Y_3 unit, six ligands with mode I as the linkers alternately link the Y_3 unit by the N and O_{COO^-} atoms (Figure 2d) and then link to an adjacent Y_3 unit by the O_{COO^-} and N atoms (Figure 3a). To three ligands with mode II, each one only link two Y1 atoms of two Y_3 units by the O_{COO^-} atoms, while its N atom is free (Figures 2d and S2 in the SI). In the structure, the Y_7 cores connect each other by the ligands with mode I to produce a 2D Ln-based cluster organic layer (layer I) possessing a thickness

about 10.92 Å along the *b* axis, which is further stabilized by the ligands with mode II bonded to two Y_3 units. Notice that the coordinated water molecules are pointing to the interbedded space (Figure S2 in the SI). In the layer I, each Y_7 core is surrounded by six of the same ones with a distance of 16.955 Å; three adjacent Y_7 cores form a trigonal-prismatic window on the *ab* plane. The ClO_4^- groups act as counterions and occupy the void of such a region to stabilize the lattice (Figure 3a).

Motif II is only a free ligand. These free ligands are linked by three water molecules from the Y_7 cores via hydrogen bonds $[O \cdots O 2.708(8)-2.754(8)$ Å; Figure S3 in the SI] and then further stabilized by $\pi - \pi$ interaction between the free ligands with mode II and the linkers with mode I of adjacent Y_3 cores to form an organic layer (layer II; Figures 2c and S4 in the SI). In the structure, layer I is parallel to layer II (the interplanar distance between them is about 3.686 Å), forming an unusual face-to-face alignment of benzene and pyridine rings (Figure S4 in the SI).²¹

Furthermore, layer I constructed from motif I and layer II built from motif II are stacked in a -ABAB- sequence along the *c* axis (Figure 3b). From a topological point of view, layer I is a sixconnected uninodal $h \times l$ net with Schläfli symbol $(3^{6} \cdot 4^{6} \cdot 5^{3})$,²² considering each Y_7 core as a six-connected node (Figure S5 in the SI). A *PLATON* program analysis based on the crystal structure suggests that approximately 18.1% of the crystal volume is accessible to the solvents.²³ The counterions and lattice water molecules as guests are enclathrated in the void.

Variable-temperature magnetic measurements were performed with polycrystalline samples of 3 and 4 at an applied magnetic field of 1 kOe in the range of 2–300 K. The resulting plot of $\chi_{\rm M}$ and $\chi_{\rm M}T$ versus T for 3 is depicted in Figure 4. The

Figure 4. Plots of $\chi_{\rm M}T$ versus *T* for **3** and **4** in a direct-current field of 1 kOe.

value of $\chi_{\rm M}$ slowly increases from 0.19 to 2.14 cm³ mol⁻¹ and then exponentially to a maximum of 15.63 cm³ mol⁻¹ at 2 K. At 300 K, the $\chi_{\rm M}T$ value of 55.86 cm³ K mol⁻¹ is close to the

Figure 3. Top view of layers I (a) and II (c). (b) Structural cohesion of the crystalline stacking reinforced by the presence of highly directional hydrogen bonds between adjacent layers. ClO_4^- and lattice water molecules are omitted, and the orange lines stand for linear ligands for clarity.

theoretical value for seven noninteracting Gd³⁺ (55.16 cm³ K mol⁻¹, $S = {^7/_{2^2}} L = 0$, ${^8S_{7/2^2}}$ and g = 2).²⁴ Upon cooling, the $\chi_M T$ value continuously decreases to 31.28 cm³ K mol⁻¹ at 2 K, which is characteristic of the antiferromagnetic behavior. The magnetic data obey the Curie–Weiss law, affording C = 57.01 cm³ K mol⁻¹ and $\theta = -2.58$ K (Figures S6 and S7 in the SI), suggesting a weak antiferromagnetic interaction between the Gd³⁺ ions. For 4, $\chi_M T$ of 96.79 cm³ K mol⁻¹ at 300 K gradually decreases with lowering temperature from 300 to 50 K and then drops quickly to 40.00 cm³ K mol⁻¹ at 2 K because of the progressive depopulation of the excited-state sublevel of Dy³⁺ and the very weak antiferromagnetic interaction between Dy³⁺ ions.²⁵

In summary, the first examples of Ln-based cluster organic frameworks constructed from heptanuclear trigonal-prismatic cluster units have been made under mild hydrothermal conditions, in which the lengthened ligands successfully induce the Ln ions to form a Ln_7 cluster and further make them an extended framework rather than discrete. The magnetic properties of 3 and 4 reveal weak antiferromagnetic interactions. These results present herein may provide a rational route for making multidimensional frameworks with high-nuclearity Ln clusters. Further work is continuing in this area.

ASSOCIATED CONTENT

S Supporting Information

X-ray crystal data of 1-6 (CCDC 813910–813915), detailed experimental procedures, and additional figures of IR, TGA, and PXRD. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: ygy@fjirsm.ac.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Nature Science Fund of China (Grants 91122028, 20725101, 50872133, and 21221001) and the 973 Program (Grant 2011CB932504).

REFERENCES

(1) (a) Lombardi, J. R.; Davis, B. Chem. Rev. 2002, 102, 2431.
 (b) Romanelli, M.; Kumar, G. A.; Emge, T. J.; Riman, R. E.; Brennan, J. G. Angew. Chem., Int. Ed. 2008, 47, 6049. (c) Sessoli, R.; Powell, A. K. Chem. Soc. Rev. 2009, 253, 2328.

(2) Anwar, M. U.; Tandon, S. S.; Dawe, L. N.; Habib, F.; Murugesu, M.; Thompson, L. K. *Inorg. Chem.* **2011**, *50*, 1028 and references therein.

(3) (a) Ma, B.-Q.; Zhang, D.-S.; Gao, S.; Jin, T.-Z.; Yan, C.-H.; Xu, G.-X. *Angew. Chem., Int. Ed.* **2000**, *39*, 3644. (b) Koo, B. H.; Lim, K. S.; Ryu, D. W.; Lee, W. R.; Koh, E. K.; Hong, C. S. *Chem. Commun.* **2012**, *48*, 2519 and references therein.

(4) Gamer, M. T.; Lan, Y.; Roesky, P. W.; Powell, A. K.; Clérac, R. *Inorg. Chem.* **2008**, *47*, 6581 and references therein.

(5) (a) Wang, R.; Carducci, M. D.; Zheng, Z. *Inorg. Chem.* **2000**, *39*, 1836. (b) Langley, S. K.; Moubaraki, B.; Murray, K. S. *Inorg. Chem.* **2012**, *51*, 3947 and references therein.

(6) (a) Zheng, X.-J.; Jin, L.-P.; Gao, S. Inorg. Chem. 2004, 43, 1600.
(b) Tang, X.-L.; Wang, W.-H.; Dou, W.; Jiang, J.-W.; Liu, S.; Qin, W.-W.; Zhang, G.-L.; Zhang, H.-R.; Yu, K.-B.; Zheng, L.-M. Angew. Chem., Int. Ed. 2009, 48, 3499.

(7) (a) Xu, J.; Raymond, K. N. Angew. Chem., Int. Ed. 2000, 39, 2745.
(b) Kajiwara, T.; Wu, H.; Ito, T.; Iki, N.; Miyano, S. Angew. Chem., Int.

Ed. **2004**, *43*, 1832. (c) Zhang, J.; Zhang, Z.; Chen, Z.; Zhou, X. *Dalton Trans.* **2012**, *41*, 357 and references therein.

(8) (a) Xu, G.; Wang, Z.-M.; He, Z.; Lü, Z.; Liao, C.-S.; Yan, C.-H. *Inorg. Chem.* **2002**, *41*, 6802. (b) Xu, D.-F.; Gamez, P.; Teat, S. J.; Tang, J. *Dalton Trans.* **2010**, *39*, 4353 and references therein.

(9) (a) Westin, L. G.; Kritikos, M.; Caneschi, A. Chem. Commun. 2003, 39, 1012. (b) Kornienko, A.; Emge, T. J.; Kumar, G. A.; Riman, R. E.; Brennan, J. G. J. Am. Chem. Soc. 2005, 127, 3501. (c) Ke, H.; Xu, G.-F.; Zhao, L.; Tang, J.; Zhang, X.-Y.; Zhang, H.-J. Chem.—Eur. J. 2009, 15, 10335. (d) Malaestean, I. L.; Ellern, A.; Baca, S.; Kogerler, P. Chem. Commun. 2012, 48, 1499.

(10) (a) Wang, R.; Selby, H. D.; Liu, H.; Carducci, M. D.; Jin, T.; Zheng, Z.; Anthis, J. W.; Staples, R. J. *Inorg. Chem.* 2002, *41*, 278.
(b) Zhao, L.; Xue, S.; Tang, J. *Inorg.Chem.* 2012, *51*, 5994 and references therein.

(11) Chesman, A. S. R.; Turner, D. R.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R. *Chem.*—*Eur. J.* **2009**, *15*, 5203.

(12) (a) Bürgstein, M. R.; Roesky, P. W. Angew. Chem., Int. Ed. 2000, 39, 549. (b) Bürgstein, M. R.; Gamer, M. T.; Roesky, P. W. J. Am. Chem. Soc. 2004, 126, 5213. (c) Li, X.-L.; He, L.-F.; Feng, X.-L.; Song, Y.; Hu, M.; Han, L.-F.; Zheng, X.-J.; Zhang, Z.-H.; Fang, S.-M. CrystEngComm 2011, 13, 3643.

(13) Wang, R.; Zheng, Z.; Jin, T.; Staples, R. J. Angew. Chem., Int. Ed. 1999, 38, 1813.

(14) Chen, L.; Huang, L.; Wang, C.; Fu, J.; Zhang, D.; Zhu, D.; Xu, Y. J. Coord. Chem. **2012**, 65, 958 and references therein.

(15) Kong, X.-J.; Wu, Y.; Long, L.-S.; Zheng, L.-S.; Zheng, Z. J. Am. Chem. Soc. 2009, 131, 6918.

(16) Zhang, M.-B.; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. Angew. Chem., Int. Ed. 2005, 44, 1385.

(17) Cheng, J.-W.; Zhang, J.; Zheng, S.-T.; Zhang, M.-B.; Yang, G.-Y. Angew. Chem., Int. Ed. **2005**, 45, 73.

(18) (a) Wang, Z.-L.; Fang, W.-H.; Yang, G.-Y. Chem. Commun. 2010, 46, 8216. (b) Zhang, X.-M.; Wang, Y.-Q.; Song, Y.; Gao, E.-Q. Inorg. Chem. 2011, 50, 7284. (c) Zhang, M.-B.; Chen, H.-M.; Hu, R.-X.; Chen, Z.-L. CrystEngComm 2011, 13, 7019. (d) Yin, Z.; Wang, Q. X.; Zeng, M. H. J. Am. Chem. Soc. 2012, 134, 4857.

(19) Synthesis of 1: A mixture of Y_2O_3 (0.5 mmol, 0.1130 g), HL (2 mmol, 0.3987 g), H₂O (10.0 mL, 0.22 mmol), and 3 drops of HClO₄ with a pH value of about 2.0 was sealed in a 30 mL Teflon-lined bomb at 190 °C for 7 days and then cooled to room temperature. Yellow hexagonal crystals of 1 were recovered by filtration, washed with distilled water, and dried at ambient temperature (yield 10% based on Y₂O₃). When CuCl₂·2H₂O or ZnCl₂ was introduced, the yield of crystals increased greatly (60% based on Y₂O₃). Anal. Calcd for C₁₄₄H₁₃₁Cl₄Y₇N₁₂O₆₀: C, 46.03; H, 3.49; N, 4.48. Found: C, 46.76; H, 3.37; N, 4.50. IR (KBr pellet, cm⁻¹): 3373(m), 1612(vs), 1554(vs), 1523(s), 1425(vs), 1225(w), 1092(vs), 1012(w), 825(m), 785(s), 621(m), 549(m), 492(m). 2–6 were obtained by procedures similar to that of 1. For their IR, thermogravimetric analysis, and X-ray diffraction, see the SI (Figures S8–S10).

(20) Crystal data for 1: $C_{144}H_{131}Cl_4Y_7N_{12}O_{60}$, $M_r = 3753.78$, trigonal, P321, a = 16.955(2) Å, c = 14.653(3) Å, V = 3648.1(1) Å³, Z = 1, $D_c = 1.709$ g cm⁻³, $\mu = 2.926$ mm⁻¹, F(000) = 1900, and GOF = 1.038. Of a total of 27290 reflections collected, 5523 are unique ($R_{int} = 0.0458$). R1/wR2 = 0.0610/0.1712 for 4905 reflections and 307 parameters [$I > 2\sigma(I)$]. For the crystal data for **2–6**, see Table S1 in the SI.

(21) Janiak, C. J. Chem. Soc., Dalton Trans. 2000, 29, 3885.

(22) Blatov, V. A.; Shevchenko, A. P.; Serezhkin, V. N. J. Appl. Crystallogr. 2000, 33, 1193.

(23) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.

(24) Kahn, O. Molecular Magnetism; Wiley-VCH: New York, 1993.

(25) (a) Chen, G. J.; Gao, C. Y.; Tian, J. L.; Tang, J.; Gu, W.; Liu, X.;
Yan, S. P.; Liao, D. Z.; Cheng, P. *Dalton Trans.* 2011, 40, 5579.
(b) Damer, M. T.; Lan, Y.; Roesky, P. W.; Powell, A. K.; Clérac, R. *Inorg. Chem.* 2008, 47, 6581.