Coordination Chemistry of Single-Site Catalyst Precursors in Reductively Electropolymerized Vinylbipyridine Films

Daniel P. Harrison,[†] Alexander M. Lapides,[‡] Robert A. Binstead,[‡] Javier J. Concepcion,[‡] Manuel A. Méndez, \ddot{a} Daniel A. Torelli, \ddot{a} Joseph L. Templeton, \ddot{a} and Thomas J. Meyer^{*, \ddot{a}}

† Department of Chemistry, Virginia Military Institute, Lexington, Virginia 24450, United States

‡ Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599-3290, United States

S Supporting Information

[ABSTRACT:](#page-2-0) Reductive electropolymerization of $\lceil \text{Ru}^{\text{II}}(\text{PhTpy})(5,5'\text{-dvby})(\text{Cl}) \rceil(\text{PF}_6) \text{ and } \lceil \text{Ru}^{\text{II}}(\text{PhTpy}) - \rceil$ $(5,5'-dvby)(MeCN)[(PF_6)_2]$ (PhTpy is 4'-phenyl-2,2′:6′,2″-terpyridine; 5,5′-dvbpy is 5,5′-divinyl-2,2′-bipyridine) on glassy carbon electrodes gives well-defined films of poly $\{[\text{Ru}^{\text{II}}(\text{PhTpy})(5,5'\text{-dvby})(\text{Cl})](\text{PF}_6)\}$ (poly-1) or poly $\{[\text{Ru}^{\text{II}}(\text{PhTpy})(5.5\text{'-dvbpy})(\text{MeCN})](\text{PF}_6)_{2}\}$ (poly-2). Oxidative cycling of poly-2 with added $NO_3^$ results in the replacement of coordinated MeCN by $\overline{\text{NO}_3}^$ to give $\text{poly}\{\left[\text{Ru}^{\text{II}}(\text{PhTpy})(5,5'\text{-dvby})(\text{NO}_3)\right]^+\}$, and with 0.1 M HClO₄, replacement by H_2O occurs to give poly $\{[\text{Ru}^{\text{II}}(\text{PhTpy})(5.5'\text{-dvby})(\text{OH}_2)]^{2+}\}\$ (poly- OH_2). Although analogous aqua complexes (e.g., [Ru(tpy)(bpy)- $(OH₂)⁷$) undergo rapid loss of H₂O to MeCN in solution, poly- OH_2^- and poly- OH_2^+ are substitutionally inert in MeCN. The substitution chemistry is reversible, with reductive scans of poly-1 or poly- $OH₂$ in MeCN resulting in poly-2, although with some loss of Faradaic response.

Mell-established procedures are available for the electropolymerization of vinyl- 1 and pyrrole-derivatized² metal complexes on a variety conducting substrates. The electron transfer,^{1b,i} photochemical,^{1c,e,j} [di](#page-2-0)ffusional,^{2b} and related [p](#page-2-0)roperties of the resulting films, including electrocatalysis,^{1f−h,2a,d} have also be[en i](#page-2-0)nvestigated. El[ectro](#page-2-0)polymeriz[atio](#page-2-0)n offers significant advantages over other approaches to modifying s[urfaces.](#page-2-0) With multiple polymerizable functional groups, cross-linking and formation of relatively high polymers lead to film formation by physical adsorption to the electrode surface. The resulting interfacial film structures are stable in a variety of media and over an extended pH range in water. This is in contrast to surface binding to oxides by carboxylate- or phosphonate-derivatized complexes, the former of which are unstable on oxide surfaces in water and the latter at elevated pHs.³

A particular target for us is to design interfaces for electrocatalytic and photoelectroca[ta](#page-2-0)lytic applications. In one strategy, electropolymerization is used to form films from monomer-based catalyst precursors; recent examples have appeared based on oxidatively induced pyrrole polymerization.^{2c,d} Here we report our initial findings on reductive electropolymerization of the catalyst precursor complexes $\lceil \text{Ru}^{\text{II}}(\text{PhTpy})(5.5'\text{-dvby})(\text{Cl}) \rceil(\text{PF}_6)$ $\lceil \text{Ru}^{\text{II}}(\text{PhTpy})(5.5'\text{-dvby})(\text{Cl}) \rceil(\text{PF}_6)$ $\lceil \text{Ru}^{\text{II}}(\text{PhTpy})(5.5'\text{-dvby})(\text{Cl}) \rceil(\text{PF}_6)$ (1) and $\lceil \text{Ru}^{\text{II}}(\text{PhTpy}) - \rceil$ $(5,5'$ -dvbpy)(MeCN)](PF₆)₂ (2), where PhTpy is 4'-phenyl-2,2′:6′,2″-terpyridine and 5,5′-dvbpy is 5,5′-divinyl-2,2′-bipyridine (Figure 1), and the behavior of the resulting interfacial

Figure 1. Structures of single-site ruthenium complex catalyst precursors to poly-1 and poly-2.

films, poly-1 and poly-2. Earlier strategies relied on multiple polymerizable ligands and cross-linking, which limited the generality of the coordination chemistry. We report here that the doubly derivatized 5,5′-dvbpy ligand in these complexes is sufficient to achieve stable interfacial film structures, as reported earlier by Nie and co-workers.⁴

Electropolymerization of 1 and 2 to give poly-1 and poly-2 was induced by controlled poten[ti](#page-2-0)al electrolysis or cyclic voltammetric (CV) scans at (or to) potentials sufficiently negative to reduce the ligands and initiate polymerization (Figure S1, Supporting Information, SI). Either technique produces surface coverages $(\Gamma$ in mol/cm²; see eqs S1 and S2, SI) that increase [linearly with the numbe](#page-2-0)r of reductive scan cycles or with time (Figures S2 and S3, SI). Electropolymerized films of poly-1 $(Ru^{III/II}; E_{1/2} = +0.56 \text{ V} \text{ vs } Ag/AgNO_3^5 \text{ and } -0.094 \text{ V} \text{ vs }$ $(Ru^{III/II}; E_{1/2} = +0.56 \text{ V} \text{ vs } Ag/AgNO_3^5 \text{ and } -0.094 \text{ V} \text{ vs }$ $(Ru^{III/II}; E_{1/2} = +0.56 \text{ V} \text{ vs } Ag/AgNO_3^5 \text{ and } -0.094 \text{ V} \text{ vs }$ FeCp₂^{+/0}) and poly-2 [\(Ru](#page-2-0)^{III/II}: $E_{1/2}$ = +0.99 V vs Ag^{+/0}) on 0.071 cm^2 glassy carbo[n](#page-2-0) electrodes (GCEs) in 0.1 M [TBA]PF₆/ MeCN ($[TBA]PF_6$ is tetra-*n*-butylammonium hexafluorophosphate) display peak-to-peak separations (ΔE_p) of 22 and 21 mV (Figure S4, SI), respectively, at a scan rate, ν , of 100 mV/s. ΔE_p approaches 0 as the scan rate is decreased, as expected for a surface wav[e \(](#page-2-0)Figure S5, SI). UV-vis spectra of poly-1 and poly-2 on semitransparent fluorine-doped tin oxide (FTO) surfaces closely resemble those of [1](#page-2-0) and 2 in solution (Figures S6 and S7, SI).

[Re](#page-2-0)ceived: November 12, 2012 Published: April 24, 2013

Oxidatively Induced Ligand Substitution. Oxidatively cycling poly-2 through the $R\overline{u}^{\text{III/II}}$ wave in a 1 mM solution of [TBA]NO₃ (in 0.1 M [TBA]PF₆/MeCN) produces a new surface couple at $E_{1/2}$ = +0.68 V (Figure 2). Interconversion from

Figure 2. Oxidative CVs of poly-2 on a GCE in 1 mM [TBA]NO₃ (ν = 250 mV/s), illustrating the loss of poly-2 (red arrows; $\Gamma = 3.7 \times 10^{-9}$ mol/cm²) and the appearance of poly- $\mathbf{ONO_2}$ (green arrows). The shoulder at +0.55 V vs Ag/AgNO₃ appears to be poly- OH_2 , arising from trace water in the initial solution (see below).

poly-2 to the new couple is complete after 20 scans from 0 to +1.5 V (Figure S8, SI). A characteristic prewave appears at $E_{p,c}$ = +0.80 V because of changes in the film structure arising from ion transport.⁶ The ne[gat](#page-2-0)ive shift of $\Delta E_{1/2} = -0.34$ V is consistent with oxidation to Ru^{III} , followed by substitution of MeCN by NO_3^- to [g](#page-2-0)ive poly- $Ru^{III}ONO_2^{2+}$ (poly- ONO_2^+ ; eqs 1 and 2). UV−vis spectral data are consistent with this conclusion (Figure S9A, SI). Oxidatively induced substitution of MeCN for $\mathrm{NO_3}^-$ in $Ru(tpy)(bpy)(NCMe)^{2+}$ also occurs in solution under the same cond[itio](#page-2-0)ns.

$$
poly-RuHNCMe2+ \xrightarrow{-e^-} poly-RuHNCMe3+
$$
 (1)

$$
poly-RuIIINCMe3+ + NO3-
$$

\n
$$
\rightarrow poly-RuIIIONO22+ + MeCN
$$
 (2)

The poly- $\text{Ru}^{\text{III}}\text{ONO}_2^{2+}$ couple was not present following a single oxidative sweep of 0 \rightarrow 1.5 V or after soaking of a GCE− poly-2 electrode in $[TBA]NO₃$ for 72 h. There was no sign of coordination of HSO_4^- , ClO_4^- , or OTf[−] by oxidative cycling of poly-2 under comparable conditions. Cl $^-$ is preferred over $\mathrm{NO_3}^$ in the coordination spheres of both Ru^{III} and Ru^{II}. There was no evidence for substitution of Cl[−] for NO₃[−] in poly-1. In MeCN 5 mM in Cl[−], substitution of NO₃[−] occurs, converting poly-**ONO**₂⁺ to poly-1 by the reaction, poly-Ru^{III}ONO₂²⁺ + Cl⁻ → poly-1 + NO_3 ⁻ with oxidative cycling with slow substitution (hours) occurring without cycling.

Similarly, oxidative cycling of poly-2 in 0.1 M $HClO₄$ between 0 and +1.5 V gives poly- $Ru^{III}OH_{2}^{3+}$ (poly- OH_{2}^{+} ; eqs 1 and 3), with $E_{1/2}$ = +0.80 V compared to $E_{1/2}$ = +0.79 V vs SCE for the $\left[\text{Ru(bpy)}\right](bpy)OH_2\right]^{3+/2+}$ couple at pH 1 (Figure 3).⁷ UV-vis spectral data corroborate these results (Figure S10, SI). The reaction is complete after 20 cycles (Figure S11, SI). [T](#page-2-0)here was no sign of aquation when poly-2 was soaked in 0.1 M $HClO₄$ $HClO₄$ for 72 h. Careful inspection of the scan sequence in [Fig](#page-2-0)ure 3 reveals that a smaller wave at $E_{1/2}$ ~ 0.68 V appears during the first few

Figure 3. Formation of poly-H₂O following oxidative scan cycles of poly-2 (red arrows; $\Gamma_{\rm initial}$ = 2.7 × 10⁻⁹ mol/cm²) in 0.1 M HClO₄; GCE, 0.071 cm², $v = 100$ mV/s.

scan cycles. This wave may arise from sites near the film− solution interface that undergo substitution more rapidly than sites in the film interior.

$$
poly-RuIIINCMe3+ + H2O \rightarrow poly-RuIIIOH23+ + MeCN
$$
\n(3)

Appearance of the aqua complex is significant given the known pH-dependent proton-coupled electron-transfer (PCET) properties of $\left[\text{Ru(tpy)(bpy)(OH₂)}\right]^{2+}$ and the oxidative reactivity of higher-oxidation-state $Ru^V(O)$ and $Ru^V(O)$ forms.^{3,8} The filmbased redox chemistry is currently under investigation. In MeCN, $\text{Ru(tpy)(bpy)(OH_2)}^{2+}$ undergoes substit[utio](#page-2-0)n of H₂O by MeCN in minutes. By contrast, there is no evidence for poly-2 when poly- H_2O is soaked in [TBA] $PF_6/MeCN$ for extended periods or after oxidative cycling. $\mathrm{NO_3}^-$ is lost from poly- $\mathrm{ONO_2}$ to give poly- H_2O upon oxidative cycling in 0.1 M HClO₄ or upon soaking in 0.1 M HClO₄. It is noteworthy that the substitution kinetics of MeCN in poly-2 for OH₂ or NO₃ $^-$ are zero-order over an extensive dynamic range consistent with a noncomplex ratelimiting step, namely, diffusion into the film (Figures S8 and S11, SI).

Reductively Induced Substitution. Ligand substitution is [als](#page-2-0)o induced by reductive cycling following reduction at the π^* (polypyridyl) levels of the ligands. The results of three reductive scan cycles of poly-1 at 100 mV/s in 0.1 M [TBA] $PF_6/$ MeCN at $0 \rightarrow -1.97$ V under N₂ are shown in Figure 4a.⁹ On the first scan, a prewave appears at $E_{p,c} = -1.27$ V followed by surface waves at $E_{1/2}$ $E_{1/2}$ $E_{1/2}$ = -1.66 V (PhTpy reduction) and at $E_{1/2}$ = -1.87 V (5,5′-poly-vbpy reduction).

Following the first scan through both ligand-based reductions, a new surface-based couple appears at $E_{p,c} = -1.49$ V, which coincides with $E_{\text{p,c}}$ for the first PhTpy-based reduction in poly-2. A subsequent oxidative scan and the appearance of a wave at $E_{1/2}$ $= +1.02$ V for the poly-Ru^{III}NCMe^{3+/2+} couple reveals that ligand-based reduction induces conversion of poly-1 into poly-2 (eqs 4 and 5; Figures 4b and S12 and S13, SI). UV−vis spectral data corroborate these results (Figure S14, SI). The substitution mechanis[m,](#page-2-0) following $\pi^*(\text{PhTpy})/\pi^*(5,5'-\text{poly-vbpy})$ reduction, is presumably b[y](#page-2-0) thermal populatio[n of](#page-2-0) ruthenium-based $d\sigma^*$ levels, which induces ligand labilization.

$$
poly-RuCl+ + 2e- + MeCN \rightarrow poly-RuNCMe0 + Cl-
$$
\n(4)

Figure 4. (A) Reductive CVs of poly-1 under N_2 (black). (B) Oxidative CVs of a poly-1 electrode prior to reductive cycling (blue; $\Gamma = 1.7 \times 10^{-9}$ mol/cm²) and after reductive cycling (red). Both parts A and B were obtained in fresh solutions of 0.1 M $[TBA]PF_6/MeCN$ after electropolymerization on a 0.071 cm² GCE.

$$
poly-RuNCMe0 - 2e- \rightarrow poly-RuNCMe2+
$$
 (5)

Ligand-based reduction and substitution are accompanied by a loss of Faradaic response, with $\Gamma = 1.7 \times 10^{-9}$ mol/cm² for the initial poly-1 Ru^{III/II} wave at $E_{1/2}$ = +0.56 V decreasing to Γ = 9.3 \times 10⁻¹⁰ mol/cm² for the poly-2 wave at $E_{1/2}$ = +1.03 V. In addition, a new, distorted prewave appears at $E_{p,a}$ = +0.82 V (Figure 4b). This observation points to a 46% decrease in the redox response at the end of three reductive scan cycles. A related response was observed for a thinner film of poly-1 with $\Gamma = 4.5 \times$ 10^{-10} mol/cm² before a reductive cycle and $\Gamma = 3.2 \times 10^{-10}$ mol/ cm^2 for poly-2, a 29% loss. Reductive cycling of poly- ONO_2 and poly-H₂O both result in poly-2 with comparable decreases in Γ (Figures S15 and S16, SI). The loss mechanism is currently under investigation. It is noteworthy that, after the initial exchange occurs with a loss of electroactivity, further decreases are greatly ameliorated upon additional reductive scan cycles (Figure S13, SI).

Our results are important in revealing systematic and synthetically exploitable features in the film-based coordination chemistries of poly-1 and poly-2 with significant differences between film and solution behavior. Polypyridyl complexes of $d\pi$ ⁶ Ru^{II} typically undergo slow loss of nitrile ligands. Nitrile ligands are weak σ donors and derive coordinative stability from $d_{\pi}-\pi^*$ back-bonding from Ru^{II}. With oxidation to Ru^{III}, backbonding stabilization is no longer a factor, and nitriles become good leaving groups. Nitrile labilization was exploited here to convert poly-2 into poly- ONO_2 and poly- OH_2 .

The film environment also plays an important role. Following conversion of poly- 2 into poly- $OH₂$, there is no sign of substitution of $\rm H_2O$ for MeCN in poly- $\rm OH_2$ or poly-Ru $\rm ^{III}OH_2^{3+}$ even over extended soaking or oxidative cycling periods in MeCN. This is a potentially important observation for possible applications in organic electrocatalysis based on $Ru=O$ forms of poly- $OH₂$ with MeCN as the external solvent.⁹ Oxidatively induced anation and aquation provide a basis for systematic manipulation of the coordination environment at the redoxactive Ru^{II} sites in films. Ligand-based reduction offers a route to loss of anions or water in MeCN to return the films to the initial poly-2 state.

■ ASSOCIATED CONTENT

3 Supporting Information

Detailed experimental procedures, synthetic procedures, NMR spectra, Figures S1−S22, additional acknowledgments, and equations. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTH[OR INFORMATIO](http://pubs.acs.org)N

Corresponding Author

*E-mail: tjmeyer@unc.edu.

Notes

The aut[hors declare no com](mailto:tjmeyer@unc.edu)peting financial interest.

■ ACKNOWLEDGMENTS

D.P.H. acknowledges support from the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, under Award DE-FG02-06ER15788 and the Virginia Military Institute. A.M.L., R.A.B., and J.J.C. acknowledge support from the UNC Energy Frontier Research Center (EFRC): Center for Solar Fuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001011.

■ REFERENCES

(1) (a) Calvert, J. M.; Schmehl, R. H.; Sullivan, B. P.; Facci, J. S.; Meyer, T. J.; Murray, R. W. Inorg. Chem. 1983, 22, 2151−2162. (b) Gould, S.; Gray, K. H.; Linton, R. W.; Meyer, T. J. Inorg. Chem. 1992, 31, 5521− 5525. (c) Devenney, M.; Worl, L. A.; Gould, S.; Guadalupe, A.; Sullivan, B. P.; Caspar, J. V.; Leasure, R. L.; Gardner, J. R.; Meyer, T. J. J. Phys. Chem. A 1997, 101, 4535−4540. (d) Moss, J. A.; Argazzi, R.; Bignozzi, C. A.; Meyer, T. J. Inorg. Chem. 1997, 36, 762−763. (e) Moss, J. A.; Yang, J. C.; Stipkala, J. M.; Wen, X.; Bignozzi, C. A.; Meyer, G. J.; Meyer, T. J. Inorg. Chem. 2004, 43, 1784−1792. (f) O'Toole, T. R.; Margerum, L. D.; Westmoreland, T. D.; Vining, W. J.; Murray, R. W.; Meyer, T. J. J. Chem. Soc., Chem. Commun. 1985, 1416−1417. (g) Ramos Sende, J. A.; Arana, C. R.; Hernandez, L.; Potts, K. T.; Keshevarz-K, M.; Abruna, H. D. Inorg. Chem. 1995, 34, 3339−3348. (h) Cosnier, S.; Deronzier, A.; Moutet, J.- C. J. Mol. Catal. 1988, 45, 381−391. (i) Abruna, H. D.; Denisevich, P.; Umana, M.; Meyer, T. J.; Murray, R. W. J. Am. Chem. Soc. 1981, 103, 1− 5. (j) Yang, J.; Sykora, M.; Meyer, T. J. Inorg. Chem. 2005, 44, 3396− 3404.

(2) (a) Cosnier, S.; Deronzier, A.; Moutet, J.-C. J. Electroanal. Chem. Interfacial Electrochem. 1986, 207, 315−321. (b) Deronzier, A.; Eloy, D.; Jardon, P.; Martre, A.; Moutet, J.-C. J. Electroanal. Chem. 1998, 453, 179−185. (c) Mola, J.; Mas-Marza, E.; Sala, X.; Romero, I.; Rodríguez, M.; Viñ as, C.; Parella, T.; Llobet, A. Angew. Chem., Int. Ed. 2008, 47, 5830−5832. (d) Cheung, K.-C.; Guo, P.; So, M.-H.; Zhou, Z.-Y.; Lee, L. Y. S.; Wong, K.-Y. Inorg. Chem. 2012, 51, 6468−6475.

(3) (a) Concepcion, J. J.; Jurss, J. W.; Brennaman, M. K.; Hoertz, P. G.; Patrocinio, A. O. v. T.; Murakami Iha, N. Y.; Templeton, J. L.; Meyer, T. J. Acc. Chem. Res. 2009, 42, 1954−1965. (b) Chen, Z.; Concepcion, J. J.; Jurss, J. W.; Meyer, T. J. J. Am. Chem. Soc. 2009, 131, 15580−15581.

(4) Nie, H.-J.; Shao, J.-Y.; Wu, J.; Yao, J.; Zhong, Y.-W. Organometallics 2012, 31, 6952−6959.

(5) Silver wire reference electrode solution: 0.01 M AgNO₃, 0.1 M [TBA] PF_6 , MeCN solution; -0.094 V vs FeCp₂.

(6) Abruñ a, H. D. Coord. Chem. Rev. 1988, 86, 135−189.

(7) Takeuchi, K. J.; Thompson, M. S.; Pipes, D. W.; Meyer, T. J. Inorg. Chem. 1984, 23, 1845−1851.

(8) (a) Meyer, T. J.; Huynh, M. H. V. Inorg. Chem. 2003, 42, 8140− 8160. (b) Gagliardi, C. J.; Vannucci, A. K.; Concepcion, J. J.; Chen, Z.; Meyer, T. J. Energy Environ. Sci. 2012, 5, 7704−7717.

(9) Vanucci, A. K.; Chen, Z.; Concepcion, J. J.; Meyer, T. J. ACS Catal. 2012, 2, 716−719.