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ABSTRACT: Reductive electropolymerization of
[RuII(PhTpy)(5,5′-dvbpy)(Cl)](PF6) and [RuII(PhTpy)-
(5,5′-dvbpy)(MeCN)](PF6)2 (PhTpy is 4′-phenyl-
2,2′:6′,2″-terpyridine; 5,5′-dvbpy is 5,5′-divinyl-2,2′-bipyr-
idine) on glassy carbon electrodes gives well-defined films
of poly{[RuII(PhTpy)(5,5′-dvbpy)(Cl)](PF6)} (poly-1)
or poly{[RuII(PhTpy)(5,5′-dvbpy)(MeCN)](PF6)2}
(poly-2). Oxidative cycling of poly-2 with added NO3

−

results in the replacement of coordinated MeCN by NO3
−

to give poly{[RuII(PhTpy)(5,5′-dvbpy)(NO3)]
+}, and

with 0.1 M HClO4, replacement by H2O occurs to give
poly{[RuII(PhTpy)(5,5′-dvbpy)(OH2)]

2+} (poly-OH2).
Although analogous aqua complexes (e.g., [Ru(tpy)(bpy)-
(OH2)]

2+) undergo rapid loss of H2O to MeCN in
solution, poly-OH2 and poly-OH2

+ are substitutionally
inert in MeCN. The substitution chemistry is reversible,
with reductive scans of poly-1 or poly-OH2 in MeCN
resulting in poly-2, although with some loss of Faradaic
response.

Well-established procedures are available for the electro-
polymerization of vinyl-1 and pyrrole-derivatized2 metal

complexes on a variety conducting substrates. The electron
transfer,1b,i photochemical,1c,e,j diffusional,2b and related proper-
ties of the resulting films, including electrocatalysis,1f−h,2a,d have
also been investigated. Electropolymerization offers significant
advantages over other approaches to modifying surfaces. With
multiple polymerizable functional groups, cross-linking and
formation of relatively high polymers lead to film formation by
physical adsorption to the electrode surface. The resulting
interfacial film structures are stable in a variety of media and over
an extended pH range in water. This is in contrast to surface
binding to oxides by carboxylate- or phosphonate-derivatized
complexes, the former of which are unstable on oxide surfaces in
water and the latter at elevated pHs.3

A particular target for us is to design interfaces for
electrocatalytic and photoelectrocatalytic applications. In one
strategy, electropolymerization is used to form films from
monomer-based catalyst precursors; recent examples have
appeared based on oxidatively induced pyrrole polymer-
ization.2c,d Here we report our initial findings on reductive
electropolymerization of the catalyst precursor complexes
[RuII(PhTpy)(5,5′-dvbpy)(Cl)](PF6) (1) and [RuII(PhTpy)-

(5,5′-dvbpy)(MeCN)](PF6)2 (2), where PhTpy is 4′-phenyl-
2,2′:6′,2″-terpyridine and 5,5′-dvbpy is 5,5′-divinyl-2,2′-bipyr-
idine (Figure 1), and the behavior of the resulting interfacial

films, poly-1 and poly-2. Earlier strategies relied on multiple
polymerizable ligands and cross-linking, which limited the
generality of the coordination chemistry. We report here that
the doubly derivatized 5,5′-dvbpy ligand in these complexes is
sufficient to achieve stable interfacial film structures, as reported
earlier by Nie and co-workers.4

Electropolymerization of 1 and 2 to give poly-1 and poly-2was
induced by controlled potential electrolysis or cyclic voltam-
metric (CV) scans at (or to) potentials sufficiently negative to
reduce the ligands and initiate polymerization (Figure S1,
Supporting Information, SI). Either technique produces surface
coverages (Γ in mol/cm2; see eqs S1 and S2, SI) that increase
linearly with the number of reductive scan cycles or with time
(Figures S2 and S3, SI). Electropolymerized films of poly-1
(RuIII/II: E1/2 = +0.56 V vs Ag/AgNO3

5 and −0.094 V vs
FeCp2

+/0) and poly-2 (RuIII/II: E1/2 = +0.99 V vs Ag+/0) on 0.071
cm2 glassy carbon electrodes (GCEs) in 0.1 M [TBA]PF6/
MeCN ([TBA]PF6 is tetra-n-butylammonium hexafluorophos-
phate) display peak-to-peak separations (ΔEp) of 22 and 21 mV
(Figure S4, SI), respectively, at a scan rate, ν, of 100 mV/s. ΔEp
approaches 0 as the scan rate is decreased, as expected for a
surface wave (Figure S5, SI). UV−vis spectra of poly-1 and poly-
2 on semitransparent fluorine-doped tin oxide (FTO) surfaces
closely resemble those of 1 and 2 in solution (Figures S6 and S7,
SI).
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Figure 1. Structures of single-site ruthenium complex catalyst
precursors to poly-1 and poly-2.
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Oxidatively Induced Ligand Substitution. Oxidatively
cycling poly-2 through the RuIII/II wave in a 1 mM solution of
[TBA]NO3 (in 0.1 M [TBA]PF6/MeCN) produces a new
surface couple at E1/2 = +0.68 V (Figure 2). Interconversion from

poly-2 to the new couple is complete after 20 scans from 0 to
+1.5 V (Figure S8, SI). A characteristic prewave appears at Ep,c =
+0.80 V because of changes in the film structure arising from ion
transport.6 The negative shift of ΔE1/2 = −0.34 V is consistent
with oxidation to RuIII, followed by substitution of MeCN by
NO3

− to give poly-RuIIIONO2
2+ (poly-ONO2

+; eqs 1 and 2).
UV−vis spectral data are consistent with this conclusion (Figure
S9A, SI). Oxidatively induced substitution of MeCN for NO3

− in
Ru(tpy)(bpy)(NCMe)2+ also occurs in solution under the same
conditions.

‐ ⎯ →⎯⎯ ‐+ − +
−

poly Ru NCMe poly Ru NCMeII 2 e III 3
(1)

‐ +

→ ‐ +

+ −

+

poly Ru NCMe NO

poly Ru ONO MeCN

III 3
3

III
2

2
(2)

The poly-RuIIIONO2
2+ couple was not present following a

single oxidative sweep of 0→ 1.5 V or after soaking of a GCE−
poly-2 electrode in [TBA]NO3 for 72 h. There was no sign of
coordination of HSO4

−, ClO4
−, or OTf− by oxidative cycling of

poly-2 under comparable conditions. Cl− is preferred over NO3
−

in the coordination spheres of both RuIII and RuII. There was no
evidence for substitution of Cl− for NO3

− in poly-1. In MeCN 5
mM in Cl−, substitution of NO3

− occurs, converting poly-
ONO2

+ to poly-1 by the reaction, poly-RuIIIONO2
2+ + Cl− →

poly-1 + NO3
− with oxidative cycling with slow substitution

(hours) occurring without cycling.
Similarly, oxidative cycling of poly-2 in 0.1 M HClO4 between

0 and +1.5 V gives poly-RuIIIOH2
3+ (poly-OH2

+; eqs 1 and 3),
with E1/2 = +0.80 V compared to E1/2 = +0.79 V vs SCE for the
[Ru(bpy)(bpy)OH2]

3+/2+ couple at pH 1 (Figure 3).7 UV−vis
spectral data corroborate these results (Figure S10, SI). The
reaction is complete after 20 cycles (Figure S11, SI). There was
no sign of aquation when poly-2 was soaked in 0.1 M HClO4 for
72 h. Careful inspection of the scan sequence in Figure 3 reveals
that a smaller wave at E1/2 ∼ 0.68 V appears during the first few

scan cycles. This wave may arise from sites near the film−
solution interface that undergo substitution more rapidly than
sites in the film interior.

‐ + → ‐ ++ +poly Ru NCMe H O poly Ru OH MeCNIII 3
2

III
2

3

(3)

Appearance of the aqua complex is significant given the known
pH-dependent proton-coupled electron-transfer (PCET) prop-
erties of [Ru(tpy)(bpy)(OH2)]

2+ and the oxidative reactivity of
higher-oxidation-state RuIV(O) and RuV(O) forms.3,8 The film-
based redox chemistry is currently under investigation. In
MeCN, [Ru(tpy)(bpy)(OH2)]

2+ undergoes substitution of H2O
byMeCN in minutes. By contrast, there is no evidence for poly-2
when poly-H2O is soaked in [TBA]PF6/MeCN for extended
periods or after oxidative cycling. NO3

− is lost from poly-ONO2
to give poly-H2O upon oxidative cycling in 0.1MHClO4 or upon
soaking in 0.1 M HClO4. It is noteworthy that the substitution
kinetics of MeCN in poly-2 for OH2 or NO3

− are zero-order over
an extensive dynamic range consistent with a noncomplex rate-
limiting step, namely, diffusion into the film (Figures S8 and S11,
SI).

Reductively Induced Substitution. Ligand substitution is
also induced by reductive cycling following reduction at the
π*(polypyridyl) levels of the ligands. The results of three
reductive scan cycles of poly-1 at 100 mV/s in 0.1 M [TBA]PF6/
MeCN at 0→−1.97 V under N2 are shown in Figure 4a.

9 On the
first scan, a prewave appears at Ep,c =−1.27 V followed by surface
waves at E1/2 =−1.66 V (PhTpy reduction) and at E1/2 =−1.87 V
(5,5′-poly-vbpy reduction).
Following the first scan through both ligand-based reductions,

a new surface-based couple appears at Ep,c = −1.49 V, which
coincides with Ep,c for the first PhTpy-based reduction in poly-2.
A subsequent oxidative scan and the appearance of a wave at E1/2
= +1.02 V for the poly-RuIIINCMe3+/2+ couple reveals that
ligand-based reduction induces conversion of poly-1 into poly-2
(eqs 4 and 5; Figures 4b and S12 and S13, SI). UV−vis spectral
data corroborate these results (Figure S14, SI). The substitution
mechanism, following π*(PhTpy)/π*(5,5′-poly-vbpy) reduc-
tion, is presumably by thermal population of ruthenium-based
dσ* levels, which induces ligand labilization.

‐ + + → ‐ ++ − −poly RuCl 2e MeCN poly RuNCMe Cl0

(4)

Figure 2.Oxidative CVs of poly-2 on a GCE in 1 mM [TBA]NO3 (ν =
250 mV/s), illustrating the loss of poly-2 (red arrows; Γ = 3.7 × 10−9

mol/cm2) and the appearance of poly-ONO2 (green arrows). The
shoulder at +0.55 V vs Ag/AgNO3 appears to be poly-OH2, arising from
trace water in the initial solution (see below).

Figure 3. Formation of poly-H2O following oxidative scan cycles of
poly-2 (red arrows; Γinitial = 2.7× 10−9 mol/cm2) in 0.1MHClO4; GCE,
0.071 cm2, v = 100 mV/s.
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‐ − → ‐− +poly RuNCMe 2e poly RuNCMe0 2
(5)

Ligand-based reduction and substitution are accompanied by a
loss of Faradaic response, with Γ = 1.7 × 10−9 mol/cm2 for the
initial poly-1 RuIII/II wave at E1/2 = +0.56 V decreasing to Γ = 9.3
× 10−10 mol/cm2 for the poly-2 wave at E1/2 = +1.03 V. In
addition, a new, distorted prewave appears at Ep,a = +0.82 V
(Figure 4b). This observation points to a 46% decrease in the
redox response at the end of three reductive scan cycles. A related
response was observed for a thinner film of poly-1 with Γ = 4.5 ×
10−10 mol/cm2 before a reductive cycle and Γ = 3.2 × 10−10 mol/
cm2 for poly-2, a 29% loss. Reductive cycling of poly-ONO2 and
poly-H2O both result in poly-2 with comparable decreases in Γ
(Figures S15 and S16, SI). The loss mechanism is currently
under investigation. It is noteworthy that, after the initial
exchange occurs with a loss of electroactivity, further decreases
are greatly ameliorated upon additional reductive scan cycles
(Figure S13, SI).
Our results are important in revealing systematic and

synthetically exploitable features in the film-based coordination
chemistries of poly-1 and poly-2 with significant differences
between film and solution behavior. Polypyridyl complexes of
dπ6 RuII typically undergo slow loss of nitrile ligands. Nitrile
ligands are weak σ donors and derive coordinative stability from
dπ−π* back-bonding from RuII. With oxidation to RuIII, back-
bonding stabilization is no longer a factor, and nitriles become
good leaving groups. Nitrile labilization was exploited here to
convert poly-2 into poly-ONO2 and poly-OH2.
The film environment also plays an important role. Following

conversion of poly-2 into poly-OH2, there is no sign of
substitution of H2O for MeCN in poly-OH2 or poly-Ru

IIIOH2
3+

even over extended soaking or oxidative cycling periods in
MeCN. This is a potentially important observation for possible
applications in organic electrocatalysis based on RuO forms of
poly-OH2 with MeCN as the external solvent.9 Oxidatively
induced anation and aquation provide a basis for systematic
manipulation of the coordination environment at the redox-
active RuII sites in films. Ligand-based reduction offers a route to
loss of anions or water in MeCN to return the films to the initial
poly-2 state.
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Figure 4. (A) Reductive CVs of poly-1 under N2 (black). (B) Oxidative
CVs of a poly-1 electrode prior to reductive cycling (blue;Γ = 1.7× 10−9

mol/cm2) and after reductive cycling (red). Both parts A and B were
obtained in fresh solutions of 0.1 M [TBA]PF6/MeCN after
electropolymerization on a 0.071 cm2 GCE.
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