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ABSTRACT: Many relevant properties (including superconductivity and colossal
magnetoresistance) of layered materials containing Cu2+, Ag2+, or Mn3+ ions are
commonly related to the Jahn−Teller instability. Along this line, the properties of the
CuF6

4− complex in the K2ZnF4 layered perovskite have recently been analyzed using a
parametrized Jahn−Teller model with an imposed strain [Reinen, D. Inorg. Chem.
2012, 51, 4458]. Here, we present results of ab initio periodic supercell and cluster
calculations on K2ZnF4:Cu

2+, showing unequivocally that the actual origin of the
unusual compressed geometry of the CuF6

4− complex along the crystal c axis in that
tetragonal lattice is due to the presence of an electric field due to the crystal
surrounding the impurity. Our calculations closely reproduce the experimental optical
spectrum. The calculated values of the equilibrium equatorial and axial Cu2+−F−
distances are, respectively, Rax = 193 pm and Req = 204 pm, and so the calculated
distortion Rax − Req = 11 pm is three times smaller than the estimated through the
parametrized Jahn−Teller model. As a salient feature, we find that if the CuF6

4− complex would assume a perfect octahedral
geometry (Rax = Req = 203 pm) the antibonding a1g*(∼3z2 − r2) orbital is placed above b1g*(∼x2 − y2) with a transition energy
E(2A1g →

2B1g) = 0.34 eV. This surprising fact stresses that about half the experimental value E(2A1g →
2B1g) = 0.70 eV is not due

to the small shortening of the axial Cu2+−F− distance, but it comes from the electric field, ER(r), created by the rest of the lattice
ions on the CuF6

4− complex. This internal field, displaying tetragonal symmetry, is thus responsible for the compressed geometry
in K2ZnF4:Cu

2+ and the lack of symmetry breaking behind the ligand relaxation. Moreover, we show that the electronic energy
gain in this process comes from bonding orbitals and not from antibonding ones. The present results underline the key role
played by ab initio calculations for unveiling all the complexity behind the properties of the model system K2ZnF4:Cu

2+, opening
at the same time a window for improving our knowledge on d9, d7, or d4 ions in other layered compounds.

1. INTRODUCTION

A main goal in the investigation of materials is to gain a better
insight into the actual origin of its structure, paying special
attention to the connection between the arrangement of
electronic levels and the equilibrium geometry. In this way, tiny
changes in the electronic structure are responsible for the
tetragonal symmetry of KMnF3,

1 while KMgF3 and KNiF3
perovskites are cubic.2 Similarly, small variations in the
electronic densi ty3 between CuCl4(NH3)2

2− and
CuCl4(H2O)2

2− complexes, formed in Cu2+-doped NH4Cl,
explain why the former complex is tetragonal4−6 while the latter
one is orthorhombic.4,5

In the realm of insulators containing transition metal
impurities, significant research has been focused on cubic
halide lattices doped with d9 ions such as Cu2+, Ag2+, or
Ni+.7−10 In all cases explored up to now Electron Paramagnetic
Resonance (EPR) data undoubtedly prove that the impurity
centers have tetragonal D4h symmetry with the unpaired
electron placed in the antibonding b1g*(∼x2 − y2) orbital, and
thus a 2B1g ground state. In cubic material such as the CsCdF3

perovskite, this fact necessarily means that the local equilibrium
geometry corresponds to an elongated octahedron as a result of
a static Jahn−Teller (JT) effect where four equatorial ligands
are lying at a distance, Req

0 , from the impurity while two axial
ligands are at Rax

0 > Req
0 .7,8 Bearing these relevant data in mind,

the experimental results obtained for the Cu2+-doped tetragonal
layered perovskite K2ZnF4 (Figure 1) are certainly surpris-
ing.11−13 Indeed the g-tensor of K2ZnF4:Cu

2+ measured by EPR
at T = 6 K has axial symmetry with the crystal c axis as the
principal axis and the values g|| = 2.003 and g⊥ = 2.386.12 These
values clearly prove that the unpaired electron of the CuF6

4−

complex is lying in the antibonding a1g*(∼3z2 − r2) orbital
(Figure 2), and thus the electronic ground state is 2A1g. At the
same time, they strongly suggest that the fluorine octahedron
around a Cu2+ impurity is axially compressed and not
elongated.
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An attempt to describe this unexpected situation found in
K2ZnF4:Cu

2+ has been carried out by means of a parametrized
JT model where the involved parameters are fitted to available
experimental data.11,15 Nevertheless, this parametrized model is
unable to answer a fundamental question: why precisely in
K2ZnF4:Cu

2+ the local geometry around Cu2+ impurities is
tetragonally compressed and not elongated like it is found in
Cu2+-doped CsCdF3 or KZnF3 lattices.

9,10,14 Moreover, the use
of a JT model for explaining the experimental data on
K2ZnF4:Cu

2+ is not necessarily appropriate. Indeed, the
existence of a JT effect requires a departure point where the
local symmetry is cubic and the two b1g*(∼x2 − y2) and
a1g*(∼3z2 − r2) levels are thus degenerate.8,16 Although the
K2ZnF4 lattice is tetragonal it is true that the equatorial (Req

H =
202.9 pm) and axial (Rax

H = 202.6 pm) Zn2+−F− distances of the
host lattice are practically equal,17 and thus it can be thought
that when Zn2+ is replaced by Cu2+, this impurity observes a
local cubic symmetry before the distortion comes out.
Nevertheless, the axial F− ligands in K2ZnF4, which are along
the crystal c axis, have a terminal character whereas the
equatorial ones are bridging two close Zn2+ ions (Figure 1). For
this reason, it can be expected that the force constant for
moving an equatorial ligand along the metal−ligand distance,
Keq, will be higher than that corresponding to an axial ligand,

Kax,
18 thus outlining that the local geometry cannot in fact be

considered as cubic.
Similar situations can be found in a large number of

compounds, and in many cases, the geometrical configuration
of the system is attributed to the JT effect without a proper
critical analysis. Therefore, it is of great importance to carefully
determine the origin of the geometry of the system. This is
particularly true as some of these systems are materials with a
strong technological importance like high-temperature super-
conductors or layered manganites displaying colossal magneto-
resistance.19−23

Furthermore, ab initio cluster calculations performed on a
CuF6

4− complex embedded in the layered perovskite K2MgF4,
which is isomorphous to K2ZnF4,

24,2 point out that even when
the axial, Rax, and equatorial, Req, distances are equal, the two
b1g*(∼x2 − y2) and a1g*(∼3z2 − r2) levels are surprisingly not
degenerate.25 However, the validity of results derived from
cluster calculations for Cu2+-doped K2AF4 (A = Zn, Mg) has
recently been questioned,15 arguing that the environment
extends to infinity, and thus an exact treatment must take the
lattice periodicity into account.
Bearing all these facts in mind, the present work is aimed at

reaching a true microscopic understanding of the local
geometry in K2ZnF4:Cu

2+ by means of first principle
calculations. Moreover, due to its relative simplicity,
K2ZnF4:Cu

2+ is a perfect model system to gain a better insight
into the properties of d9, d4, and d7 ions in layered compounds.
Particular attention is paid in this work to determine whether
the ligand relaxation around a Cu2+ impurity can or cannot be
properly explained as a result of a JT effect. For achieving this
goal, large periodic supercells are used in a first step for
calculating Rax

0 and Req
0 values in K2ZnF4:Cu

2+. For comparison
purposes, similar calculations are also performed on closed shell
impurities like Cd2+ or Be2+ in K2ZnF4 and K2MgF4. For the
same reason, the equilibrium geometries of divalent transition
metal impurities Mn2+ and Ni2+ in the same host lattices26−28

are explored by means of periodic supercells calculations. These
impurities are known to induce only a fully isotropic ligand
relaxation in cubic perovskites like KMgF3 or CsCaF3.

29

Seeking to understand the mechanisms responsible for the
equilibrium geometry in K2ZnF4:Cu

2+, how the electronic levels
are arranged at the equilibrium geometry, described by Rax

0 and
Req
0 distances, and also when Rax = Req, is explored in a second

step. To test the reliability of conclusions, the calculated value
of 2A1g → 2B1g,

2A1g → 2Eg, and 2A1g → 2B2g electronic
transitions at the equilibrium geometry are compared with
optical absorption data obtained on K2ZnF4:Cu

2+.13,14

This work is arranged as follows. In section 2, an account of
methods employed for performing ab initio calculations is
provided. For the sake of clarity, a brief recall on the JT effect is
given in section 3, while main results are presented and
discussed in section 4. Finally, some remarks are included in the
last section.

2. COMPUTATIONAL DETAILS
Geometry optimizations on periodic supercells simulating diluted M
impurities (M = Cu2+, Mn2+, Ni2+, Cd2+, and Be2+) doped in K2ZnF4

17

and K2MgF4
24 lattices (tetragonal I4/mmm space group) have been

performed by means of the CRYSTAL (version 09) code30 under the
framework of Density Functional Theory (DFT). Most of the
calculations were performed using 2 × 2 × 1 periodic supercells
containing 56 atoms. In order to be sure that impurity−impurity
interactions between supercells are negligible, some calculations were
repeated on 3 × 3 × 1 supercells (126 atoms), and the results were

Figure 1. Unit cell of K2AF4 (A = Mg, Zn) layered perovskites.

Figure 2. Qualitative description of the splitting of d-levels of a Cu2+

ion, first under an octahedral (Oh) environment and then after a
distortion giving rise to a tetragonal (D4h) compressed geometry.
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practically unmodified. In the CRYSTAL code, the Bloch wave
functions are represented by a linear combination of atomic orbitals
which, in turn, are expressed as a combination of Gaussian basis
functions. All ions have been described by means of all-electron basis
sets taken directly from CRYSTAL’s web page;30 in particular, we have
used the following bases: 86-4111(41D)G_doll_2000 for Cu, 86-
511G_dovesi_1991 for K, 86-411d31G_jaffe_1993 for Zn, 8-
511d1G_valenzano_2006 for Mg, and 7-311G_nada_1993 for F.
Following previous works, we have used the B1WC hybrid exchange-
correlation functional (including 16% of Hartree−Fock exchange)31

that does not require the input of any semiempirical parameter
particular to the system and has shown to be able to reproduce with
great accuracy the geometry and properties of a large number of both
pure and doped crystals. The integration in reciprocal space was
carried out by sampling the Brillouin zone with the 4 × 4 × 8
Monkhorst−Pack net, which is enough to provide a full energy
convergence.
As the ability of the CRYSTAL program to treat excited states is

limited, we have calculated the energies of the d−d electronic
transitions of the K2ZnF4:Cu

2+ through the usual ΔSCF approach by
means of the Amsterdam density functional (ADF) code32 that allows
performing DFT calculations on each specific electronic configuration.
Impurity centers are calculated in the ADF code through the cluster
approach taking into account the electrostatic potential created by the
rest of the infinite crystal lattice ions on the cluster. In these
calculations, 37 atom clusters were used in conjunction with the
popular B3LYP hybrid functional33 in the spin-unrestricted Kohn−
Sham formalism of the DFT. The use of finite clusters for describing
the properties of these centers is consistent with the highly localized
character of the unpaired electrons residing essentially in the CuF6

4−

complex region. In addition, such as will be later seen, the equilibrium
geometries calculated through the cluster approximation for all
systems analyzed in this work are very similar to those obtained in
the periodic calculations. We have used high-quality all-electron basis
sets of the triple-ζ plus polarization (TZP) type formed of localized
Slater-type functions as implemented in the 2012.01 version of the
ADF code.32 The electrostatic potential from the rest of the lattice ions
was generated by means of 250 point charges with values previously
fitted to reproduce the electric field corresponding to the infinite
system.34,35

3. RECALL ON THE JAHN−TELLER EFFECT
When an impurity like Mn2+ enters a cubic perovskite like
CsCdF3 replacing Cd

2+, it produces an isotropic relaxation of six
ligands.29 This makes that the impurity-ligand distance, R, has
an equilibrium value equal to R*, different from the Cd2+−F−
distance of the perfect lattice, RH, but the local symmetry
remains cubic. This process is the result of the coupling of the
orbitally singlet 6A1(t2g

3eg
2) ground state only with the

symmetric vibrational mode, a1g, of the MnF6
4− complex.

However for d9 ions in cubic crystals and octahedral
coordination, the electronic ground state, 2Eg, is orbitally
degenerate (Figure 2) leading to an additional relaxation
mechanism involving the nonsymmetric eg mode.7,8 Therefore,
the 2Eg state is linearly coupled to both a1g and eg modes
through the Hv Hamiltonian given by16

= + =

= +θ θ ε ε

H H H H V

H V V

r

r r

; ( )Q ;

( )Q ( )Q

v v
a

v
e

v
a

a a

v
e

(1)

Here, the normal coordinate Qa is proportional to (R − RH),
while Vθ(r) and Qθ both transform like 3z2 − r2, and Vε(r) and
Qε like x

2 − y2. If, only under the influence of Hv
a, Rax = Req =

R*, then the subsequent action of Hv
e gives rise to adiabatic

minima displaying tetragonal symmetry with a principal axis
which can be one of the three C4 axes of the crystal. For
instance, a tetragonal distortion described by Qθ ≠ 0, Qε = 0 is

η η− * = − − * = = −θR R R R Q2( ) 2 ; 12ax eq (2)

The equivalence among the three possible distortions is,
however, destroyed by random strains, inevitably present in any
real crystal,36 which favors one of the three C4 axes of the
octahedron as being the principal axis of a local D4h symmetry.
These facts are responsible for the observation, at low
temperatures, of tetragonal EPR spectra due to d9 ions in
cubic crystals,7,8,36 characterized by two different gyromagnetic
factors, g|| and g⊥. This is the fingerprint of a static JT effect
involving symmetry breaking where three types of centers are
simultaneously observed making the whole system optically
isotropic. A temperature raising favors rapid reorientations
among the three possible distortions leading to an isotropic
EPR spectrum characterized by g = (g|| + 2g⊥)/3.

7,8,36

Nevertheless, in a few cases, like MgO:Cu2+ or MgO:Ag2+,
the low temperature EPR spectra exhibit a cubic angular pattern
reflecting the existence of coherent tunneling among the three
possible distortions.36−38 The conditions for observing this
unusual behavior are discussed in refs 39 and 40.
From eq 3, if we have an impurity in a cubic crystal with an

orbitally singlet state described by |Ψg⟩, then symmetry rules
imply ⟨Ψg|Vθ(r)|Ψg⟩ = 0. As the ground state of a d9 ion in a
cubic perovskite can be viewed as a closed shell and three
electrons in the antibonding eg* open shell, the only nonzero
contribution to ⟨Ψg|Vθ(r)|Ψg⟩ comes from such electrons.
According to the center-of-gravity theorem41 ⟨x2 − y2|Vθ(r)|x

2

− y2⟩ and ⟨3z2 − r2|Vθ(r)|3z
2 − r2⟩ matrix elements are not

independent but verify

⟨ − | | − ⟩

= − ⟨ − | | − ⟩

=

θ

θ

x y V x y

z r V z r

V

r

r

( )

3 ( ) 3

2 2 2 2

2 2 2 2

1e (3)

The energy change of b1g*(∼x2 − y2) and a1g*(∼3z2 − r2)
orbitals due to Hv

e, when Qε = 0, can be written as a function of
the vibronic constant, V1e, and the Qθ coordinate as

δε δε− = − − =θ θz r V Q x y V Q(3 ) ; ( )2 2
1e

2 2
1e (4)

Therefore, if n(x2 − y2) and n(3z2 − r2) denote the number
of electrons in the corresponding orbitals, the total energy
variation due only to the Hv

e term, ΔEve, is equal to

δε δ

ε

δε

Δ = − − + −

−

= − − − −

E n z r z r n x y

x y

z r n z r n x y

(3 ) (3 ) ( )

( )

(3 ){ (3 ) ( )}

v
e 2 2 2 2 2 2

2 2

2 2 2 2 2 2
(5)

Accordingly, a kind of stable distortion, characterized by Qθ
0

(and Qε
0 = 0) requires that

Δ <θE Q( ) 0v
e 0

(6)

Nevertheless, for obtaining the final energy shift, EJT,
conveyed by the distortion, it is necessary to add the increase
of elastic energy associated with the distortion8,36,16 and then

δε

= Δ

= − − − −
θE E Q

z r n z r n x y

(1/2) ( )

(1/2) (3 ){ (3 ) ( )}

JT v
e 0

2 2 2 2 2 2

(7)

Therefore, in a static JT effect the necessary energy decrease
(EJT < 0) associated with the distortion comes only from the
different population of antibonding b1g*(∼x2 − y2) and
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a1g*(∼3z2 − r2) levels, and thus bonding orbitals, belonging to
closed shells, do not contribute to the stabilization (Figure 2).
The R* value for d9 ions can be obtained from calculations

on the (3z2 − r2)1.5(x2 − y2)1.5 average configuration16,42 for
which ΔEv

e = 0 and thus only influenced by the Hv
a term.

From eqs 4−7, the same EJT value is obtained for n(3z2 − r2)
− n(x2 − y2) = 1 and Qθ

0 > 0 (elongated geometry) as for n(3z2

− r2) − n(x2 − y2) = −1 and Qθ
0 < 0 (compressed

geometry).8,36 This equivalence is, however, destroyed when
we consider tiny factors such as the anharmonicity in the eg
mode or the 3d−4s vibronic admixture.16,42 The EPR spectra of
d9 ions in several cubic halides explored up to now show that the
stable conformation corresponds to an elongated geometry.7−10

However, the possible existence of true JT systems displaying a
compressed geometry cannot be discarded at all despite the
anharmonicity, if the complex is decoupled from the host lattice
and the 3d−4s vibronic admixture both favor an elongated
geometry.16,29 Although it has been assumed7,36,43,44 that the JT
center formed in LiF:Ni+ and NaF:Ni+43 displays a compressed
geometry, there are serious arguments against the correctness
of this assignment.45,46 Subsequent EPR work carried out on
NaCl:Ni+,47 KMgF3:Ni

+,48 or CsCaF3:Ni
+49 prove that the JT

center exhibits an elongated geometry.

4. RESULTS AND DISCUSSION
4.1. Calculated Equilibrium Geometry for Pure K2ZnF4

and K2MgF4 Lattices. In a first step we have sought to check
the reliability of the periodic calculations by comparing the
calculated equilibrium geometry of pure K2AF4 (A = Zn, Mg)
lattices with experimental results.17,24 Values of lattice
parameters a and c together with those corresponding to axial
and equatorial A−F distances of host lattices, Rax

H and Req
H , are

collected in Table 1. As can be seen in that table, the deviation

of calculated values with respect to experimental ones does not
exceed 1%. The calculations thus reproduce both Rax

H and Req
H

being close to RH = 203 pm for K2ZnF4.
4.2. Calculated Equilibrium Geometry for Divalent

Impurities in K2ZnF4 and K2MgF4. In a first step, we have
explored the local equilibrium geometry in layered perovskites
for impurities with a closed shell structure. The values of the
equilibrium impurity-ligand distances, Rax

0 and Req
0 , for Cd2+ and

Be2+ impurities calculated by means of periodic 56 atom
supercells are gathered in Table 2. It can be noticed that
although Cd2+ and Be2+ ions have a closed shell structure, the
calculated Rax

0 and Req
0 values are certainly different. In the case

of K2MgF4:Cd
2+, the calculated values Rax

0 = 223.1 pm and Req
0 =

211.9 pm point out that the CdF6
4− unit is elongated along the

crystal c axis. As shown in Table 2, such values are coincident
with those derived through a calculation on a 37 atom cluster

within 1.5%. These results confirm that, although the
substitution of Mg2+ or Zn2+ by Cd2+ induces an outward
ligand relaxation due to the higher size of the impurity with
respect to the substituted host cation, the increase undergone
by the axial distance, Rax

0 − RH = 21 pm, is higher than Req
0 − RH

= 10 pm. This fact simply reflects that the force constant for
moving a ligand along the metal−ligand direction is higher for
an equatorial ligand (Keq) than for an axial ligand (Kax) lying
along the crystal c axis.25 Values of the ratio Keq/Kax ≈ 2 have
been calculated for divalent impurities in these layered
perovskites.18 This significant difference between Keq and Kax
can qualitatively be understood as equatorial F− ligands are
attached to divalent cations like Mg2+ or Zn2+ in the layer plane,
while axial ligands are connected to monovalent K+ ions (Figure
1). In other words, despite the fact that substitution of Mg2+ or
Zn2+ by Cd2+ produces the same outward force on both axial
and equatorial ligands, not all of them undergo the same
displacement because the axial and equatorial force constants
are not equal. This gives rise to a tetragonally elongated CdF6
octahedron in the absence of any JT effect.
As the ionic radius of Be2+ is smaller than those of Mg2+ or

Zn2+ ions, an inward ligand relaxation (Table 2) is found in
K2AF4:Be

2+ (A = Zn, Mg). Moreover, as Keq > Kax then RH −
Rax
0 > RH − Req

0 . This explains that the calculated local geometry
around the Be2+ impurity corresponds to a D4h compressed
octahedron where the C4 axis is again the crystal c axis.
In a second step, we have explored the equilibrium geometry

of transition metal complexes with a ground state which is
already an orbital singlet under Oh symmetry. The values of Rax

0

and Req
0 derived from periodic supercell calculations for MnF6

4−

and NiF6
4− complexes in K2ZnF4 and K2MgF4 lattices are

gathered in Table 3. As the ionic radius of Mn2+ is higher than
that of Mg2+ or Zn2+ ions, then values of Rax

0 − RH and Req
0 − RH

are found to be both positive, albeit Rax
0 − RH > Req

0 − RH again
because Keq > Kax. Thus, the equilibrium geometry of the
MnF6

4− complex in such layered perovskites is found to
correspond to an elongated octahedron along the crystal c
axis.18 This fact is thus in agreement with EPR data obtained on
K2AF4:Mn2+ (A = Zn, Mg).26,27 As shown in Table 3, the
relaxation pattern derived through calculations on 37 atom
clusters is close to that reached by means of periodic supercell
calculations.
Bearing in mind that the ionic radius of Ni2+ is ∼10 pm

smaller than that of Mn2+, the Zn2+→ Ni2+ substitution in
K2ZnF4 leads to tiny relaxation effects, where Rax

0 and Req
0 are

both around 200 pm as shown in Table 3.
Let us now discuss the equilibrium geometry obtained for

Cu2+-doped K2ZnF4 and K2MgF4 lattices by means of periodic

Table 1. Values (in pm) of Lattice Parameters a and c
Calculated in the Present Work for K2BF4 (B = Zn, Mg)
Pure Lattices by Means of Periodic Calculationsa

lattice method a c Req
H Rax

H ref.

K2ZnF4 experimental 405.8 1310.9 202.9 202.6 17
calculated 403.3 1298.4 201.7 202.9

K2MgF4 experimental 398.0 1317.9 199.0 200.4 24
calculated 394.5 1303.1 197.3 199.8

aThe values of axial and equatorial B−F distances are also given. All
the calculated distances are compared with the corresponding
experimental values.

Table 2. Equilibrium Values of Axial and Equatorial M−F
Distances (in pm) Calculated for Closed Shell Impurities
Cd2+ and Be2+ Doped in K2ZnF4 and K2MgF4 Lattices

a

impurity lattice method size Req
0 Rax

0

Cd2+ K2ZnF4 periodic 56 ions 212.0 220.8
K2MgF4 periodic 56 ions 211.9 223.1
K2MgF4 cluster 37 ions 210.7 220.3

Be2+ K2ZnF4 periodic 56 ions 191.1 168.4
K2MgF4 periodic 56 ions 191.8 168.8
K2MgF4 cluster 37 ions 185.4 171.8

aResults corresponding to periodic supercells and the B1WC hybrid
functional are compared with those obtained by means of clusters and
the GGA functional.
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supercell calculations. To make sure that there is not an
orthorhombic distortion in the {a, b} equatorial plane (Figure
1), such as is observed in the CuCl4(H2O)2

2− complex at low
temperatures,4,5,7,3 we have started the calculation assuming a
local D2h symmetry where two equatorial ligands in the trans
position are at a distance Req

s from copper, while the two others
are at a longer distance, Req

l. We have verified that all periodic
calculations carried out for K2ZnF4:Cu

2+ lead to a tetragonal
equilibrium geometry where Req

s = Req
l and the C4 axis is just

the crystal c axis. This result is fully consistent with all EPR and
optical data.12−14 In particular, EPR data prove that, in the 4−
300 K temperature range, the local symmetry of K2ZnF4:Cu

2+ is
tetragonal and not orthorhombic while g⊥ − g0 decreases only
by 7%.50 Values of the equilibrium distances, Rax

0 and Req
0 ,

obtained for Cu2+-doped K2ZnF4 and K2MgF4 are gathered in
Table 4. It can be noticed that calculations on K2ZnF4:Cu

2+

using 56 and 126 atom supercells both lead to a slightly
compressed CuF6

4− complex along the crystal c axis where the
unpaired electron is in the antibonding a1g*(∼3z2 − r2) orbital
(2A1g ground electronic state) and Req

0 − Rax
0 = 11 pm. This

figure is then about three times smaller than Req
0 − Rax

0 = 29 pm
estimated through the parametrized JT model.15,50 In the case
of K2MgF4:Cu

2+, the periodic calculation gives a value of Req
0 −

Rax
0 = 9.6 pm which is slightly smaller than that obtained for

K2ZnF4:Cu
2+. For K2MgF4:Cu

2+, as shown in Table 4, periodic
and cluster calculations provide similar patterns.
It is worth noting that only one energy minimum, and not

three equivalent such as happens in a JT system, is found in our
calculations. This is consistent with the fact that absorption
spectra collected with the electric field of the light polarized

either parallel or perpendicular to the crystal c axis are
dif ferent.13

Bearing in mind that Cu2+ and Ni2+ ions have a close ionic
radius, it is interesting to compare the results found for
K2ZnF4:Cu

2+ (Table 4) with those for K2ZnF4:Ni
2+ (Table 3).

In the latter case, the Zn2+→ Ni2+ substitution gives rise to a
small inward relaxation where Rax

0 and Req
0 are both practically

equal to 200 pm (Table 3) and thus a bit smaller than RH = 203
pm. By contrast, for K2ZnF4:Cu

2+ all calculations collected in
Table 4 give RH − Rax

0 ≫ Req
0 − RH, pointing out that in this

case there is an additional mechanism responsible for the
equilibrium geometry. For gaining a better insight into the
origin of this fact, a detailed analysis of the electronic structure
is now necessary.

4.3. Calculated Electronic States and Optical Spec-
trum for K2ZnF4:Cu

2+. Once the equilibrium geometry and
the nature of the electronic ground state for K2ZnF4:Cu

2+ have
been well established, it is crucial to explore the energy of the
so-called d−d excitations involving a hole transfer from
a1g*(∼3z2 − r2) to b1g*(∼x2 − y2), b2g*(xy), and eg*(xz;yz)
orbitals (Figure 2). Accordingly, particular attention has been
paid to calculate the energy difference between the excited 2B1g,
2B2g, and

2Eg states and the ground state 2A1g not only at the
final equilibrium geometry (Req

0 = 204 pm, Rax
0 = 193 pm) but

especially at the initial one where the Cu2+ impurity enters the
Zn2+ site in K2ZnF4 and Req = Rax = RH = 203 pm. Results on
K2ZnF4:Cu

2+ are displayed in Figure 3. Very similar findings
have been obtained for K2MgF4:Cu

2+.

Experimental optical absorption data on K2ZnF4:Cu
2+

crystals have been measured in the 0.90−1.60 eV range by
Riley et al.13,14,51 A broad band peaked at 1.3 eV has been
assigned to the 2A1g →

2Eg transition. The calculated value of
1.2 eV for that transition in Figure 3 at the equilibrium
geometry (Req

0 = 204 pm, Rax
0 = 193 pm) is thus close to the

experimental value. Moreover, Riley et al. point out that as the
employed samples are too dilute in Cu2+ impurities, a very weak
broad band, whose maximum is about 0.70 eV, is also observed
in the optical spectra of K2ZnF4:Cu

2+.13 The origin of such a
broad band is ascribed by Riley et al. to the 2A1g → 2B1g
transition. According to the present calculations, such a
transition is found to be at 0.61 eV (Figure 3) at the
equilibrium geometry of the ground state, and thus there is
reasonable agreement with the experimental figure. The 2A1g →
2B2g transition energy is calculated to be equal to 1.38 eV, while
it is placed at 1.33 eV according to experimental data.13,51

Table 3. Equilibrium Values of Axial and Equatorial M−F
Distances Calculated for K2ZnF4:M

2+ and K2MgF4:M
2+ (M =

Mn, Ni) Derived by Means of Periodic Calculations Using a
Supercell of 56 Atomsa

impurity lattice method Req
0 (pm) Rax

0 (pm)

Mn2+ K2ZnF4 periodic 205.2 209.6
K2ZnF4 cluster 203.9 208.0
K2MgF4 periodic 205.3 212.1
K2MgF4 cluster 202.5 208.2

Ni2+ K2ZnF4 periodic 199.7 200.6
K2ZnF4 cluster 199.0 199.2
K2MgF4 periodic 199.9 202.1
K2MgF4 cluster 198.1 200.2

aFor comparison, Req
0 and Rax

0 values calculated using a cluster of 37
atoms and the LDA functional are also given.

Table 4. Equilibrium Values of Axial and Equatorial M−F
Distances Calculated for Cu2+-Doped K2ZnF4 and K2MgF4
Lattices Derived by Means of Periodic Calculations Using a
Supercell of 56 Atomsa

lattice method size Req
0 (pm) Rax

0 (pm)

K2ZnF4 periodic 56 ions 203.9 193.3
K2ZnF4 periodic 126 ions 204.1 193.1
K2ZnF4 cluster 69 ions 206.8 192.8
K2MgF4 periodic 56 ions 204.1 194.5
K2MgF4 cluster 37 ions 204.7 192.1

aFor comparison, the Req
0 and Rax

0 values calculated using a cluster of 37
atoms and the LDA functional are also given.

Figure 3. Pictorial description of the DFT calculated values of the
energies (in eV) corresponding to the electronic transitions from the
ground state 2A1g of K2MgF4:Cu

2+ to the excited states 2B1g,
2Eg, and

2B2g, at the optimized equilibrium geometry of the ground state, Req
0 =

204 pm and Rax
0 = 193 pm (right) and at the initial one where Cu2+

impurity enters the Zn2+ site in K2ZnF4 and Req = Rax = 203 pm (left).
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Seeking to understand why the 2A1g → 2B1g transition is
broad, we have also calculated the energy of the 2B1g excited
state at its equilibrium geometry using a cluster of 69 ions. It
turns out that at the equilibrium geometry (described by Req

0 =
199 pm and Rax

0 = 214 pm), the 2B1g state is laying only 0.24 eV
above the ground state. This means that, while the maximum of
the band associated with the 2A1g →

2B1g transition is found at
∼0.7 eV, the corresponding zero-phonon line would be only at
∼0.3 eV. This big difference is thus consistent with the
observation of a very broad band arising from such a
transition.13

Let us now explore whether the experimental energy for the
2A1g →

2B1g transition, E(
2A1g →

2B1g), in K2ZnF4:Cu
2+ can or

cannot be explained assuming that the gap between 2A1g and
2B1g states is the result of a JT distortion. According to eq 4

→ = − = −θ θE V Q Q R R( A B ) 2 ; (2/ 3 ){ }1g
2

1g
2

1e
0 0

ax
0

eq
0

(8)

The value of the linear coupling coefficient, V1e, calculated
for Cu2+-doped cubic oxides is found to be in the range 0.5−1.1
eV/Å.52 Furthermore, we have calculated V1e = 1.1 eV/Å for
KZnF3:Cu

2+ where there is a static JT effect10,14 because this
perovskite is perfectly cubic. Using this V1e value and E(2A1g →
2B1g) = 0.7 eV measured for K2ZnF4:Cu

2+, we get Rax
0 − Req

0 =
33 pm, which is close to that proposed in ref 15. Nevertheless,
this figure is three times higher than the Rax

0 − Req
0 = 11 pm

obtained from the present periodic supercell calculations for
K2ZnF4:Cu

2+ (Table 4). Thus, in view of this serious
discrepancy, it is hard to invoke the JT effect as responsible
for the equilibrium geometry in K2ZnF4:Cu

2+. Moreover, this
analysis reveals that the 0.70 eV gap between 2A1g and 2B1g
states observed experimentally for K2ZnF4:Cu

2+ can hardly be
understood only through the small distortion (Rax

0 − Req
0 = 11

pm) calculated for the CuF6
4− complex in K2ZnF4. This

conclusion is also supported by results on the JT center formed
in NaCl:Rh2+53 where E(2A1g →

2B1g) = 0.70 eV when Rax
0 −

Req
0 = 26 pm.54

Seeking to shed light on this surprising situation, we have
looked in detail into the dependence of the calculated energy
E(2A1g →

2B1g) on equatorial and axial Cu2+−F− distances. As a
salient feature, it is found that when Req = Rax, the a1g*(∼3z2 −
r2) and b1g*(∼x2 − y2) levels of K2ZnF4:Cu

2+ are not degenerate.
Indeed, as is shown in Figure 3, the value of the 2A1g →

2B1g
excitation is calculated to be equal to 0.34 eV when Req = Rax =
203 pm. In the same vein, the b2g*(∼xy) and eg*(xz;yz) levels
are found to be nondegenerate when Req = Rax. In fact,
according to Figure 3, the 2B2g state is lying 0.12 eV above 2Eg
when the axial and equatorial distances are strictly equal.
The present findings thus confirm that the energy difference

between 2A1g and
2B1g states observed experimentally does not

only reflect that Rax
0 ≠ Req

0 . Indeed about 50% of the 2A1g →
2B1g

excitation energy in K2ZnF4:Cu
2+ is already present when the

fluorine octahedron is not distorted. The existence of a gap
between 2A1g and

2B1g states, and also between 2Eg and
2B2g

states, when Req = Rax stresses that the actual symmetry felt by
the active electrons confined in the CuF6

4− complex is not
cubic but tetragonal. This conclusion is in principle puzzling
because the two gaps should be zero when Req = Rax provided
the CuF6

4− complex is truly isolated.
Nevertheless, complexes formed in insulating materials are

never isolated but embedded in a lattice formed by charged
ions. Therefore, although active electrons coming from a

transition metal impurity like Cu2+ in K2ZnF4 are localized in
the CuF6

4− complex, they are also feeling the electrostatic
potential, VR(r), due to the rest of the lattice ions. The form of
VR(r) potential for CuF6

4− in K2ZnF4 when r is running along a
and c axes is shown in Figure 4 and reflects the tetragonal

symmetry of K2AF4 (A = Zn, Mg) host lattices.25 It can be
noticed that this electrostatic potential, VR(r), tends to increase
the energy of the a1g*(∼3z2 − r2) orbital and to decrease that of
the b1g*(∼x2 − y2) one. Therefore, the results of Figure 4
explain qualitatively the existence of a gap between 2A1g and
2B1g states even when Req = Rax. Such a gap directly comes from
the internal electric field, ER(r) = −∇VR(r), displaying
tetragonal symmetry, to which the CuF6

4− unit in K2ZnF4 is
inevitably subject. In other words, for explaining the properties
of Cu2+-doped K2ZnF4, we need to consider both the CuF6

4−

unit and the internal electric field ER(r), and thus the global
symmetry is tetragonal even though all the Cu2+−F− distances
are equal.
It is worth noting that due to the D4h symmetry of the

crystal, there is no internal electric field, ER(r), when active
electrons, confined in the CuF6

4− unit, are on the impurity,
placed at r = 0 (Figure 4). However, this statement is no longer
true when we consider that antibonding electrons also spend
some time around the ligands where the value of the internal
electric field, ER(r), is certainly nonzero (Figure 4).
The role played by the internal electric field has usually been

ignored when seeking to understand the origin of optical and
magnetic properties due to transition metal complexes in
insulators. However, it has been shown that ER(r) is mainly
responsible for the different colors of gemstones like ruby,
emerald, or alexandrite.55,56 In the same vein, the internal
electric field, which is more intense in the inverse perovskite
LiBaF3 than in a normal perovskite like KMgF3, has been
shown to be the origin of the distinct optical and EPR spectra
displayed by Mn2+, Co2+, Ni2+, and Cr3+ impurities in such
lattices.57

4.4. Origin of the Ligand Distortion in K2ZnF4:Cu
2+.

According to the analysis carried out in the preceding section,
there is no orbital degeneracy when Req = Rax, which is the most
distinctive characteristic of a JT effect. Furthermore, there is no
symmetry change on going from the initial situation (Req = Rax =
203 pm) to the equilibrium geometry (Req

0 = 204 pm, Rax
0 = 193

pm) in K2ZnF4:Cu
2+ and no other distortions typical of JT

systems (elongation or compression along a or b axes) appear,
even metastable ones. In both situations, the global symmetry,

Figure 4. Electrostatic potential, VR(r), produced on a seven atom
CuF6

4− complex by the rest of ions of the K2ZnF4 lattice. Potential is
depicted along [100] and [001] crystalline directions.
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corresponding to the CuF6
4− complex under the electrostatic

potential, VR(r), is always tetragonal. Therefore, the ligand
relaxation taking place in K2ZnF4:Cu

2+ cannot properly be
ascribed to a static JT effect which necessarily gives rise to
symmetry breaking and different possible orientations of the
system.7,8,40 Reasoning in a similar way the tetragonal distortion
cannot be attributed to the pseudo-Jahn−Teller coupling
between A1g and B1g states. Indeed the pseudo-Jahn−Teller
effect is usually related to the existence of symmetry breaking in
an electronic ground state with no orbital degeneracy.
The distortion associated with the equilibrium geometry of

K2ZnF4:Cu
2+ involves the activation of two dif ferent a1g modes

which appear in a complex with D4h symmetry, and thus the
tetragonal symmetry is always conserved. In short, such modes
are a linear combination of a1g

ax and a1g
eq modes corresponding

to the symmetric displacements of two axial and four equatorial
ligands, respectively (Figure 5). In our calculations, we have

found that one of such modes is described by 0.155a1g
eq +

0.988a1g
ax, pointing out that it has a definite axial character. We

have seen in section 4.2 that the substitution of Zn2+ by
impurities like Mn2+ or Ni2+ produces a ligand relaxation where
Rax
0 − RH and Req

0 − RH have the same sign but | Rax
0 − RH | >

| Req
0 − RH |. This has been shown to arise from the different

ionic radius of Zn2+ and the impurity and the elastic anisotropy
of the host lattice18 making Keq > Kax.
For understanding the origin of the ligand relaxation in

K2ZnF4:Cu
2+, it is useful to determine first the equilibrium Rax*

and Req* values corresponding to the (3z2 − r2)1.5(x2 − y2)1.5

average configuration. In this configuration, the same number of
electrons is placed on two orbitals, a situation which is thus
similar to the ground state of a Ni2+ impurity. Calculations
carried out on a cluster of 69 ions give Req* = 203.1 pm and Rax*
= 202.6 pm. This result supports that the ligand relaxation due
only to size effects is negligible in K2ZnF4:Cu

2+, a fact
consistent with the closeness of ionic radii of Zn2+and Cu2+.
Let us now consider the actual configuration, (x2 − y2)2(3z2

− r2)1, corresponding to the ground state of K2ZnF4:Cu
2+. If we

call ρ(r;x2 − y2) and ρ(r;3z2 − r2), the electronic densities
associated with b1g*(∼x2 − y2) and a1g*(∼3z2 − r2) orbitals,
respectively, both belong to the A1g symmetry of the D4h group.
This situation is thus different from that found under strict Oh
symmetry where the two orbitals are degenerate and only the
quantity ρ(r;x2 − y2) + ρ(r;3z2 − r2) belongs to the A1g
representation of the cubic group. This means that there is
some relation between ρ(r;x2 − y2) and ρ(r;3z2 − r2) in Oh
symmetry which is responsible for the validity of the center-of-
gravity theorem. Nevertheless, ρ(r;x2 − y2) and ρ(r;3z2 − r2)

are independent under the tetragonal symmetry present in
K2ZnF4:Cu

2+. Despite this fact, as in K2ZnF4:Cu
2+, the

b1g*(∼x2 − y2) orbital has an equatorial character while
a1g*(∼3z2 − r2) is mainly axial; there is an imbalance of the
electronic charge in the two regions because the former is fully
populated and the latter only half populated. In other words, on
passing from the equilibrium situation for the (3z2 − r2)1.5(x2 −
y2)1.5 configuration (Req* = Rax* = R* = 203 pm) to the final
equilibrium geometry (Table 4) associated with the actual
configuration, (x2 − y2)2(3z2 − r2)1, there is a change of
electronic density, Δρ(r), given by

ρ ρ ρΔ = − − + −z r x yr r r( ) (1/2) ( ; 3 ) (1/2) ( ; )2 2 2 2

(9)

Therefore, in this step there is an increase of electronic
charge in the equatorial plane, while there is a reduction in the
axial region. This explains albeit qualitatively that Δρ(r) favors
that Req

0 > R* while, on the contrary, Rax
0 < R*. Moreover, as

Keq/Kax ≈ 2,18,25 the value |R* − Rax
0 | is found to be much

higher than |R* − Req
0 |. According to the results in Table 4, Req

0

− R* is lying between 1 and 3.5 pm, while R* − Rax
0 is

practically equal to 10 pm. Therefore, the ratio (R* − Rax
0 )/(Req

0

− R*) is found to be certainly higher than 2, and thus eq 2,
characteristic of a static JT effect, is not fulfilled.
It should be remarked that in a true JT system the (x2 −

y2)2(3z2 − r2)1 and (3z2 − r2)2 (x2 − y2)1 configurations have
the same energy when the octahedron is undistorted.8,36 For
this reason, if we compare a hole in 3z2 − r2 and Qθ < 0 with a
hole in x2 − y2 and Qθ > 0, the energy difference between these
configurations is below 0.015 eV for Cu2+ and Ag2+ impurities
in cubic oxides, as it is due to tiny effects such as the
anharmonicity in the eg mode.39,40,52 By contrast, for
K2ZnF4:Cu

2+, the two (x2 − y2)2(3z2 − r2)1 and (3z2 −
r2)2(x2 − y2)1 configurations are no longer equivalent when Req
= Rax = 203 pm, as there is a gap of 0.34 eV between them, and
the HOMO orbital is a1g*(∼3z2 − r2). Thus, as it has been
pointed out, the only way of reducing the energy of the ground
state configuration in K2ZnF4:Cu

2+ is through a distortion
making Req

0 > R* and Rax
0 < R*.

While the previous paragraphs could indicate that the
distortion in K2ZnF4:Cu

2+ is somewhat similar to a JT effect,
we would like to highlight here that a crucial point in this
analysis concerns the energy shift undergone by b1g*(∼x2 − y2)
and a1g*(∼3z2 − r2) orbitals on passing from Req = Rax = 203
pm to the equilibrium geometry (Req

0 = 204 pm, Rax
0 = 193 pm).

The main results are depicted in Figure 6. It can be noticed that

Figure 5. Equatorial, a1g
eq, and axial, a1g

ax, a1g modes in the CuF6
4−

complex with D4h symmetry.

Figure 6. Qualitative description of the energy shift of antibonding
b1g*(∼x2 − y2) and a1g*(∼3z2 − r2) and bonding a1g(ax), and b1g(eq)
orbitals of a CuF6

4+ complex in K2ZnF4 on going from Req = Rax = 203
pm to the equilibrium geometry, Req

0 = 204 pm, Rax
0 = 193 pm.
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in that process, where axial ligands are approaching the Cu2+

ion, the energy of the a1g*(∼3z2 − r2) orbital increases by a
quantity δε(3z2 − r2) = 0.33 eV. This increase is, however, not
compensated by the corresponding energy variation of the
b1g*(∼x2 − y2) orbital, because δε(x2 − y2) = −0.01 eV.
Therefore, these results stress that for K2ZnF4:Cu

2+, the
quantity 2δε(x2 − y2) + δε(3z2 − r2) is positive and not
negative, as it happens in a JT effect. This means that the
stabilization process in K2ZnF4:Cu

2+ cannot be understood
considering only the energy shift and the different population of
two b1g*(∼x2 − y2) and a1g*(∼3z2 − r2) antibonding orbitals
such as occurs in the JT effect (eq 7). We have verified that
bonding orbitals with an axial character play a relevant role in
the stabilization mechanism. This can be seen in Table 5 where
the changes undergone by the most relevant orbitals of the
perfect octahedron are shown in two steps: (1) adding the
effect of the external electric field VR(r) but maintaining the
octahedral geometry and (2) considering the tetragonal

distortion. The most dramatic changes correspond to step 1,
involving large electron transfers (20−25%) toward the axial
fluorine ions (Fax) in orbitals a1g*(∼3z2 − r2) and a1g(ax). It can
be appreciated in Table 5 that a large part of this charge comes
from a1g(eq) orbitals. This is accompanied by a similar transfer
of 3d(Cu) character between a1g(eq) and a1g(ax) bonding
orbitals. Compared with these changes, those occurring along
the tetragonal distortion of step 2 (third column in Table 5) are
certainly more modest.
As is shown in Figure 6, the energy of the bonding a1g(ax)

orbital, with a dominant Fax character, is the only one that
decreases (−0.31 eV) on going from Req = Rax = 203 pm to the
equilibrium geometry. This negative energy shift is strong
enough to compensate all the positive energy shifts occurring in
orbitals like a1g*(∼3z2 − r2) and b1g*(∼x2 − y2) and leads to an
overall stabilization of the distortion. While this stabilization
associated to the change of covalency has been associated to the
pseudo-Jahn−Teller effect, the authors consider (at difference
with the general definition given in ref 8) that this denotation is
better reserved for problems where a symmetry-breaking
distortion produces the electronic state mixing.

5. FINAL REMARKS

The analysis carried out in this work proves that the ligand
relaxation in K2ZnF4:Cu

2+ cannot be understood in terms of a
static JT effect such as happens for CsCdF3:Cu

2+ or
KZnF3:Cu

2+.9,10,14 First of all, there is no symmetry breaking
on passing from the initial situation (characterized by Req = Rax
= 203 pm) to the equilibrium geometry, nor are there several
accessible minima as occurs in a true JT effect. Indeed, from the
beginning, the CuF6

4− complex has been shown to be subject to
the action of the internal electric field, displaying tetragonal
symmetry, produced by the rest of the ions of the K2ZnF4
lattice. Moreover, periodic supercell calculations point out that
equilibrium geometry involves only a slight distortion (Req

0 =
204 pm, Rax

0 = 193 pm) clearly dominated by the motion of
axial ligands which in turn arises from the difference between
the equatorial and axial force constants, with Keq/Kax ≈ 2,18,25

thus stressing again the tetragonal character of the host lattice.
As a salient feature, it has been shown that the stabilization
energy associated with the distortion in K2ZnF4:Cu

2+ does not
come from the antibonding b1g*(∼x2 − y2) and a1g*(∼3z2 −
r2) orbitals, such as happens when the JT effect takes place. In
fact, in K2ZnF4:Cu

2+, the orbital energy coming from the three
antibonding electrons placed in b1g*(∼x2 − y2) and a1g*(∼3z2
− r2) orbitals increases along the relaxation process, and thus
the required energy gain involves fully occupied bonding
orbitals, as is usually found in the realm of chemical bonding.
From the present analysis, the compressed geometry

exhibited by CuF6
4− in K2ZnF4:Cu

2+ is greatly due to the
internal electric field felt by the complex. At the same time, the
existence of that internal field makes it possible to conciliate the
small Req

0 − Rax
0 = 11 pm value derived from the calculations

with the large gap (0.7 eV) between 2A1g and 2B1g states
measured experimentally.13 Indeed, the internal field with
tetragonal symmetry breaks the degeneracy of a1g*(∼3z2 − r2)
and b1g*(∼x2 − y2) orbitals when the fluorine octahedron is
undistorted, thus the only way of obtaining an additional gain of
electronic energy in the (∼x2 − y2)2(∼3z2 − r2)1 configuration
is through the compression of the CuF6

4− octahedron.
Moreover, the splitting between a1g*(∼3z2 − r2) and
b1g*(∼x2 − y2) orbitals when Req = Rax = 203 pm accounts

Table 5. Orbital Energies, ε (in eV), and Mulliken
Population Analysis (in %) on a1g and b1g Orbitals with
Antibonding (Marked with an Asterisk) and Equatorial (eq
Superindex) and Axial (ax Superindex) Bonding Character
Calculated for the Ground State of the CuF6

4− Complex in
Three Different Situations: (a) Purely Isolated Complex
with Octahedral Symmetry and Req = Rax = 203 pm; (b) the
CuF6

4− Complex Feels the Electrostatic Potential VR(r) from
the K2ZnF4 Host Lattice but There Is No Distortion (Req =
Rax = 203 pm); (c) the CuF6

4− Complex Feels VR(r) and Is at
the Equilibrium Geometry Found for K2ZnF4:Cu

2+ (Req
0 =

204 pm, Rax
0 = 193 pm)a

orbital

isolated
undistorted
complex

undistorted
complex under

VR(r)

distorted
complex under

VR(r)

E −15.62 −98.61 −98.75
a1g* ε 14.52 −5.77 −5.35

4s 0.1 0.4 0.4
3d(3z2 −
r2)

72.2 70.1 70.0

2p(Feq) 14.9 7.4 7.6
2p(Fax) 8.7 20.7 19.1

b1g* ε 13.71 −6.99 −6.85
3d(x2 −
y2)

66.6 74.1 75.2

2p(Feq) 29.5 23.9 22.8
2p(Fax) 3.5 1.5 1.5

b1g ε 9.42 −11.58 −11.42
3d(x2 −
y2)

33.7 25.5 24.5

2p(Feq) 64.1 73.3 74.3
a1g(eq) ε 9.30 −12.05 −11.94

4s 0.3 1.9 1.9
3d(3z2 −
r2)

24.7 2.5 0.5

2p(Feq) 52.1 89.3 84.2
2p(Fax) 19.7 6.1 12.6

a1g(ax) ε 8.72 −10.81 −11.07
4s 7.8 1.4 1.4
3d(3z2 −
r2)

2.9 27.5 28.3

2p(Feq) 30.9 2.7 8.0
2p(Fax) 57.9 67.0 61.5

aTotal energies, E (in eV), are also given.
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for about half the experimental gap between 2A1g and 2B1g
states in K2ZnF4:Cu

2+.
It should be noticed now that there is another remarkable

difference between K2ZnF4:Cu
2+ and systems like CsCdF3:Cu

2+

or KZnF3:Cu
2+ displaying a static JT effect.9,10,14 In fact, though

in the last cases the CuF6
4− complex is also subject to an

internal field, it has a cubic symmetry, and then it does not give
rise to any splitting between a1g*(∼3z2 − r2) and b1g*(∼x2 −
y2) orbitals when Req = Rax . It should be noted that while
E(2A1g → 2B1g) = 0.70 eV for K2ZnF4:Cu

2+, the separation
between A1g and B1g states for KZnF3:Cu

2+ should be smaller
than 0.5 eV for the JT system KZnF3:Cu

2+ according to the
experimental data by Dubicki et al.14 Supporting this view,
calculations carried out on KZnF3:Cu

2+ give E(2B2g →
2A1g) =

0.39 eV at the ground state equilibrium geometry (Rax
0 = 210

pm, Req
0 = 197 pm).

Although the role of the internal field ER(r) for explaining
the properties of transition metal complexes in insulators has
often been ignored, it is at the origin of several relevant
properties. For instance, it accounts for the color shift in
gemstones like ruby, emerald, or alexandrite.55,56 On the other
hand, the existence of ER(r) explains a puzzling fact observed

58

for the unperturbed CrF6
3− complex formed in K2MgF4:Cr

3+.
Indeed the corresponding EPR spectra exhibit a clear tetragonal
symmetry despite ab initio calculations proving that the
complex is perfectly octahedral with Req = Rax = 189 pm.59

According to the analysis carried out in section 4.4, the
driving force behind the distortion in K2ZnF4:Cu

2+ is the
differential density Δρ(r) = −(1/2)ρ(r;3z2 − r2) + (1/2)ρ(r;x2

− y2). Although a seemingly similar situation holds for a d9 ion
under strict cubic symmetry in this case ρ(r;3z2 − r2) + ρ(r;x2

− y2) is a cubic invariant, a fact which is behind the validity of
the center-of-gravity theorem.29 By contrast, this is no longer
true for K2ZnF4:Cu

2+ where there is not any relation between
ρ(r;3z2 − r2) and ρ(r;x2 − y2) due to the symmetry lowering.
Moreover, in a static JT effect, the driving force can be Δρ(r)
or −Δρ(r) as the two (x2 − y2)2(3z2 − r2)1 and (x2 − y2)1(3z2

− r2)2 configurations are in principle equivalent, while this is
not the case for K2ZnF4:Cu

2+. In this case, the experimental g⊥
− g0 value decreases only by 7% on passing from T = 4 K (g⊥=
2.386)12,50 to T = 300 K, a fact which is hardly compatible with
a static JT effect. Indeed in systems displaying a static JT effect
at low temperatures, an average isotropic EPR spectrum is
already observed at T = 160 K60 even for barriers as high as
0.13 eV.61

It is important to note here that, while Ham36 has shown that
a static JT effect cannot be observed without a strain that
lowers the high symmetry conformation of the system, this
argument cannot be extrapolated to systems whose intrinsic
structure displays low symmetry. The main reason is that while
in the first case the nature of the strain is random, meaning that
the probability for a particular center to be oriented in the x, y,
or z directions is exactly the same, for K2ZnF4 all Cu

2+ centers
will inevitably be oriented along the tetragonal c axis of the
crystal.
Very often the distortions associated with d9 ions in

insulating lattices have been attributed to the JT effect.62 The
present study on K2ZnF4:Cu

2+ underlines that such an
assumption can be wrong, especially when dealing with host
lattices which are not cubic. On one hand, we have shown that,
using closed-shell dopants, strong tetragonal distortions around
the impurity site are not necessarily connected with degenerate
levels, while, on the other hand, the main source of stabilization

energy along the distortion mode of K2ZnF4:Cu
2+ is due to

deep bonding orbitals. Even more, the presence of a d9 ion in a
cubic site does not necessarily mean that a JT is going to take
place. Supporting this view, the equilibrium geometry of the
Cu2+-doped cubic SrF2

63 or SrCl2
7 lattices is not the result of a

static JT effect, with a ligand distortion described by an even
mode but corresponds to an off-center motion of the Cu2+ ion
along ⟨100⟩ directions driven by an odd t1u mode.

64,29

The present results underline the usefulness of ab initio
calculations for unveiling the actual origin of the equilibrium
geometry and optical properties of Cu2+ impurities in a layered
compound like K2ZnF4. The complexity and subtleties involved
in a seemingly simple case like K2ZnF4:Cu

2+ are thus missed
when a parametrized JT model is used where the key role
played by the internal electric field is not taken into
consideration. In fact, our calculations show that these models
cannot be applied without careful consideration because while
direct fitting may reproduce the experimental data, the
parameters obtained in this manner lack chemical meaning.
Accordingly, the present study on the model system
K2ZnF4:Cu

2+ can be useful for better understanding the
properties of d9 and also d4 and d7 ions in other layered
compounds.
It has been shown that the equilibrium geometry of divalent

impurities in K2AF4 (A = Zn, Mg) lattices obtained by means of
finite clusters are certainly close to those obtained through
periodic supercell calculations. This coincidence is quite
reasonable because electrons in good insulating materials are
localized, a point which has been emphasized by Kohn.65,66 For
this reason, a cluster containing the complex (when active
electrons are localized) and a buffer together with the internal
field due to rest of the ions outside the cluster usually suffices
for reproducing the main properties associated with an impurity
in an insulating lattice.
It is worth noting that calculations have also been carried out

on K2MgF4:Ni
+ where EPR data prove67 that the unpaired

electron is placed in the b1g*(∼x2 − y2) orbital. This fact is
confirmed by both periodic and cluster calculations leading to
an elongated equilibrium geometry where Rax

0 − Req
0 is found to

be ∼10 pm. As was earlier pointed out,25 this surprising result
arises from the small 3d−4s separation in a free Ni+ ion (∼2
eV). In fact, as under the tetragonal internal field, the 3d(3z2 −
r2)−4s mixing is allowed, the repulsion between such close
orbitals makes it that, in K2MgF4:Ni

+, the a1g*(∼3z2 − r2)
orbital is lying below b1g*(∼x2 − y2) when Req = Rax, thus
favoring an elongated geometry.25

In conclusion, it has been shown that the small distortion in
the model system K2ZnF4:Cu

2+ is not due to a JT effect but to a
vibronic coupling with two symmetric a1g modes, which does
not give rise to any symmetry breaking of the CuF6

4− complex
subject to the internal field of the host lattice. Further work on
the influence of internal fields upon the structure of insulating
compounds containing d9 ions is currently in progress.
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