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ABSTRACT: A tetra-n-butylammonium (TBA) salt of
[Ta10O28]

6− was synthesized by heating TBA6[H2Ta6O19]
in toluene for a prolonged period. X-ray structural analysis
of TBA6[Ta10O28]·6H2O revealed that the anion has the
decametalate structure and is isostructural with the
decavanadate and decaniobate anions [a = 15.8517(8) Å,
b = 19.364(1) Å, c = 21.935(1) Å, β = 93.638(1)°, V =
6719.4(6) Å3, Z = 2, and space group P21/n at 292(2) K].

Decavanadate has been known for some time.1 Both its
structure and solution chemistry are well documented.2−5

Many salts of different protonation states are now isolated.6

Our knowledge on decaniobate, on the other hand, is still very
limited. Yet, we already know it has the same structure as
decavanadate thanks to the crystal structure analysis reported in
1977.7 Unfortunately, development of its chemistry had been
stalled for some time, largely because the original synthesis had
some problem with reproducibility.8,9 However, decaniobate is
attracting renewed and growing interest lately, and now some
of its reactions are known as well as its reproducible
preparation.10,11 What do we know about decatantalate, then?
Very little.8,9 Some evidence of its existence in solution has
been published very recently,8 but that is virtually the only
piece of information we have so far. Tantalum belongs to the
same group of the periodic table as vanadium and niobium.
One would expect it to exhibit chemistry similar to those of the
other two, especially to that of niobium. Tantalum and niobium
have very similar atomic and ionic radii. The existence of
decatantalate has long been anticipated.12 Still, its isolation has
never been reported up to now.
Recently, we reported the synthesis of [TeO4]

2−, the
tetrahedral tellurate.13 This simple and basic homologue of
sulfate had long been missing and deemed nonexistent. The key
that led us to the isolation of this molecular oxide was the use
of a quaternary organoammonium cation. The cation allowed
us to leave the traditional playground for inorganic chemists,
i.e., aqueous solution, and work with the system in nonaqueous
media. This cation also minimizes the effects of hydrogen-
bonding and the interactions between the cations and anionic
molecular oxides, which often make the systems complicated.
By applying the same technique and strategies to the tantalate
system, we have successfully isolated [H2Ta6O19]

6−, the first
protonated hexatantalate.14 This conceptually simple com-
pound also has long eluded chemists’ grasp. We found out that
the tetra-n-butylammonium (TBA) salt of this protonated

hexatantalate yields decatantalate [Ta10O28]
6− when heated in

toluene.15,16

Figure 1 shows the structure of the decatantalate.17 The
[Ta10O28]

6− anion is isostructural with [V10O28]
6− and

[Nb10O28]
6−. The anion ideally has an mmm (D2h) symmetry,

which it closely approximates. There are three types of
symmetrically nonequivalent Ta atoms and seven types of O
atoms in the mmm structure, and the atoms are labeled
accordingly in Figure 1. Not only are they isostructural,
[Ta10O28]

6− and [Nb10O28]
6− are virtually identical. Their

metal−oxygen bond lengths in these anions are almost the
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Figure 1. Structure of the [Ta10O28]
6− anion (292 K). Oxygen atoms

of the water molecules that are hydrogen-bonded to the anion are also
depicted. The ellipsoids are drawn to encompass 50% probability
levels. Atoms labeled with a superscripted i are related to those labeled
without it by the crystallographic inversion center at (0, 0, 1/2). Thin
lines indicate hydrogen-bonding interactions. Hydrogen-bond dis-
tances (Å): OW1···OC3, 2.90(1); OW1···OG2, 2.86(1); OW2···OG1,
2.67(1); OW3···OF1, 2.678(9); OW3···OF2, 2.798(8).
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same (Figure 2). A noticeable difference is observed only for
the two longest bonds, i.e., Ta2A−OA1 and Ta2B−OA1

i. Figure 2

also shows that both [Ta10O28]
6− and [Nb10O28]

6− are
significantly larger than [V10O28]

6−.
As shown in Figure 1, the [Ta10O28]

6− anion is hydrogen-
bonded to six molecules of water. Two of them, OW3 and OW3

i,
are chelated by two OF atoms. The same mode of bonding
between the decametalate anion and water molecules has also
been observed for [Nb10O28]

6−.10 In addition to these two, four
more water molecules are hydrogen-bonded to the [Ta10O28]

6−

anion. Two of them, OW1 and OW1
i, bridge a terminal OG atom

and bridging OC atom. The remaining two, OW2 and OW2
i, are

bonded to terminal OG atoms only. All eight terminal oxygen
atoms are engaged in hydrogen-bonding in [Ta10O28]

6−. This
fact demonstrates the high basicity of the decatantalate anion
and terminal oxygen atoms in the structure.
It is interesting to note that the average charge per Ta atom

of the decatantalate is very similar to that of recently reported
[H18(Ta6O19)4]

14−.18 The former is −0.6, while the latter is
−0.58. This means that these two molecular oxides with totally
different structures need about the same amount of acid or
protons to form. The decatantalate was obtained after
prolonged heating of the solution. In the synthesis of
[H18(Ta6O19)4]

14−, the reaction solution was also heated but
only overnight. Kinetic control seems to be an important factor
in the formation of different polytantalates.
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Figure 2. Comparison of the metal−oxygen bond lengths in
decatantalate (Ta10), decaniobate (Nb10), and decavanadate (V10).
The metal−oxygen bonds of each decametalate are sorted and plotted
in the order of their lengths.
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