Inorganic Chemistry

Slow Relaxation of the Magnetization of an Mn^{III} Single Ion

Ryuta Ishikawa,[†] Ryo Miyamoto,[‡] Hiroyuki Nojiri,[§] Brian K. Breedlove,[†] and Masahiro Yamashita^{*,†,⊥}

[†]Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan

¹Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Kawaguchi, Saitama 332-0012, Japan

[‡]Department of Materials Science and Technology, Faculty of Science and Technology, Hirosaki University, Bunkyo-cho, Hirosaki, Aomori 036-856, Japan

[§]Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan

Supporting Information

ABSTRACT: A Mn^{III} -salen-type complex with a diamagnetic $[Co^{III}(CN)_6]^{3-}$ moiety, $[Mn^{III}(5\text{-TMAM}(R)\text{-} salmen)(H_2O)Co^{III}(CN)_6]\cdot7H_2O\cdotMeCN$ [1; 5-TMAM-(R)-salmen = (R)-N,N'-(1-methylethylene)bis(5-trimethy-lammoniomethylsalicylideneiminate], was prepared. From direct-current magnetic susceptibilities, magnetization, and high-field and multifrequency electronic spin resonance measurements on powdered samples, 1 has a significant uniaxial anisotropy. Frequency-dependent alternating-current susceptibility signals were clearly observed, indicating slow magnetic relaxation. Thus, complex 1 behaves as a single-ion magnet.

Tew molecular magnetic materials on the nanosize level are N needed for future innovation in information technology. One particular interesting class of magnetically bistable molecules are single-molecule magnets (SMMs), which have been shown to exhibit slow magnetic relaxation at low temperatures.¹ The slow magnetic relaxation originates from uniaxial magnetic anisotropy (D) and a high-spin (HS) ground state ($S_{\rm T}$), causing an energy barrier for spin reversal [$\Delta = |D|S_{\rm T}^2$ or $|D|(S_T^2 - 1/4)$ for integer and half-integer spin systems]. Such molecular nanomagnets show typical quantum tunneling of the magnetization with a long coherence time and can be applied to quantum computing and high-density information storage.² Since the mixed-valence Mn₁₂ cluster was reported as the first SMM, much effort has been devoted to searching for other examples of clusters with 3d and/or 3d-4f metal ions exhibiting SMM behavior.^{1,3} In subsequent studies, the strong spin-orbit coupling involved in the magnetic single ions leading to SMMlike behavior with remarkably high activation energy barriers, which are known as single-ion magnets (SIMs), have been investigated. The first reported SIMs contained 4f ions,⁴ and more recently, SIM behavior has been reported for 5f and 3d ions.^{5,6} The ligand field of 3d metal ions (i.e., magnetic anisotropy of the metal ion) can be controlled via ligand design. Herein we report a new SIM composed of a HS Mn^{III}-salen-type complex, which displays slow relaxation of the magnetization.

Single crystals of $[Mn^{III}(5\text{-}TMAM(R)\text{-}salmen)(H_2O)\text{-}Co^{III}(CN)_6]\cdot7H_2O\cdotMeCN$ [1; 5-TMAM(R)-salmen = (R)-N,N'-(1-methylethylene)bis(5-trimethylammoniomethylsalicylideneiminate] were obtained at the interface between an MeCN solution of $[Mn^{III}(5\text{-}TMAM(R)\text{-}salmen)(H_2O)_2](ClO_4)_3\text{-}H_2O$ and an aqueous solution of $K_3[Co^{III}(CN)_6]$ allowed to diffuse together. From single-crystal X-ray analysis, 1 consists of a neutral Mn^{III} –Co^{III} unit and seven H_2O and one MeCN molecules. The Mn^{III} center has elongated tetragonal geometry with equatorial positions occupied by an N_2O_2 donor set from 5-TMAM(R)-salmen, one apical position occupied by a cyanide N atom of diamagnetic $[Co^{III}(CN)_6]^{3-}$, and the other occupied by an O atom of H_2O . Only one of the six CN groups of the diamagnetic $[Co^{III}(CN)_6]^{3-}$ unit coordinates to the Mn^{III} center (Figure 1).⁷ The 5-TMAM(R)-salmen ligand adopts an envelope

 $\label{eq:Figure 1. Molecular structure of the [Mn^{III}(5-TMAM(R)-salmen)-(H_2O)Co^{III}(CN)_6] unit in 1. Purple, yellow, blue, red, and gray balls and sticks represent Mn, Co, N, O, and C atoms, respectively. H atoms are omitted for clarity. Selected interatomic distances (Å) and angles (deg) around the Mn^{III} ion: Mn-O_{phenolate}$ 1.895(av), Mn-N_{imine} 1.993(av), Mn-N_{CN} 2.228(7), Mn-O_{water} 2.317(6), Mn-Co 5.218(6); O_{water}-Mn-N_{cyanide} 175.16(19), Mn-N_{cyanide}-C_{cyanide} 160.5(5).

conformation with a torsion angle of 36.6(8)° involving the $N_{\rm imine}-C-C-N_{\rm imine}$ backbone and an average dihedral angle of 17.64° between phenyl rings in the crystal packing. The axial bond distances are much longer than the equatorial ones because of Jahn–Teller distortion. The neutral $Mn^{\rm III}-Co^{\rm III}$ units self-assemble via a one-dimensional hydrogen-bonding network with $O-H\cdots N$ contacts between the H_2O molecule coordinating on the $Mn^{\rm III}$ ion and the one of uncoordinated CN groups of neighboring $Mn^{\rm III}-Co^{\rm III}$ units. Furthermore, the solvents of

Received: May 29, 2013 **Published:** July 5, 2013 crystallization form intermolecular hydrogen-bonding networks with the free CN groups on the $\rm Mn^{III}-\rm Co^{III}$ units.

From measurements of the temperature dependence of the direct-current (dc) magnetic susceptibility data on polycrystalline samples of **1**, the value of $\chi_{\rm M}T$ was determined to be 3.0 cm³ K mol⁻¹ at 300 K, which corresponds to a single pure HS Mn^{III} ion (3d⁴, S = 2) with g = 2.0, and there was no magnetic contribution from the $[{\rm Co^{III}(CN)_6}]^{3-}$ moiety because of the diamagnetic low-spin (LS) Co^{III} ion. The $\chi_{\rm M}T$ value remained constant at ~70 K and then abruptly decreased at lower temperatures (Figure 2). This behavior suggests that there is

Figure 2. Temperature dependence of $\chi_M T$ for 1 at 1000 Oe. Inset: Field dependence of magnetization curves for 1, collected from 1.8 to 10 K. The red solid lines represent best-fit curves. The fitting model is described in the text.⁸

appreciable zero-field splitting (ZFS), causing an $S_{\rm Mn} = 2$ ground state for the Mn^{III} ion, which is typical for other mononuclear HS Mn^{III} derivatives.⁸ Indeed, variable-field magnetization data for 1 at lower temperatures could not be superimposed, showing that there is strong magnetic anisotropy of ZFS of the HS Mn^{III} single ion (inset of Figure 2). The magnetic behavior was fit with an isolated $S_{\rm Mn} = 2$ ground state with an axial ZFS term $D_{\rm Mn}$ of -3.3cm⁻¹, a mean-field approximation (MFA) zJ' of -0.07 cm⁻¹, and $g_{\rm Mn}$ of 2.0.⁸

High-field and multifrequency (HF/MF) electronic spin resonance (ESR) measurements on polycrystalline samples of 1 at different temperatures were used to confirm directly the presence of a magnetic anisotropic energy gap between each $M_{\rm S}$

level (Figure S1 in the Supporting Information, SI). In lowfrequency fields, the signal intensity increased with a decrease in the temperature, which clearly indicates that $D_{\rm Mn} < 0$,⁹ as required for SIMs. Plots of the frequency (ν) versus resonance field (H) from the HF/MF-ESR spectra are shown in Figure S1 in the SI. Extrapolation of the frequency dependence of the signals of the lowest field to H = 0 can be used to estimate the magnetic anisotropy gap because these transitions correspond to the allowed transition $M_{\rm S} = -2 \leftrightarrow -1$ ($\Delta M_{\rm S} = 1$). The gap was estimated to be 300 GHz (=10 cm⁻¹; Figure S2 in the SI), and if E= 0, it is equivalent to $-3D_{\rm Mn}$.¹⁰ Thus, $D_{\rm Mn}$ was estimated to be -3.3 cm^{-1} (Figure S3 in the SI), which is consistent with SQUID magnetic studies (vide supra).

From the low-temperature alternating-current (ac) susceptibility data, 1 exhibits slow magnetic relaxation phenomena in the frequency range of 1–1500 Hz in a zero dc field, where in-phase $(\chi_{M}{}')$ and out-of-phase $(\chi_{M}{}'')$ components of the ac susceptibility of 1 show strong frequency dependence below 3.0 K (right side of Figure 3). This phenomenon is clearly related to the magnetic anisotropy of the HS Mn^{III} ion of 1. Various dc fields below 4500 Oe were applied to determine if the magnetic relaxation is suppressed in dc fields as expected in the presence of fast zero-field quantum-tunneling relaxation of the magnetization. Although there was a slight effect, the χ_{M} " signals for 1, which increased with a decrease in the temperature, barely showed any tailing, and the expected maximum value due to blocking could not be observed down to 1.8 K even in an applied dc field of 4500 Oe, as indicated by the divergence of the χ_{M} " signals (left side of Figure 3).

Nevertheless, the values of $\Delta (=|D_{Mn}|S_{Mn}^2)$ from a negative D_{Mn} acting on S_{Mn} for 1 can be estimated from χ_M''/χ_M' versus 1/ T plots with a semilogarithmic scale at the given frequencies of the ac susceptibility data by using the following equation derived from the Kramers–Kronig equation:¹¹

$$\log\left(\frac{\chi_{\rm M}''}{\chi_{\rm M}'}\right) = \log(\omega\tau_0) + \frac{\Delta}{k_{\rm B}T}$$

where ω (=2 $\pi\nu$) is the oscillating frequency of the ac field, τ_0 is a preexponential factor of the Arrhenius law $\tau = \tau_0 \exp(\Delta/k_{\rm B}T)$, $k_{\rm B}$ is Boltzmann's constant, and *T* is the temperature.

By fitting the data, the effective Δ (Δ_{eff}) was determined to be \approx 9.3 and \approx 11.5 cm⁻¹ with $\tau_0 = \approx$ 8.0 × 10⁻⁸ and \approx 2.9 × 10⁻⁷ s in a zero dc field and an applied dc field of 4500 Oe, respectively. The τ_0 values fall within the range typically observed for SIMs

Figure 3. Temperature dependence of the ac susceptibilities (χ_M' and χ_M'') of **1** in the frequency range of 1–1500 Hz in an oscillating ac magnetic field of 5 Oe in a zero dc field (left) and an applied 4500 Oe dc field (right). The red solid lines serve as guides to the eye.

Communication

Figure 4. χ_{M}''/χ_{M}' versus 1/T plot for 1 at different frequencies with a semilogarithmic scale. The red solid lines were fitted as described in the text.

and SMMs (Figures 4 and S4 in the SI). Therefore, 1 is an SIM rather than a three-dimensionally ordered magnet.

In summary, SIM features of a new tricationic Mn^{III}-salen-type complex with diamagnetic $[Co^{III}(CN)_6]^{3-}$ moieties were determined. On the basis of dc magnetic susceptibility and magnetization studies, **1** has significant uniaxial anisotropy for an isolated $S_{\rm Mn} = 2$ with $D_{\rm Mn} = -3.3$ cm⁻¹ and $g_{\rm Mn} = 2.0$, which was supported by HF/MF-ESR studies on powdered samples. Consequently, the observed uniaxial magnetic anisotropy leads to slow magnetic relaxation, as evidenced by frequency-dependent ac magnetic susceptibilities.

ASSOCIATED CONTENT

S Supporting Information

X-ray crystallographic data in CIF format, experimental section, physical measurements, crystallographic data, and data of HF/MF-ESR spectral details. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: yamasita@agnus.chem.tohoku.ac.jp. Tel: +81-22-795-6548. Fax:+81-22-795-6548.

Author Contributions

All authors discussed the results and commented on the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by a Grant-in-Aid for Scientific Research (S) (Grant No. 20225003) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

REFERENCES

(1) Gatteschi, D.; Sessoli, R.; Villain, J. *Molecular Nanomagnets*; Oxford University Press: Oxford, U.K., 2006.

(2) (a) Friedman, J. R.; Sarachik, M. P.; Tejada, J.; Ziolo, R. *Phys. Rev. Lett.* **1996**, *76*, 3830. (b) Bogani, L.; Wernsdorfer, W. *Nat. Mater.* **2008**, *7*, 179.

(3) (a) Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J. J. Am. Chem. Soc. 2004, 126, 420. (b) Zaleski, F. C. M.; Depperman, E. C.; Kampf, J. W.; Lirk, M. L.; Pecoraro, V. L. Angew. Chem., Int. Ed. 2004, 43, 3912. (c) Mishra, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. J. Am. Chem. Soc. 2004, 126, 15648.

(4) (a) Jiang, S.-D.; Wang, B.-W.; Sun, H.-L.; Wang, Z.-M.; Gao, S. J. Am. Chem. Soc. 2011, 133, 4730. (b) Sorace, L.; Benelli, C.; Gatteschi, D. Chem. Soc. Rev. 2011, 40, 3092. (c) Chilton, N. F.; Langley, S. K.;

Moubaraki, B.; Soncini, A.; Batten, S. R.; Murray, K. S. Chem. Sci. 2013, 4, 1719.

(5) (a) Rinehart, J. D.; Long, J. R. J. Am. Chem. Soc. 2009, 131, 12558.
(b) Rinehart, J. D.; Meihaus, K. R.; Long, J. R. J. Am. Chem. Soc. 2010, 132, 7572. (c) Magnani, N.; Apostolidis, C.; Morgenstern, A.; Colineau, E.; Griveau, J. C.; Bolvin, H.; Walter, O.; Caciuffo, R. Angew. Chem., Int. Ed. 2011, 50, 1696. (d) Antunes, M. A.; Pereira, L. C. J.; Santos, I. C.; Mazzanti, M.; Marçalo, J.; Almeida, M. Inorg. Chem. 2011, 50, 9915.
(e) Coutinho, J. T.; Antunes, M. A.; Pereira, L. C. J.; Bolvin, H.; Marçalo, J.; Mazzanti, M.; Almeida, M. Dalton Trans. 2012, 41, 13568. (f) Moro, F.; Mills, D. P.; Liddle, S. T.; van Slageren, J. Angew. Chem., Int. Ed. 2013, 52, 3430.

(6) (a) Freedman, D. E.; Harman, W. H.; Harris, T. D.; Long, G. J.; Chang, C. J.; Long, J. R. J. Am. Chem. Soc. 2010, 132, 1224. (b) Harman, W. H.; Harris, T. D.; Freedman, D. E.; Fong, H.; Chang, A.; Rinehart, J. D.; Ozarowski, A.; Sougrati, M. T.; Grandjean, F.; Long, G. J.; Long, J. R.; Chang, C. J. J. Am. Chem. Soc. 2010, 132, 18115. (c) Weismann, D.; Sun, Y.; Lan, Y.; Wolmershäuser, G.; Powell, A. K.; Sitzmann, H. Chem.-Eur. J. 2011, 17, 4700. (d) Lin, P.-H.; Smythe, N. C.; Gorelsky, S. I.; Maguire, S.; Henson, N. J.; Korobkov, I.; Scott, B. L.; Gordon, J. C.; Baker, R. T.; Murugesu, M. J. Am. Chem. Soc. 2011, 133, 15806. (a) Zadrozny, J. M.; Long, J. R. J. Am. Chem. Soc. 2011, 133, 20732. (b) Jurca, T.; Farghal, A.; Lin, P.-H.; Korobkov, I.; Murugesu, M.; Richardson, D. S. J. Am. Chem. Soc. 2011, 133, 15814. (c) Zadrozny, J. M.; Liu, J.; Piro, N. A.; Chang, C. J.; Hill, S.; Long, J. R. Chem. Commun. 2012, 48, 3927. (d) Vallejo, J.; Castro, I.; Ruiz-García, R.; Cano, J.; Julve, M.; Lloret, F.; De Munno, G.; Wernsdorfer, W.; Pardo, E. J. Am. Chem. Soc. 2012, 134, 15704. (e) Mossin, S.; Tran, B. L.; Adhikari, D.; Pink, M.; Heinemann, F. W.; Sutter, J.; Szilagyi, R. K.; Meyer, K.; Mindiola, D. J. J. Am. Chem. Soc. 2012, 134, 13651.

(7) Miyasaka, H.; Saitoh, A.; Abe, S. *Coord. Chem. Rev.* 2007, 251, 2622.(8) The spin Hamiltonian was defined by the following expression:

$$\mathcal{H} = \mathcal{H}_{ZFS} + \mathcal{H}_{MFA} + \mathcal{H}_{Zeeman}$$

where $\mathcal{H}_{ZFS} = D_{Mn}[S_z^2 - ([S(S+1)]/3)], \mathcal{H}_{MFA} = -J'S_{Mn}\langle S_{Mn} \rangle$, and $\mathcal{H}_{Zeeman} = g_{Mn}\mu_B S_{Mn}H$. (a) Kennedy, B. J.; Murray, K. S. Inorg. Chem. **1985**, 24, 1552. (b) Baba, H.; Nakano, M. Polyhedron **2009**, 28, 2087.

(9) Gatteschi, D.; Barra, A. L.; Caneschi, A.; Cornia, A.; Sessoli, R.; Sorace, L. *Coord. Chem. Rev.* **2006**, 250, 1514.

(10) If $E \neq 0$ (*E* is the rhombic component of the ZFS), the energy gap is $-3(D + |E| + |E|^2/D)$.

(11) Bartolomé, J.; Filoti, G.; Kuncser, V.; Schinteie, G.; Mereacre, V.; Anson, C. E.; Powell, A. K.; Prodius, D.; Turta, C. *Phys. Rev. B* **2009**, *80*, 014430.