Density Functional Theory Study of the Attack of Ebselen on a Zinc-Finger Model

Sonia Antony and Craig A. Bayse*

Department of Chemistry and Biochemist[ry,](#page-2-0) Old Dominion University, Hampton Boulevard, Norfolk, Virginia 23529, United States

S Supporting Information

[AB](#page-2-0)STRACT: [Density](#page-2-0) [func](#page-2-0)tional theory and solventassisted proton exchange are used to model the attack of ebselen 1 on a zinc-finger model, an important step in the regulation of zinc signaling by reducible selenium compounds. These calculations show that the formation of a selenosulfide bond from an Se···S intermediate complex between 1 and a $Cys₂His₂$ zinc-finger model can occur through a moderate activation barrier that is consistent with experimental observations of the relative rates of Zn^{2+} release from zinc-finger transcription factors and metallothionein.

Redox signaling by zinc[−]sulfur proteins (ZPs) is important to nucleic acid transcription, recognition, and repair; protein regulation; and zinc storage and metabolism.^{1−6} Zincfinger (ZF) transcription factors incorporate Zn^{2+} ions tetrahedrally coordinated to Cys and His residues [\(](#page-2-0)t[yp](#page-2-0)ically $Cys₂His₂ Cys₃His, or $Cys₄$) to ensure proper folding of the ZF$ tertiary structure for biological recognition. The redox activity of the Cys thiolates creates a variable environment for Zn^2 ⁺ binding or release that is critical for the control of transcription, recognition and other mechanisms of cellular signaling ("zinc switch"). $3,5,7$ The Zn^{2+} ion coordinates to a ZP in its reduced state (ZP_{red}) in which all Cys's are in the thiolate form. Altering the Cys [oxi](#page-2-0)dation state by biological or xenobiotic oxidants $(H_2O_2, NO, S-nitrosothiols, etc.)$ releases Zn^{2+} with a subsequent loss of the tertiary structure in ZP_{ox} necessary for recognition (Scheme 1).^{3,5,7} Reduction of ZP_{ox} with thiols restores the ability

Scheme 1. [Repr](#page-2-0)esentation of the "Zinc Switch" for a ZF-Type ZP (Adapted from PDB ID 1TF3)

to bind Zn^{2+} . Targeting of ZPs is important to potential treatments of viral infections and cancer by the disruption of gene expression and DNA repair,⁸ but may prevent normal repair of damaged DNA and impair genomic stability.⁹

Ebselen 1 and other re[du](#page-2-0)cible selenium (rSe) compounds have been shown to release $\rm Zn^{2+}$ from various $\rm ZPs.^{9-15}$ Here, rSe compounds are defined as selenium compounds not in the lowest Se(-2) oxidation state: selenite, seleninic acids RSeO₂H, and divalent organoselenium compounds RSeX (e.g., 1, diselenides RSe−SeR′, selenosulfides RSe−SR′, selenenyl chlorides RSe− Cl, and selenocyanates RSe−CN such as the antitumor agent 1,4 phenylenebis(methylene)selenocyanate 2^{16}). In contrast, fully reduced selenols and selenides, such as selenomethionine 3, do not affect Zn^{2+} release.⁹ 1, a well-known a[ntio](#page-2-0)xidant mimic of the selenoprotein glutathione peroxidase,^{17,18} inhibits DNA binding to t[r](#page-2-0)anscription factor $IIIA¹³$ and releases $Zn²⁺$ from the Sp1 transcription factor¹³ (Cys₂His₂ type[\), the](#page-2-0) formamidopyridine– DNA glycosylase⁹ and xero[der](#page-2-0)ma pigmentosum group A^{19} (Cys₄ type) repair prote[ins](#page-2-0), as well as metallothionein $(MT),$ ¹¹ the $Zn(Cys₃His)$ sit[e](#page-2-0) of a histone lysine demethylase²⁰ [an](#page-2-0)d an alcohol dehydrogenase with two Zn−S centers.¹¹ Although [1](#page-2-0) and other rSe compounds are often considered antioxi[dan](#page-2-0)ts, Zn^{2+} release is an important prooxidant mechanis[m.](#page-2-0)

Experimental studies of $Cys₂His₂$ - and $Cys₄$ -type ZPs suggest two mechanisms for reaction with divalent rSe compounds RSeX, which have been combined in Scheme 2. Zn^{2+} can be

Scheme 2. Mechanisms of Zn^{2+} Release from ZPs by Divalent Reducible Organoselenium Compounds (RSeX)

released either by oxidation of the thiolates to disulfides (ZP_{ox}) or by perselenenization of the Cys residues $[ZP(S-SeR)_n]$, as observed for MT $(n = 20)$.^{19,21} The rSe compound first reacts to form an Se−S bond through electrophilic attack on one of the Cys residues. From this [mono](#page-2-0)selenenated intermediate ZP(S− SeR), the ZP can either eliminate selenolate RSe[−] by forming a disulfide bond (ZP_{ox}) or additional equivalents of RSeX can react with the remaining Cys ligands $[Zn(S–\text{SeR})_n]$. Either oxidative

Received: June 6, 2013 Published: November 22, 2013 modification weakens the affinity of zinc for sulfur to facilitate Zn^{2+} release. Pathways that result in oxidized ZPs with combinations of disulfide and selenosulfide bonds as discussed for Zn^{2+} release from the NCp7 nucleocapsid (Cys₃His type) by a disulfide can be drawn²² but have not been reported for rSe compounds. Selenolates produced in the formation of ZP_{ox} can be oxidized to the selene[nic](#page-2-0) acid RSeOH to catalyze Zn^{2+} release. Because free Zn^{2+} is associated with gene expression, apoptosis, and cell growth, 23,24 it is important to understand the redox chemistry of ZFs with rSe compounds.

In this Com[munic](#page-2-0)ation, we use density functional theory (DFT; see the Supporting Information for details) to model the formation of the selenosulfide intermediate from the attack of 1 on a model [with a coordination sph](#page-2-0)ere similar to that of a $Cys₂His₂ ZF$, the most common ZP motif, (Scheme 3) using

Scheme 3. (A) Formation of an Initial Se···S Donor−Acceptor Intermediate 1-ZPM as Part of the Attack of 1 on a $Cys₂His₂$ Model ZFM, (B) Bond Formation Pathway for the SAPE Model of the Reaction (A), and (C) Structure of 1-ZPM (Bond Distances in Angstroms)

solvent-assisted proton exchange (SAPE). This technique of including explicit protic solvent molecules to shuttle protons in a reactive gas-phase model has been used previously to explore redox scavenging by $1.^{25}$ The ZF model (ZFM) replaces His and Cys with imidazole (Im) and 1,3-propylenedithiolate, respectively. The thiolates [hav](#page-2-0)e been tethered to represent the 2−5 hydrophobic amino acids that provide structural stability to the $ZF^{26,27}$ and to prevent the selenosulfide from drifting away from the zinc coordination site during the DFT study. Formation of th[e Se](#page-2-0)–S bond is expected to be rate-determining for Cys_2His_2 -

type ZFs because the oxidized protein ZP_{ox} is obtained from the reaction of 1 with a fragment of Sp1.¹³

The reactant complex RC for the DFT-SAPE study was constructed by adding a three-wate[r](#page-2-0) network to the donor− acceptor complex of 1 with ZFM (1-ZFM, Scheme 3). These water molecules facilitate protonation of the amide leaving group of 1 required to break the Se−N bond and provide a hydroxide ligand to complete the coordination sphere of Zn^{2+} (Scheme 3B). 1-ZFM, in which the ZFM forms an Se···S chalcogen bond with RSeX, is assumed to be an initially formed intermediate in selenosulfide bond formation (Scheme 3A). Donation of a thiolate sulfur lone pair to the antibonding Se−N molecular orbital of 1 results in a strong Se···S interaction (2.75 Å), as indicated by natural bond orbital²⁸ donor−acceptor calculations $(\Delta E_{d\rightarrow a}$ = 36.2 kcal/mol). Surprisingly, Se \cdots S interactions between rSe compounds and [ZF](#page-2-0)M are stronger than those with a simple thiol because of destabilization of the sulfur lone pairs through metal coordination.¹⁹ Complexation weakens the Zn−S bond (2.33 Å relative to 2.27 Å in ZFM) and activates the Se−N bond (1.98 Å relative to 1.[88](#page-2-0) Å in 1) toward nucleophilic substitution. The increase in the partial negative charge of nitrogen $[-0.75e(1)$ vs $-1.21e(1-ZFM)]^{29}$ facilitates proton transfer to the activated Se−N amide.

The structure of RC (Figure 1) wa[s](#page-2-0) optimizing using $DFT(mPW1PW91^{30})$ and either the B2 all-electron basis set³ (BSL) or the small-core Ermler−Christiansen relativistic effective core pote[nti](#page-2-0)al (RECP) basis set $32,33$ (BSEC) for zi[nc.](#page-2-0) The three water molecules of the SAPE network extend from the amide nitrogen to terminate in a hydrog[en-bo](#page-2-0)nding interaction with CH groups from each Im rather than interacting directly with zinc $[d_{\text{Zn}\cdots\text{O}} = 4.74 \text{ (BSL)}$ and 4.72 (BSEC) Å]. [Note that if the Wadt–Hay large-core RECP basis set³⁵ is used for zinc (called by either LANL1DZ or LANL2DZ in the Gaussian³⁶ packages), the RC optimizes to a five-c[oo](#page-2-0)rdinate, trigonalbipyramidal geometry around zinc incorporating a wat[er](#page-2-0) molecule from the SAPE network as the fifth ligand. See Supporting Information.] From RC, cleavage of the activated Se−N bond requires transfer of a proton from the SAPE network [to the amide nitrogen. T](#page-2-0)he concurrent formation of the Se−S bond oxidizes and neutralizes the thiolate, which moves away from the coordination sphere of Zn^{2+} to be replaced by an OH⁻ group formed by proton transfer to the amide nitrogen from the SAPE network. The DFT(mPW1PW91)/BSEC transition state (TS) for this process (Figure 1A) is found where the Se−N bond has increased by 0.71 Å and the Se−S bond has decreased by 0.40

Figure 1. (A) Selected DFT(mPW1PW91)/BSEC bond distances (Å) for the attack of ebselen 1 on a model of a Cys₂His₂ ZF. Hydrogen atoms not involved in the SAPE network have been removed for clarity. (B) Structure for the rearrangement of the selenosulfide product from P (Se···N) to P′ $(Se...O)$.

Å. The OH[−] group, outside the coordination sphere of Zn^{2+} in RC, moves close to the metal (2.03 Å) at the TS as a Zn−O bond begins to form. The replacement of thiolate in the coordination sphere of Zn^{2+} by OH[−] is an important feature of the SAPE model. The solvation-corrected energy of the reaction for the product complex PC is endothermic ($\Delta G = 3.1$ kcal/mol). In PC, the selenosulfide P' forms an Se \cdots N interaction with the amide group that can rearrange to interact with the more basic carbonyl oxygen²⁹ (Se \cdots O short contact), as shown for **P** (Figure 1B), which is 2.7 kcal/mol more stable. Further oxidation to the disulfide through attack of the remaining thiolate on the [se](#page-1-0)lenosulfide is a unimolecular process and is expected to be rapid from this point. The loss of both thiolates from the coordination sphere of Zn^{2+} allows its release and the unraveling of the ZF tertiary structure required for DNA recognition.

The solvation-corrected activation barrier ($\Delta G^{\ddagger} = 15.6 \text{ kcal/}$) mol) is lower than the DFT barrier to H_2O_2 oxidation of a similar ZFM $(20.9 \text{ kcal/mol})^{34}$ due to the softness of the selenium electrophile. Experimental studies show that 1 reacts more slowly with MT, which coordinates Zn^{2+} through Cys only and is thus more nucleophilic than a $Cys₂His₂ ZF$, than with a simple thiol like glutathione [GSH; $t_{1/2}$ (GSH) \approx 5 ms vs $t_{1/2}$ (MT) \approx 5 s].¹¹ The DFT barrier for our $Cys₂His₂ ZFM$ is higher than the reaction of MeSH with 1 (8.4 kcal/mol),²⁵ which agrees with a faster reaction with thiols relative to ZFs. Because Cys₃His- and Cys4-type ZFs are more nucleophilic, their barriers for Se−S bond formation are expected to be lower than that demonstrated here for a Cys₂His₂ ZF-like model. The perselenenization of MT by 1 is complete within seconds,¹¹ whereas Zn^{2+} release from Sp1 via disulfide formation is only 50% complete after 30 min.¹³ Thus, the perselenenation of Cys_4 -type ZPs to $Zn(S-SeR)_n$ rather than oxidation to the disulfide (ZP_{ox}) is consistent with a lower barrier for selenosulfide formation. For $Cys₂His₂$ -type ZFs, the moderate barrier to the Se−S bond allows monoselenenated ZP(S−SeR) to exist long enough for unimolecular attack of the Cys thiolate upon selenosulfide to form Zn_{ox} ($k_{\text{ox}} > k_{\text{per}}$; Scheme 2). For Cys₄-type ZFs and MT, selenosulfide bond formation is much faster ($k_{\text{per}} > k_{\text{ox}}$), such that, in the presence of excess rSe [co](#page-0-0)mpounds, each Cys reacts with 1 equiv of rSe to release Zn^{2+} . Note that the reactivity of Cys₃His-type ZPs with rSe compounds has been less well-studied, and its moderate nucleophilicity relative to $Cys₂His₂$ and $Cys₄$ may lead to other mechanistic pathways.

DFT modeling of selenosulfide formation by the attack of 1 on a ZFM is an important step toward understanding the electronic factors involved in the reactivity of ZFs. The simplified ZFM omits steric effects to provide a baseline for the interaction with 1. Future studies will explore the reactivity of $Cys₃His-$ and $Cys₄$ type ZFMs with other rSe compounds known to release Zn^{2+} . These results and their extension into larger models will enhance the design of selenium-based drugs to target ZFs involved in cancer and viral infections as well as increase our understanding of the toxic effects of selenium.

■ ASSOCIATED CONTENT

6 Supporting Information

Details of DFT calculations and Cartesian coordinates of the structures in Figure 1. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR [INFORMATION](http://pubs.acs.org)

Corresponding Author

*E-mail: cbayse@odu.edu.

Funding

The authors thank the National Science Foundation for funding (Grant CHE-0750413).

Notes

The authors declare no competing financial interest. ■ REFERENCES

(1) Maret, W. Biochemistry 2004, 43, 3301−3309.

(2) Lee, S.-H.; Maret, W. Antioxid. Redox. Signal. 2001, 3, 531−534.

(3) Maret, W. Antioxid. Redox. Signal. 2006, 8, 1419−1441.

(4) Krezel, A.; Hao, Q.; Maret, W. Arch. Biochem. Biophys. 2007, 463, 188−200.

(5) Kröncke, K.-D.; Klotz, L.-O. Antioxid. Redox. Signal. 2009, 11, 1015−1027.

(6) Jacob, C.; Maret, W.; Vallee, B. L. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3489−3494.

(7) Oteiza, P. I. Free Radical Biol. Med. 2012, 53, 1748−1759.

(8) Anzellotti, A. I.; Farrell, N. P. Chem. Soc. Rev. 2008, 37, 1629. (9) Blessing, H.; Kraus, S.; Heindl, P.; Bal, W.; Hartwig, A. Eur. J.

Biochem. 2004, 271, 3190−3199. (10) Jacob, C.; Maret, W.; Vallee, B. L. Proc. Natl. Acad. Sci. U.S.A.

1999, 96, 1910−1914.

(11) Jacob, C.; Maret, W.; Vallee, B. L. Biochem. Biophys. Res. Commun. 1998, 248, 569−573.

(12) Larabee, J. L.; Hocker, J. R.; Hanas, R. J.; Kahn, F. M.; Hanas, J. S. Biochem. Pharmacol. 2002, 64, 1757−1765.

(13) Larabee, J. L.; Hocker, J. R.; Hanas, J. S. J. Inorg. Biochem. 2009, 103, 419−426.

(14) Giles, N. M.; Gutowski, N. J.; Giles, G. I.; Jacob, C. FEBS Lett. 2003, 535, 179−182.

(15) Chen, Y.; Maret, W. Antioxid. Redox. Signal. 2001, 3, 651−656.

(16) El-Bayoumy, K.; Das, A.; Narayanan, B.; Narayanan, N.; Fiala, E. S.; Desai, D.; Rao, C. V.; Amin, S.; Sinha, R. Carcinogenesis 2006, 27,

1369−1376. (17) Sies, H. Free Radical Biol. Med. 1993, 14, 313−323.

(18) Schewe, T. Gen. Pharmacol. 1995, 26, 1153−169.

(19) Bayse, C. A.; Whitty, S. M.; Antony, S. Curr. Chem. Biol. 2013, 7, 57−64.

(20) Sekirnik, R.; Rose, N. R.; Thalhammer, A.; Seden, P. T.; Mecinović, J.; Schofield, C. J. Chem. Commun. 2009, 6376-6378.

(21) Hartwig, A.; Blessing, H.; Schwerdtle, T.; Walter, I. Toxicology 2003, 193, 161−169.

(22) Loo, J. A.; Holler, T. P.; Sanchez, J.; Gogliotti, R.; Maloney, L.; Reily, M. D. J. Med. Chem. 1996, 39, 4313−4320.

(23) Fukada, T.; Yamasaki, S.; Nishida, K.; Murakami, M.; Hirano, T. J. Biol. Inorg. Chem. 2011, 16, 1123−1134.

(24) Kröncke, K.-D. Arch. Biochem. Biophys. 2007, 463, 183-187.

(25) Antony, S.; Bayse, C. A. Inorg. Chem. 2011, 50, 12075−12084.

(26) Wolfe, S. A.; Nekludova, L.; Pabo, C. O. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 183−212.

(27) Sénéque, O.; Latour, J.-M. J. Am. Chem. Soc. 2010, 132, 17760− 17774.

(28) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899−926.

(29) Bayse, C. A.; Baker, R. A.; Ortwine, K. N. Inorg. Chim. Acta 2005, 358, 3849−3854.

(30) Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664−675.

(31) Amin, E. A.; Truhlar, D. G. J. Chem. Theory Comput. 2008, 4, 75− 85.

(32) Hurley, M. M.; Pacios, L. F.; Christiansen, P. A.; Ross, R. B.; Ermler, W. C. J. Chem. Phys. 1986, 84, 6840−6853.

(33) Couty, M.; Hall, M. B. J. Comput. Chem. 1996, 17, 1359−1370.

(34) Kassim, R.; Ramseyer, C.; Enescu, M. Inorg. Chem. 2011, 50, 5407−5416.

(35) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284−298.

(36) Gaussian 09; Gaussian, Inc.: Wallingford, CT, 2009.