Vol. 6, No. 3, March 1967

DicHLORO-1,1,7,7-TETRAETHYLDIETHYLENETRIAMINECOBALT(IT) 483

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, CoLUuMBIA UNIVERSITY, NEW YORK, NEW YORK,
AND CoNTRIBUTION No. 3438 FROM THE GATES AND CRELLIN LABORATORIES OF CHEMISTRY,

CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA

The Crystal and Molecular Structure of the Five-Coordinate
Complex Dichloro-1,1,7,7-tetraethyldiethylenetriaminecobalt(I1)

By ZVI DORI, R. EISENBERG,®» anxp HARRY B. GRAY™®

Received July 26, 1966

The crystal and molecular structure of Co(Etidien)Cly, in which Etidien is the bulky ligand 1,1,7,7-tetraethyldiethylenetri-

amine, has been determined from three-dimensional X-ray data collected from a single crystal.

The material crystallizes

in the space group P1 of the triclinic system, with two molecules in a cell of dimensionsa = 7.04 A, b = 12.99 A, ¢ = 9.90 A,

a =681°8 =80.9°and y = 79.7°,

The coordination geometry of Co(Et.dien)Cl; is distorted and cannot be viewed simply

as either a square pyramid or a trigonal bipyramid. Various features of the molecular geometry of Co(Et.dien)Cl; are com-

pared with the structural results reported for other related complexes.

The stability order found in polar organic solvents

for the five-coordinate complexes Ni(Etidien)X, (X = Cl, Br, I) is interpreted in terms of the observed steric crowding in the
molecular structure of the five-coordinate Co(Etdien )Cl: complex.

Introduction

Recent studies have produced examples of high-spin,
five-coordinate complexes of the first-row transition
metal ions.?~8 These complexes invariably contain
o-bonding light-donor-atom ligands which are suf-
ficiently bulky so that the tendency to attain six-co-
ordination with central metals such as Ni(II) and Co(II)
is suppressed.

Two ligands which have played an important role in
these studies are 1,1,4,7,7-pentamethyldiethylenetri-
amine (Mesdien) and 1,1,7,7-tetraethyldiethylenetri-
amine (Etidien). Of particular interest is the fact
that, whereas both ligands form high-spin, five-coordi-
nate complexes of the type Col.X, (X = CI, Br), only
Mesdien forms high-spin NiLX, complexes which are
five-coordinate in the solid state; the Ni(Etidien)X,
complexes are low-spin and four-coordinate in the
solid and in ethanol solution, It is reasonable to as-
sume that electronic factors do not change in going
from Mesdien to Et,dien and, therefore, that the ob-
served change in coordination number for Ni(II) is
mainly due to steric factors. Thus, replacement of the
methyl groups by the more bulky ethyl groups pre-
sumably tips the balance in favor of a four-coordinate
form for Ni(Et,dien)X,.

Prior to the structural studies described above, the
ligand Etidien had been employed in studies of steric
factors in square-planar substitution processes for the
substrate Pd(Et,dien)Cl+° More recently, these
mechanistic studies have been extended to include the
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substrates Pt(Et,dien)Clt 02 and Au(Et.dien)Cl2+ 10b
Since the proposed pathway for square-planar substitu-
tion redctions includes a five-coordinate intermediate,!!
it is clear that the structure of a ground-state five-coor-
dinate complex containing Et,dien would be of consider-
able interest. In addition, the striking structural con-
trast displayed in the Ni(II) systems with Megdien and
Etidien makes it desirable to have detailed structural
results available in analogous complexes containing
these ligands.

We have investigated the structure of Co(Et.dien)-
Cl; by single-crystal X-ray diffraction methods. A
discussion of the structural and stability patterns of
complexes containing Mesdien, Etidien, and related
ligands is presented in this paper.

Collection and Reduction of the X-Ray Data

The red-purple crystals of Co(Etidien)Cl; were ex-
amined by optical, precession, and Weissenberg tech-
niques and were found to belong to the triclinic system.
A Delauny reduction failed to suggest the presence of
hidden symmetry. A convenient cell chosen for the
indexing of the Weissenberg photographs has the di-
mensions ¢ = 7.041 £ 0.02 A, b = 12,99 = 0.03 A,
¢ =990 =% 002A, a =681 =*03°8=2809 = 0.3°,
v = 79.7 = 0.3°, and cell volume = 826 A% An ex-
perimental density of 1.41 g/cm? obtained by flotation
in CClybenzene solution agrees well with the density
of 1.39 g/cm? calculated for two molecules in the primi-
tive cell. A negative piezoelectric test indicated the
centrosymmetric space group P1.12 The satisfactory
agreement ultimately obtained between observed and
calculated structure factors confirms this choice.

Intensity data were collected at room temperature
by the integrating equiinclination Weissenberg tech-
nique. Zirconium-filtered Mo Ko« radiation was em-
ployed. The layers 0%l to 6k were photographed and
the intensities of 1051 independent reflections accessible
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within the angular range 6y, <22.0° were estimated
visually. Because of the triclinic symmetry, the in-
tensity estimates were made from both the top and
bottom portions of the films, and no correction was
applied for spot elongation. The usual Lorentz-
polarization factors were applied to the intensities to
yield F,? (where F, is the observed structure amplitude).
Because of the smallness of the absorption coefficient
(v = 138 em~Y and the uniformity of the crystal
dimensions, no absorption correction was applied.
The F, values were subsequently brought to an ap-
proximate scale through a modification of Wilson’s
procedure.

Solution of the Structure

The positions of the cobalt and the two chlorine atoms
were readily determined from a three-dimensional Pat-
terson function.!® These positional parameters, along
with variable isotropic temperature factors assigned to
each of the atoms, were refined through several cycles
of least squares. All nitrogen and carbon atoms were
then located on subsequent difference Fouriers based
on phases obtained from the heavy atoms.

The complete trial structure was refined by a least-
squares procedure. The function minimized was
Zw(F, — F.)? where the weights were assigned in the
following ways: I <5, w= (I/3)?; 5<I<175,w=1;
I 2 175, w = (175/1)?; I istheaverage raw intensity for
the particular reflection. The atomic scattering factors
for the neutral atoms tabulated by Ibers!* were used.
The anomalous parts of the Co and Cl scattering factors
were obtained from Templeton’s tabulation® and were
included in the calculated structure factors.®

An initial refinement was carried out in which all
atoms were assigned individual isotropic thermal param-
eters. This refinement of 79 positional scale and ther-
mal parameters converged to a conventional R factor
(R = EHFo’ — FQIH/E]FO )} of 0.16 and to a weighted R
factor R’ (R’ = (Sw(F, — FJ)?/ZwF.%)"*) of 0.17. After
correction of several indexing errors the agreement
factors dropped to R = 0.13 and R’ = 0.13 for 1036
independent nonzero reflections. A different Fourier
revealed anisotropic motion of the heavy atoms.

In a second round of calculations the Co and CI
atoms were allowed to vibrate anisotropically, while the
other atoms were restricted to isotropic vibration.
The scale factors and anisotropic thermal parameters
were not refined simultaneously in the least squares.
The final refinement of 87 positional and thermal
parameters converged to an R factor of 0.117 and a
weighted R factor R’ of 0.117. The highest peak on the
difference Fourier based on this refinement is 0.82 e/A3,
about 259, the height of a carbon atom. In Table I
we list the final parameters obtained from the calcula-
tions in which Co and Cl were allowed to vibrate aniso-
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TaABLE [
PosITIoNAL AND THERMAL PARAMETERS FOR Co(Etdien)Cl,

Bu®or
Atom & v z B, A?

Co 0.0230 (4)® 0.2119 (3) 0.2137 (3) 0.0093 (6)

Ch —0.2261 (6) 0.3475 (4) 0.1075 (5) 0.0207 (2)

Cl2 —0.1278 (8) 0.0481 (4) 0.3003 (5) 0.0151 (2)

N1 0.084 (2) 0.305 (1) 0.345 (1) 1.7(3)

Ne 0.263 (2) 0.099 (1) 0.323 (1) 2.7 (3)

N 0.220 (2) 0.204 (1) 0.022 (1) 0.9(2)

Cr 0.251 (5) 0.481 (2) 0.301 (3) 6.4 (7)

Ca 0.178 (3) 0.401 (2) 0.233 (2) 2.8 (4

Cs 0.092 (4) —0.344 (2) —0.420 (2) 4.1(H)

Cy 0.227 (4) —0.251(2) —0.499 (3) 4.8 (4)

Cs 0.0486 (4) —0.187 (2) 0.116 (2) 3.8 (%)

Cs 0.154 (3) 0.135(2) —0.0521 (1) 2.9 (4)

Cq 0.232 (1) 0.324 (2) —0.087 (2) 2.6 (4)

Cs 0.377 (2) 0.326 (1) —0.227 (2) 3.8 (5)

Ca 0.407 (1) 0.143 (1) 0.073 (2) 2.6 (4)

Cuo 0.390 (1) 0.052 (1) 0.219(2) 2.9 (4)

Cn 0.379 (2) 0.157 (1) 0.389 (2) 2.3(4)

Cua 0.216 (2) 0.227 (2) 0.454 (2) 3.3 (5)
Atom B B33 B12 B3 Bz

Co 0.0033(2) 0.0047 (3) —~0.0028(3) 0.0004 (1) —0.0014 (2)

Cly  0.0042 (4) 0.0079 (8) 0.0001 (2) —0.0033(6) —0.0013(5)

Cls  0.0047 (4) 0.0081(7) ~—0.0054 (7) 0.0004 (3) —0.0010 (4)

@ The form of the anisotropic thermal ellipsoid is exp[ — (81142 +
322k2 + 63312 + Qﬁuhk + 2ﬁ1ghl + Qﬂggk”] b Numbers in paren-
theses here and in succeeding tables are estimated standard
deviations in the least significant digits.

tropically. The final values of observed and calcu-
lated structure amplitudes are listed in Table II.

The final R value of 0.117 is somewhat higher than we
would normally expect, and we attribute this mainly to
intensity errors arising from spot elongation and con-
traction.

Discussion

The structure described by the space group, the
atomic parameters, and the unit cell constants consists
of the packing of discrete molecules of Co(Et.dien)Cl,.
The closest Co—Co approach is 8.04 A and all inter-
molecular contacts appear normal. Figure 1 is a per-
spective drawing of an isolated molecule of the com-
plex.

Figure 1.—Perspective drawing of the molecular structure of
Co(Etadien)Cly,
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TasBLE 1I

CALCULATED AND OBSERVED STRUCTURE AMPLITUDES FOR Co(Et,dien)Cl;
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In the molecule, cobalt is coordinated to the two chlo-
rine and the three nitrogen atoms. The molecular geom-
etry is quite irregular and could be viewed as either a
distorted square pyramid or a distorted trigonal bipyra-
mid. However, we find it more convenient in compara-~
tive structural discussions to utilize the “distorted
square pyramid”’ description. The important intra-
molecular distances and angles are given in Table III.
Co, Ny, Ny, and Cl; are coplanar, The equation of the
best least-squares plane through these atoms is 4.438x
+ 4.232y — 5.075z = —8.291 (triclinic coordinates).
The deviations of the four atoms from this plane are
presented in Table IV. The atom Cl, is very sig-
nificantly displaced from the ideal apical position of a
square pyramid based on the least-squares plane.
This is logically the result of nonbonded repulsions be-
tween Cl,, the terminal methyl group C4, and Cl;. The
Cl,-C, distance of 3.76 A is shorter than the sum of 3.8
A from the van der Waals radii of chlorine and a methyl
carbon. Placing the atom Cl, in the ideal apical posi-
tion would shorten the Cl,—C, distance to about 3.2 A.
The Cl;-Cl, distance is 3.62 A and the Cl;-Co-Cl, bond
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SELECTED INTRAMOLECULAR DISTANCES AND ANGLES

Intramolecular distances, A

Co-Cl;
Co-Cl,
CO"N]
CO“Nz
CO"‘Ns
CLi-Cl,
Ni~-N.
N—Nj
CL-C,
Ch-G;
CL—-Cs
CL-C,
Cl-C,
Cl-Cy

2.319 (6)
2.357 (7)
2.21 (1)
2.16 (2)
2.19 (2)
3.62(2)
2.81(6)
2.82 (5)
3.56 (3)
3.36 (3)
4.07(3)
3.51(3)
3.76 (4)
3.83(3)

Angles, deg

Chi—Co-Cl;
Nr—CO-Nz

N;—-Co-N;

Nz—CO—Ng

Cl,—Co-N;
ClLi—Co~-N;
Clr‘CO—Ns
Cle-Co-N;
Cl-Co—N,
CIQ—CO“Ng

TaBLE IV

101.8 (3)
80.1 (3)
120.4 (4)
80.7 (2)
93.1(3)
173.4 (3)
101.9 (3)
126.8 (2)
83.3(3)
105.9 (2)

DEeviaTION OF THE AToMs oF Co, Cli, Ny,
AND Nz FROM THE LEAST-SQUARES PLANE
Distance, A
—0.002 (2)
0.005 (4)
0.00 (2)
0.03(2)

Atom
Co
Ch
Ny
N,
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angle is 101.8°. The Cl, atom further distorts the co-
ordination geometry by moving Nj drastically from the
basal plane of the pyramid. It should also be noted
that the distances between Cl; and the four CH, groups
—C,, Cs, Cg, and Cr—are all shorter than the van der
Waals radii sum of 3.8 A\Y" We view the extremely
distorted geometry of the complex as a direct result of
these strong nonbonded repulsions. Six-coordination
in Co(Et.dien)Cly is effectively suppressed by these
same steric factors; the methylene group, C, com-
pletely blocks the sixth coordination site of the cobalt.
The importance of steric crowding in determining
the coordination geometry of these types of complexes
is confirmed on comparing the structures of the com-
plexes Co(Mezdien)Cly and Co(Et.dien)Cl,. There are
significant differences in the coordination geometries
in these two cases, including a considerably larger
(135°) N1—Co—Nj angle in the Co(Mesdien)Cl; complex.*
Replacement of the ethyl groups by the smaller methyl
groups should decrease the repulsions between the
chlorine atoms and the terminal alkyl groups. As a re-
sult, we expect a smaller displacement of N; from the
plane determined by the atoms Co, N, N, and Cl,
as is observed.* Furthermore, the complex Ni(Mes-
dien)Cl; is known to be five-coordinate in the solid
state, whereas Ni(Etudien)Cly, is four-coordinate in
that state. Assuming that the electronic factors do
not change in going from Mezdien to Etidien, we at-
tribute this different behavior to a steric effect, namely,
an increase in steric crowding in the inner coordination
sphere in the case of Etydien. In addition, in polar or-
ganic solvents where both the four- and five-coordinate
forms of the complexes Ni(Etidien)X, are observed,
the fractional concentration of the five-coordinate form

(17) L. Pauling, “The Nature of the Chemical Bond,” 3rd ed, Cornell
University Press, Ithaca, N. Y., 1960, Table 7-20, p 260.
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decreases considerably in the X series C1= > Br— > 18
We have previously suggested steric crowding as the
principal explanation for this stability order, and the
observed structure of Co(Etdien)Cl, provides strong
support. We are now investigating the structure of the
square-planar complex [Ni(Etgien)Br]Br by X-ray
techniques and we await the result of this study to dis-
cuss the mechanism of substitution reactions in these
types of complexes.

It is of interest to compare the structure of high-
spin Co(Et,dien)Cl, with that of the low-spin five-
coordinate complex Ni(triars)Br,.® In the case of the
latter, the As donor atoms and the central metal lie
effectively in the same plane, and the geometry can be
described as a distorted square pyramid. It seems
reasonable to suggest that electronic factors assume a
larger structural role in the low-spin complex and that
the presence of heavy-donor As atoms capable of good
o(ligand) — p(metal)®® and possibly d,(metal) — d,-
(ligand) bonding will favor an arrangement in which the
metal and the heavy-donor As atoms are accommo-
dated in the same plane. The steric strain in this five-
coordinate structure is then reduced by perturbing the
metal-halogen bonds. Therefore, the molecular geome-
try adopted by Ni(triars)Br; can be viewed as a com-
promise between electronic and steric factors of com-
parable importance. This is in contrast to the case
of the Co(Etidien)Cly complex, where the principal
determinant of molecular geometry is apparently the
quest for relief of steric strain.
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The crystal structure of chloropentaamminecobalt(II1) hexafluorosilicate, {Co(NH;);Cl}SiFs, has been studied by optical

and single-crystal X-ray methods.
0.01, ¢ = 10.18 &= 0.02 A; and 8 = 99° 40’ == 30".

The structure has been determined and refined to an R factor of 0.12 for 649 reflections.

The complex crystallizes in the monoclinic system with ¢ = 6.26 == 0.01, b = 822 &
The space group is P2;/m with two formula weights in the unit cell.

The cation and anion exist as octa-

hedra, and the measured Co—N distances show no evidence for a “‘trans effect” induced by the presence of the Cl atom. A
preliminary examination of the corresponding cyano derivative, [Co(NH;);CN]SiFs, indicates that it is isomorphous with the

chloro compound.

Introduction

While searching for salts of acidopentaammine
cations, [M(NH,);X 12, useful for single-crystal spec-

(1) (a) This paper is based in part on a thesis submitted by J. A. Stanko
to the Graduate College of the University of Illinois in partial fulfillment of
the requirements for the degree of Doctor of Philosophy in the Department
of Chemistry; (b) NSF Predoctoral Fellow, 1962-1865.

troscopy we have found those of the hexafluorosilicate
anion to have many suitable features. No ecrystal-
lographic studies have been reported on this family of
salts other than an early observation? on the external
crystal habit and that the crystals were noticeably di-
chroic.

(2) S. M. Jorgensen, J. Prakt. Chem., 18, 230 (1878).





