Notes 619

RhCl₅(H₂O)²⁻ to Rh(H₂O)₆³⁺ because the increase must cease and be reversed for the entry of chloride into Rh(H₂O)₆³⁺, a very slow process occurring *via* an ion-pair intermediate. The aquation of Rh(H₂O)₅Cl²⁺ must necessarily be very slow indeed to give a formation constant greater than 10³ M^{-1} , as reported in the literature.⁹ This point of view is confirmed by the fact that prolonged boiling of RhCl₃(H₂O)₈ with concentrated HClO₄ is required to expel all coordinated chloride in the preparation¹⁵ of Rh(H₂O)₆³⁺.

The ever-present question of cis-trans isomers of RhCl₄(H₂O)₂⁻⁻ deserves a comment. Kleinberg, *et al.*,⁹ found no evidence for the existence of *cis* and *trans* isomers in their chromatographic studies nor did Gar-

(15) G. H. Ayres and J. S. Forrester, J. Inorg. Nucl. Chem., 8, 365 (1957).

ner, et al.,⁵ in the chloroiridium(III) system. Figure 2 also gives the spectrum of pure $K_2RhCl_5(H_2O)$ in aqueous acid medium of ionic strength 4. There are three distinct isosbestic points at 398, 443, and 493 m μ , respectively. The full spectral change occurring upon aquation of the aquopentachlororhodium(III) exhibited three isosbestic points at 399, 445, and 494 m μ , respectively, for more than 60% of the equilibrium hydrolysis reaction. It is clear that the aquopentachlororhodium(III) anion hydrolyzes to a single product which may be one isomer only or an equilibrium mixture of cis- and trans-diaguotetrachlororhodium-(III). Considering the experimental conditions used by Kleinberg, et al.,⁹ it is more likely that, in fact, they obtained the equilibrium mixture whose spectrum is given here in Figure 2.

Notes

Contribution from the State College of Iowa, Cedar Falls, Iowa 50613

The cis-trans Isomers of Tetrachlorodiaquorhodate(III) Anion^{1a}

By Kenneth L. Bridges^{1b} and James C. Chang

Received October 20, 1966

Although Wolsey, Reynolds, and Kleinberg² had isolated a series of chloroaquorhodium(III) complexes by ion-exchange chromatography, they reported only one tetrachloro species. Robb and Harris³ studied the aquation of hexachlororhodate(III) anion but did not isolate any tetrachloro complex produced by the secondary aquation. Since Fine⁴ had found the cistrans isomers of tetrachlorodiaquoruthenate(III) anion and Garner and co-workers⁵ recently isolated the cistrans isomers of tetrachlorodiaquoiridate(III) anion, both by ion-exchange chromatography, we decided that it should also be possible to obtain the cis-trans isomers of tetrachlorodiaquorhodate(III) anion by ion-exchange chromatography. Furthermore, the aquation of pentachloroaquorhodate(III) anion cannot be studied until the product of this aquation is identified.

Procedure and Results

The tetrachlorodiaquorhodate(III) anion was produced by two methods: the aquation of hexachlororhodate(III) anion and the chloride anation of hexa-

(1) (a) Abstracted in part from the M.A. thesis of K. L. Bridges, State College of Iowa, Cedar Falls, Iowa, July 1966; (b) NSF-AYI participant, 1965-1966.

(2) W. C. Wolsey, C. A. Reynolds, and J. Kleinberg, Inorg. Chem., 2, 463 (1963).

- (3) W. Robb and G. M. Harris, J. Am. Chem. Soc., 87, 4472 (1965).
- (4) D. A. Fine, U. S. Atomic Energy Commission Report UCRL-9050, 1960.
 - (5) C. S. Garner, private communications.

aquorhodium(III) cation. In the aquation method, 5 ml of a 50 mF solution of Na₃RhCl₅·12H₂O in 1 F $HClO_4$ was heated at about 100° for 1.5 min, and the resulting solution, after cooling in ice-water, was chromatographed on a 15-cm NO₃⁻ Dowex AG 1-X8 (100-200 mesh) column at 2°, using a jacketed condensertype column with ice water circulated through the jacket. After eluting the cationic and neutral species completely with $0.001 F HClO_4$, a pink band was eluted next by 0.3 F HNO₃. Only one pink band was eluted by 0.3 F HNO₃, and all fractions of this effluent gave similar visible absorption spectra. The Cl:Rh atom ratio of this complex, designated as complex X, was found to be essentially 4 (3.93-4.12 for seven different samples). Rh was determined spectrophotometrically by the method of Ayres, et al.,⁶ and ligand chloride was determined by the method of Clarke⁷ after decomposing the complex with excess NaOH.⁸ Chromatography of the aquation solution on an HSO_4^- Dowex AG 1-X8 column at 2° gave the same result: one pink complex, which has essentially the same C1: Rh atom ratio (4.01– 4.10 for three different samples) and the same visible absorption spectrum as complex X, was eluted by 0.3 F H_2SO_4 . The visible absorption spectrum of this complex was the same, within experimental error, both in the original effluent and in a solution made 6 F in HC1: $\lambda_{\rm max}$ 492 \pm 2 and 392 \pm 2 m μ (ϵ 101 and 113 M^{-1} cm^{-1}, $\epsilon_{392}/\epsilon_{492}$ = 1.12) and λ_{min} 440 \pm 2 m μ (c 48.3 M^{-1} cm⁻¹).

In the chloride-anation method, about 0.3 g of hexaaquorhodium(III) perchlorate, prepared by the method of Ayres and Forrester,⁹ was boiled in 2 *F* HCl until the color of the solution was changed from yellow to red.

(7) F. E. Clarke, ibid., 22, 553 (1950).

(9) G. H. Ayres and J. S. Forrester, J. Inorg. Nucl. Chem., 3, 365 (1957).

⁽⁶⁾ G. H. Ayres, B. L. Tuffly, and J. S. Forrester, Anal. Chem., 27, 1742 (1955).

⁽⁸⁾ J. C. Chang and C. S. Garner, Inorg. Chem., 4, 209 (1965).

Five ml of the resulting solution was then chromatographed on a 20-cm Cl⁻ Dowex AG 1-X8 column at 2° , after first swirling the solution with *ca*. 15 g of H⁺ Dowex AG 50W-X8 (100-200 mesh) to remove excess cationic species. The elution was again made first with 0.001 F HClO₄ to remove the residual cationic and neutral species and then with 0.3 F HNO₃. The 0.3 FHNO₃ eluted two overlapping pink bands, the lower being of lighter color. The lower band (designated as complex Y) gave a visible absorption spectrum similar to that reported by Wolsey, et al.,² for their tetrachloro species but with higher molar absorptivities: $\lambda_{\rm max}$ 484 \pm 2 and 384 \pm 2 m μ (ϵ 99.6 and 78.2 M^{-1} cm⁻¹, $\epsilon_{384}/\epsilon_{484} = 0.78$) and $\lambda_{min} 429 \pm 2 \ m\mu$ ($\epsilon 38.5$ M^{-1} cm⁻¹).¹⁰ The upper band (designated as complex Z) gave the same visible absorption spectrum, within experimental error, as complex X. The determination of Cl:Rh atom ratio of complexes Y and Z was not possible because excess chloride was present in the solutions; Fine⁴ and Wolsey, et al.,² encountered the same difficulties in their work. Attempts to chromatograph the chloride-anation solution on a NO₈⁻ Dowex AG 1-X8 column were unsuccessful.

Since the chloroaquorhodate(III) anions aquate quite rapidly at room temperature, all solutions being eluted were kept in ice; and all visible absorption spectra were measured at about 5° , using a Beckman DB spectrophotometer.

Discussion

The procedure of Wolsey, *et al.*,² for the production of tetrachlorodiaquorhodate(III) anion was tried but without success. One wide, red band was eluted by 2 *F* HCl, as reported by Wolsey, but the visible absorption spectra of the different fractions of the effluent were not consistent. On the other hand, if the elution was made with more dilute acids, three overlapping bands of yellow and orange colors were eluted by $0.001 \ F$ HClO₄ and two overlapping pink bands were eluted by $0.3 \ F \ HNO_8$. The yellow and orange bands must be neutral and cationic species, and the identification of these species will be reported in a later communication. The two pink bands appeared to be the two isomers of tetrachlorodiaquorhodate(III) anion because of their elution behavior.

It is quite obvious that, from the Cl:Rh atom ratio, complex X is a tetrachlorodiaquorhodate(III) anion. Since its visible absorption spectrum is different from that reported by Wolsey, *et al.*, for their tetrachloro species, complex X and their complex must be the two isomers of tetrachlorodiaquorhodate(III) anion. Furthermore, two complexes were eluted by 0.3 F HNO₈ in the chromatography of chloride-anation solution, and the visible absorption spectrum of one corresponds to the tetrachloro species reported by Wolsey while that of the other corresponds to complex X. The fact that these two complexes were both eluted by 0.3 F HNO₈ further suggests that they have the same charge and similar structure. This elution behavior is similar to the corresponding iridium(III) complexes.⁸ From these considerations, it was concluded that complexes X and Z are the same and are the *cis* isomer, and complex Y is the *trans* isomer of tetrachlorodiaquorhodate(III) anion, the assignment of configuration being made based upon the order of elution from the ion-exchange column.

Acknowledgment.—The authors wish to thank the Bureau of Research of the State College of Iowa for partial support of this research and Miss Mary A. Pothoven for her assistance.

Contribution No. 1428 from the Department of Chemistry, Indiana University, Bloomington, Indiana

High-Resolution Nuclear Magnetic Resonance Spectroscopy of Some Beryllium-Containing Compounds. Beryllium-9 and Fluorine-19 Spectra^{1a}

By John C. Kotz,^{1b} Riley Schaeffer, and Arthur Clouse

Received March 11, 1966

Although the literature contains reports on the ⁹Be wide-line spectra of the solids beryl,^{2a} chrysoberyl,^{2b} and beryllium oxide,³ the nmr signal of the ⁹Be nucleus in solution apparently has not been reported. Therefore, owing to the recent interest in beryllium chemistry and the variety of structural problems encountered,⁴ we have undertaken an investigation of high-resolution ⁹Be nmr spectroscopy in order to determine its suitability for structural studies. This investigation has led also to a brief study of the ¹⁹F spectra of ammonium tetrafluoroberyllate, (NH₄)₂BeF₄, solutions.

Results

⁹Be Spectra.—Spectra of the following compounds were observed: $BeCl_2 \cdot 2[O(C_2H_5)_2]$ in diethyl ether; beryllium acetylacetonate in chloroform; beryllium(8hydroxy)quinaldinate in chloroform; ammonium tetrafluoroberyllate, 1 M, in water; beryllium sulfate, 0.1 M, pH 2.8; beryllium sulfate, 1.1 M, pH 1.8; beryllium sulfate, 1.9 M, pH 1. All of the compounds showed a single resonance line; the width at halfheight of the band was generally 5–10 cps. Within the limits of experimental error (*ca.* 6 cps) no chemical shifts from the basic beryllium acetate standard were observed, except for ammonium tetrafluoroberyllate

⁽¹⁰⁾ Wolsey, et al., reported λ_{max} 488 and 385 m μ (e 72.0 and 54.1 M^{-1} cm⁻¹, $\epsilon_{385}/\epsilon_{488} = 0.75$) and λ_{min} 430 m μ (e 25.0 M^{-1} cm⁻¹) as interpolated from the spectrum in ref 2.

 ⁽a) Supported by a Public Health postdoctoral fellowship (to J. C. K.;
 7-F2-CA-21, 198-02) from the National Cancer Institute;
 (b) Department of Chemistry, Kansas State University, Manhattan, Kansas 66502. To whom correspondence should be addressed.

^{(2) (}a) J. Hatton, B. V. Rollin, and E. F. W. Seymour, *Phys. Rev.*, **63**, 672 (1951);
(b) N. A. Schuster and G. A. Pake, *ibid.*, **81**, 886 (1951).
(3) J. F. Hon, *ibid.*, **124**, 1368 (1961).

⁽⁴⁾ D. A. Everest, "The Chemistry of Beryllium," Elsevier Publishing Co., New York, N. Y., 1964.