

Figure 1.—¹¹B nmr spectra (32.1 Mc) of (A) $Rb_2(2-BrB_{10}-H_{12}CN)$, (B) 1,2,3,4- $D_4B_{10}H_8[S(C_2H_5)_2]_2$, (C) $B_{10}H_{12}(C_2H_5NC)_2$, and (D) 5,6,7,8,9,10,bridge- $D_8B_{10}H_4[S(C_2H_5)_2]_2$ (partially deuterated).

 $B_{10}H_{12}(ligand)_2$ compounds (see Table I) indicates that the variance of the 2,4 (4.5 ppm), 5,7,8,10 (4.1 ppm), and 1,3 (6 ppm) positions is far less than that observed for the 6,9 (14 ppm) positions. All other factors being equal, the 6,9 doublet appears to move to higher field as the base strength of the attached ligand increases. C803.C

Further studies may indicate that these general trends are applicable to all compounds of the 2632, $B_{10}H_{14}^{2-}$ type.

Acknowledgments.—The authors wish to thank Dr. Donald F. Gaines, University of Wisconsin, for the 32-Mc¹¹B nmr and the National Science Foundation for support under Grant GP-4982.

Contribution from the Division of Mineral Chemistry, CSIRO, Melbourne, Australia

Calcium Indate, an Isotype of Calcium Ferrite and Sodium Scandium Titanate

By A. F. Reid

Received August 16, 1966

The calcium ferrite structure type,^{1,2} characterized by an orthorhombic unit cell and a short (3 A) *b* axis, has been established for a number of AB₂O₄ compounds including SrFe₂O₄,¹ CaV₂O₄,² β -CaCr₂O₄,² Eu₃O₄,³ Ca-Sc₂O₄,⁴ and MgSc₂O₄,⁵ and powder patterns also indicate isomorphism for a series of compounds where atom A is Ba or Sr and atom B is a rare earth.^{6–8}

The calcium ferrite structure is built up of double blocks of edge-shared octahedra, extending infinitely in the *b*-axis direction, with each double string joined by octahedral corners to other double strings in such a way as to produce tunnels large enough to accommodate the calcium atoms. An alternative arrangement of double blocks is found in the calcium titanate (Ca-Ti₂O₄) structure⁹⁻¹¹ which has similar tunnels but a different edge-sharing arrangement fitted within an orthorhombic unit cell with axes very similar to those of CaFe₂O₄.

In the course of our work on the reasons for variations in double-block arrangements we have reexamined calcium indate, $CaIn_2O_4$, variously reported to have space group either $Pca2_1$ or $Pbcm^{12}$ or, on the basis of powder pattern and density, to be of calcium ferrite type.⁶ Structure factor calculations show it in fact to be of calcium ferrite structure type, space group Pnma, isomorphous with calcium scandate⁴ and with sodium scandium titanate.¹³

(1) P. M. Hill, H. S. Peiser, and J. R. Rait, Acta Cryst., 9, 981 (1956).

(2) E. F. Bertaut, P. Blum, and G. Magnano, Bull. Soc. Franc. Mineral. Crist., 129, 536 (1956).

(3) R. C. Rau, Acta Cryst., 20, 716 (1966).

(4) H. Müller-Buschbaum and H. G. Schnering, Z. Anorg. Allgem. Chem. 336, 259 (1965).

- (5) H. Müller-Buschbaum, *ibid.*, **343**, 113 (1966).
- (6) H. Schwarz and D. Bommert, Z. Naturforsch., 19b, 995 (1964);
- (7) H. D. Bhargava, L. M. Kovba, L. I. Martynenko, and V. I. Spitzyn,
- Dokl. Akad. Nauk SSSR, 153, 1318 (1963).
 (8) W. Barnighausen and G. Brauer, Acta Cryst., 15, 1059 (1962).

(9) E. F. Bertaut and P. Blum, *ibid.*, 9, 121 (1956).

(10) N. F. H. Bright, J. F. Rowland, and J. B. Wurm, Can. J. Chem., 36, 492 (1958).

(11) Struct. Rept., 271, 290 (1956).

(12) F. R. Cruickshank, D. M. Taylor, and F. P. Glasser, J. Inorg. Nucl. Chem., 26, 937 (1964).

(13) A. F. Reid, A. D. Wadsley, and M. J. Sienko, to be published.

13 Beech

Experimental Section

CaIn₂O₄ was prepared^{6,12} by heating stoichiometric amounts of 99.99% In₂O₈ with Analytical reagent grade CaCO₃, first at 1000°, then at 1200° for 15 hr, and after further grinding, at 1200° for a further period of 15 hr to ensure good crystallization for diffraction intensity measurements. After the initial weight loss due to CaCO₃ decomposition, further weight loss was less than 0.2%, and it has been shown¹² that, from 45 to 55 mole % of CaO, CaIn₂O₄ is the only CaO–In₂O₃ compound formed at temperatures up to 1300°. The calculated density for 4 formula units per unit cell is 6.34 g cm⁻³, and a value of d^{22}_4 6.30 g cm⁻³ has been found.⁶ CaFe₂O₄ and CaSc₂O₄ samples were similarly prepared at 1300°.

Powder diffraction data were obtained with a Philips diffractometer, using Ni-filtered Cu K α radiation and a Geiger counter detector, scans being made at $0.125^{\circ}/\text{min}$. Intensities were determined by measurement of diffraction peak areas. Lattice parameters were determined by inclusion of silicon powder ($a_0 = 5.4307 \text{ A}$) as an internal standard in a separate sample.

After preliminary indexing, least-squares lattice parameter and index selection programs were employed to determine final lattice parameters and indices. All observed peaks could be indexed, with a standard deviation between $\sin^2 \theta_{obsd}$ and $\sin^2 \theta_{ocaled}$ of 9.7 $\times 10^{-6}$. Structure factors were calculated employing CaSc₄Q₄ fractional atomic coordinates⁴ and the averages of the individual anisotropic temperature factors found for NaScTiO₄¹³ as individual isotropic temperature factors.

Results and Discussion

The observed and calculated intensities are shown in Table I. The intensity discrepancy factor, $R_{I_0} =$ $\Sigma |I_{\rm o}| - |I_{\rm c}| / \Sigma I_0$, was 14.3% and for 30 noncoincident reflections (omitting the very weak reflection 008) the structure factor discrepancy was 8.8%. Alterations from the CaSc₂O₄ fractional coordinates⁴ of more than 0.005 for metals or 0.008 for oxygens sharply increased these discrepancies, and it is evident that Ca-In₂O₄ and CaSe₂O₄ are strictly isomorphous. NaScTiO₄ was found¹³ to have metal atom positions within 0.002 and, except for O(2), oxygen atom positions within 0.008 of those for $CaSc_2O_4$. Lattice parameters for several $CaFe_2O_4$ isotypes are given in Table II. Those for $CaFe_2O_4^1$ and $CaSe_2O_4^{4,14}$ were redetermined in the present work using the same procedures as for $CaIn_2O_4$. The a_0 value is somewhat different from that of Schwarz and Bommert, ⁶ although b_0 and c_0 values agree closely with theirs. In view of the consistency of the results in Table I, the present value is preferred.

The unit cell volume of $CaIn_2O_4$ is significantly greater than that of $CaSc_2O_4$, and the 0.075 A increase in the *b* axis is the actual increase in the In-to-In separation in the configuration

Bond length calculations based on the present lattice parameters show the average indium-oxygen distance to be 0.04 Å greater than that for scandium-oxygen, Table III, rather than equal to it as indicated in ionic radii tabulations.¹⁵

Cruickshank, Taylor, and Glasser¹² in reporting

TABLE I POWDER DIFFRACTION DATA FOR Calli-O4^a

											114 0 4		
h	k	l	$d_{\rm obsd}$	d_{caled}	$I_{\rm obsd}$	Icaled	h	k	l	$d_{\rm obsd}$	$d_{\mathbf{c}\mathrm{a}\mathbf{l}\mathrm{c}\mathrm{d}}$	$I_{\rm obsd}$	Icaled
υ	0	2	5.647	5.645	17	20	1	1	б	1.602	1.601	93	77
1	0	2	4.870	4.872	115	155	4	1	4}	1.592	1.592	108	105
2	0	D	4.823	4.821	132	211	2	•	4,				
2	0	2	3.669	3.666	20	24	2	2	2	1.50/	1.50/	91	20
0	0	4	2.825	2.823	170	186	-	1	5	1.539	1.539	35	ن د د
3	0	2	2.793	2.793	376	391	2	ź	ő}	7.524	1.524	22	21
1	1	2	2.684	2.682	390	405	0	٥	8	1.4114	1.4114	7	33
2	1	0	2.674	2.674	175	178	ç	2	4)	1.3963	1.3964	9 0	77
0	1	3}	2.439	2.444	42	36	6	ő	å ∫		1.3965		
2	1	2	2.414	2.417	10	12	3	2	2	1.3926	1.3927	97	76
1		-	2.370	2.369	44	38	4	1	{ }	1.3462	1.3468	27	26
3	1	1	2.228	2.228	16	10	3	0	8	1.2922	1,2923	11	0
4	n	2	2.216	2.217	16	14	1	1	ä 1	1.2805	1.2808	18	20
1	1	4	2.071	2.071	46	/2	6	1	4 I		1.2807		
2	1	۵	1.943	1.941	190	155	2	1	5	1.2480	1.2482	14	12
4	1	0	1.928	1.028	123	119	5	1	6	1.2422	1.2421	15	11
4	•	1	1.800	1 901	20	10	7	1	2	1.2351	1.2352	33	52
0	, ,	6	1.882	1 200	4	12	1	2	٤Ì	1.2122	1.2122	9.1	8
	•		1 8 47	1 0 49	~~~		6	ĩ	51		1.2125		
13	° C	§ }	1.04)	1.847	24	20	58	2 0	² }	1.2058	1.2058	13	18
4	1	٤ì	1.825	1.825	39	39	2	2	6	1.1846	1.1845	5	10
	0	2]					3	2	5	1.1421	1.1422	27	28
2	0	6	1./53	1.753	30	25	4	1	41	1.1392	1.1389	28	13
ر	0	ь -	1.624	1.624	64	54	5	0	8 J		1.1389		
6	0	8}	1.606	1.607	108	94	6	<u>,</u> 2	0	1.1362	1.1361	20	18

^{*a*} Cu K α_1 , λ 1.5405 A; Si internal standard, $a_0 = 5.4037$ A.

TABLE II LATTICE PARAMETERS^a FOR CaFe₂O₄

ISOTVERS SPACE CROUP Prima

1301 IFES, SFACE OROUF I lilla					
Compd	$a \pm 0.004$, A	$b~\pm$ 0.003, A	$c~\pm~0.005,~{\rm A}$	$V \pm 0.1$, A ³	
CaF_2O_4	9.217	3.018	10.702	298.2	
$CaSc_2O_4$	9.460	3.138	11,110	329.8	
$CaIn_2O_4$	9.461	3.213	11,292	349.8	
$NaScTiO_4$	9.277	3.048	10.917	308.7	

^{*a*} Cu radiation, K α_1 1.5405 A; Si internal standard, $a_0 = 5.4307$ A.

 TABLE III

 OCTAHEDRAL METAL^a-OXYGEN DISTANCES IN

 CaIn₂O₄ AND CaSe₂O₄ (± 0.03 A)

 CaIn₂O₄ (± 0.03 A)

$M(1)-O(1)^{b}$	2.18	2.14
M(1)-O(3)	2.13	2.10
$M(1)-O(4)^{b}$	2.19	2.15
M(1)-O(4')	2.06	2.03
$M(2)-O(2)^{b}$	2.18	2.14
M(2)-O(2')	2.19	2.15
$M(2)-O(3)^{b}$	2.09	2.05
M(2)-O(1)	2 , 22	2.18

 a M(1) and M(2) are the two different crystallographic sites occupied by In or Sc. b These distances occur twice.

CaIn₂O₄ not to be of calcium ferrite structure type based their indexing on a single crystal obtained from a calcium indate–lithium fluoride mixture. However, their powder data, allowing for the absence of an internal standard, are consistent with the present data in Table I. It is possible that for their single crystal a charge compensation substitution of F for O and Li for Ca, even in small amount, could have altered the internal symmetry of the unit cell and thus the arrangement of double blocks in the structure.

Acknowledgments.—Lattice parameter and structure factor calculations were performed with the Elliott 803 computer of the Division of Mineral Chemistry,

⁽¹⁴⁾ J. R. Carter and R. S. Feigelson, J. Am. Ceram. Soc., 47, 141 (1964).
(15) L. H. Ahrens, Geochim. Cosmochim. Ada, 2, 155 (1952).

and the provision of programs by Dr. J. J. Daly and Dr. P. J. Wheatley of Monsanto Research Laboratories, Zurich, is gratefully acknowledged. The author is indebted to Dr. A. D. Wadsley and to Dr. H. Müller-Buschbaum for helpful discussions.

> Contribution from the Department of Chemistry, University of Maryland, College Park, Maryland 20740

The Rapid Interaction between Sodium Chlorite and Dissolved Chlorine¹

By FRANZPETER EMMENEGGER AND GILBERT GORDON

Received October 10, 1966

The reactions

$$2\text{HClO}_2 + \text{HClO} \longrightarrow 2\text{ClO}_2 + \text{Cl}^- + \text{H}_2\text{O} + \text{H}^+ \quad (1)$$
$$2\text{HClO}_2 + \text{Cl}_2 \longrightarrow 2\text{ClO}_2 + 2\text{Cl}^- + 2\text{H}^+ \quad (2)$$

are interesting not only by themselves but in that they may play a key role in the oxidation reactions of metal ions by chlorine-containing oxidizing agents.^{2–5} Reactions 1 and 2 have been found inevitably to be accompanied by reactions which lead to the formation of ClO_3^- , for example

$$HC1O + HC1O_2 \longrightarrow C1O_3^- + C1^- + 2H^+$$
(3)

We have observed that the lower the concentration of $HClO_2$, the more ClO_3^- that is produced. However, the addition of the product ClO_3^- has little or no influence on the over-all course of reaction 1, 2, or 3.

When HClO₂ is oxidized by dissolved Cl₂, less ClO₃⁻ is formed than when HOCl is the oxidizing agent (*i.e.*, the stoichiometry approaches that given by reaction 2). Reaction 2 is considerably faster than reaction 1.

Kinetic studies on both reactions 1 and 2 which are indeed rapid are complicated by the fact that of all the species involved, only ClO_2 can be conveniently determined. This fact coupled with the concentration dependence of the stoichiometry allows only qualitative observations to be reported at this time. It should be pointed out that these qualitative observations themselves are sufficient to provide verification for the model used to understand the mechanism for the production of chlorate in the uranium(IV)-chlorite^{2a,3} and in the vanadium(II)-chlorite reactions.⁴

Experimental Section

All the chemicals and analytical procedures used for this study have been described elsewhere.^{2b,4} The concentration of dis-

(3) G. Gordon and D. M. H. Kern, "Theory and Structure of Complex Compounds," B. Jezowska-Trzebiatowska, Ed., Pergamon Press, New York, N. Y., 1964, pp 655-660. solved chlorine dioxide was measured spectrophotometrically. The molar absorbance was calculated to be 1240 M^{-1} cm⁻¹ at 360 m μ .⁵ The rate of formation of dissolved chlorine dioxide was followed by means of the rapid mixing apparatus described by Thompson and Gordon.⁶

Three different procedures were used to initiate the reaction between sodium chlorite and the oxidizing agents used (dissolved chlorine or hypochlorite). The first procedure involved the rapid acidification of a slightly basic mixture of sodium chlorite and sodium hypochlorite by the addition of perchloric acid of the appropriate concentration. The second procedure involved the rapid addition of aqueous sodium chlorite to an acidic solution of hypochlorous acid. The third procedure involved the addition of aqueous sodium chlorite to an acidic solution of dissolved chlorine. In all cases, a 2-cm spectrophotometer cell was stoppered with a rubber serum cap, and the reagent was added by means of the rapid mixing syringe which has been shown to have a mixing time of 30 msec.⁸

Results and Discussion

The reaction between sodium chlorite⁷ and hypochlorous acid has been discussed by Taube and Dodgen.⁸ The results of our study of the stoichiometry of reaction 1 and the subsequent formation of chlorate are shown in Table I.

TABLE I					
THE REACTION BETWEEN SODIUM CHLORITE					
AND HYPOCHLOROUS ACID ^a					

104[NaOCl), M	10^{4} [NaClO ₂], <i>M</i>	$10^4 [C10_2]^b$ produced, M
15.0	6.0	$2.5 \pm 0.1^{\circ}$
7.5	3.0	$0.60\pm0.10^{\circ}$,
3.0	3.0	$0.49\pm0.09^{\circ}$
1.5	3.0	$0.42\pm0.08^{\circ}$
1.5	6.0	$2.4 \pm 0.05^{\circ}$
1.5	15.0	$3.8 \pm 0.04^{\circ}$
1.5	30.0	$4.3 \pm 0.04^{\circ}$
	30.0	0.03*
15.0	3.0	0.84 ± 0.03^{d}
7.5	3.0	1.1 ± 0.1^{d}
3.0	3.0	1.4 ± 0.1^{d}
1.5	6.0	2.8 ± 0.1^{d}
1.5	15.0	3.5 ± 0.1^{d}

^{*a*} Final acidity was 0.20 *M* HClO₄. ^{*b*} Each data point is the average of several experiments and the errors are deviations from the mean. ^{*c*} Rapid acidification of basic mixture of sodium chlorite and sodium hypochlorite. ^{*d*} Rapid addition of aqueous sodium chlorite to an acidic solution of hypochlorous acid. ^{*e*} Acidification of sodium chlorite in the absence of other oxidizing agents such as chlorine. Result reported after 20 sec. After 5 min only $1.25 \times 10^{-4} M$ ClO₂ was produced. For additional results of the disproportionation of chlorous acid see the work of Kieffer.⁵

These data show that there is a marked influence on the stoichiometry as the amount of excess oxidizing agent is changed. However, as soon as sodium chlorite is in excess, the production of chlorine dioxide markedly improves. Actually, the theoretical amount predicted by eq 1 is exceeded, which perhaps can be explained by a chlorine or hypochlorous acid catalysis of the disproportionation of sodium chlorite. The difference in yield of chlorine dioxide as the method of mixing is changed suggests that the chlorite-hypochlorite or

⁽¹⁾ This research was supported in part by Grant No. 14-0001-01-405 from the Office of Saline Water.

^{(2) (}a) G. Gordon and F. Feldman, *Inorg. Chem.*, 3, 1728 (1964); (b)
R. C. Thompson and G. Gordon, *ibid.*, 5, 562 (1966).
(3) G. Gordon and D. M. H. Kern, "Theory and Structure of Complex

⁽⁴⁾ G. Gordon and P. H. Tewari, J. Phys. Chem., 70, 200 (1966).

⁽⁵⁾ R. G. Kieffer, Ph.D. Thesis, University of Maryland, 1966.

⁽⁶⁾ R. Thompson and G. Gordon, J. Sci. Instr., 41, 480 (1964).

⁽⁷⁾ No attempt will be made to differentiate between CIO_2^- and $HCIO_2$, although, under the conditions of experiments reported here, the predominant species is $HCIO_2$.

⁽⁸⁾ H. Taube and H. Dodgen, J. Am. Chem. Soc., 71, 3330 (1949).