under the *trans* effect of the amine group in $[Pt(dien)-X]^+$, and it would be desirable to see to what extent this behavior is changed when a strong *trans*-effect ligand is present.

Acknowledgment.—This work was supported by the Italian Consiglio Nazionale delle Ricerche (CNR, Rome). We wish to thank professor M. L. Tobe for reading the final manuscript.

Contribution from the Departments of Chemistry, University of South Carolina, Columbia, South Carolina 29208, and Northwestern University, Evanston, Illinois 60201

Crystal Structure of *cis*-Pt[P(CH₃)₃]₂Cl₂

By G. G. MESSMER,¹ E. L. AMMA,² AND JAMES A. IBERS

Received October 3, 1966

The crystal structure of cis-Pt[P(CH₃)₈]₂Cl₂ has been determined from counter data by three-dimensional single-crystal X-ray diffraction techniques. Unit cell constants are: $a = 16.67 \pm 0.02$ A, $b = 11.93 \pm 0.02$ A, $c = 6.33 \pm 0.01$ A, $\beta = 91^{\circ} 25' \pm 15'$. The space group is B2₁. The structure is made up of discrete molecular units with ordinary van der Waals separations. The asymmetric unit is one molecule with Pt–P distances of 2.256 and 2.239 A (both ± 0.008 A) and Pt–Cl distances of 2.364 and 2.388 A (both ± 0.008 A). The molecule is twisted toward a tetrahedral configuration with nearest neighbors of platinum displaced about 0.1 A out of the best least-squares plane defined by the platinum and its four nearest neighbors. These bond lengths are to be compared with Pt–P distances of 2.298 ± 0.018 and 2.315 ± 0.004 A and Pt–X distances of 2.294 ± 0.009 and 2.428 ± 0.002 A observed in *trans*-Pt[P(C₂H₅)₃]₂Cl₂ and *trans*-Pt[P(C₂H₅)₃]₂Br₂, respectively.

Introduction

We have completed crystal structure determinations of *trans*-Pt[P(C₂H₅)₃]₂X₂, X = Cl and Br, and found substantially shorter Pt–P bond lengths than would be predicted from a sum of covalent radii.^{3,4} However, the Pt–X bonds were found to be normal single bonds, equal to the sum of the single-bond covalent radii. Hence, Pt–X (X = Cl, Br) and Pt–P distances have been carefully determined in the X–Pt–X and P–Pt–P atomic arrangements. To substantiate the thermodynamic results of Chatt and Wilkens⁵ in terms of bond lengths, we undertook to solve the crystal structure of *cis*-Pt[P(CH₃)₃]₂Cl₂.

Experimental Section

Crystals of *cis*-Pt[P(C₂H₅)₃]₂Cl₂ and *cis*-Pt[P(CH₃)₃]₂Cl₂ were kindly provided to us by Professor J. Chatt. *cis*-Pt[P(C₂H₃)₃]₂-Cl₂ was found to have a large triclinic cell, and this structure determination was abandoned. Crystals of *cis*-Pt[P(CH₃)₃]₂-Cl₂ were found to be monoclinic with unit cell constants from calibrated precession photographs: $a = 16.67 \pm 0.02$ A, b =11.93 ± 0.02 A, $c = 6.33 \pm 0.01$ A, and $\beta = 91^{\circ} 25' \pm 15'$ (Mo K α , $\lambda 0.7107$ A). The systematic extinctions observed were: for *hkl*, h + l = 2n + 1; for 0*k*0, k = 2n + 1. The possible space groups with these extinctions are B2₁ or B2₁/m. With a reorientation of the *a* and *c* axes, these would correspond to the more common P2₁ or P2₁/m.⁶ The structure analysis established the correct space group as B2₁ or P2₁ (*vide infra*). We retained the use of the B-centered cell for the structure

(6) "International Tables for X-ray Crystallography," Vol. I, The Kynoch Press, Birmingham, England, 1952, pp 79, 93. analysis because the crystals were most easily aligned about the c axis of the B-centered cell. All our intensity data were collected with this axis vertical on the diffractometer, and this orientation facilitated comparison with our previous photographic structure determination.⁷ Further, the β angle for the B-centered cell is approximately 90°. With four molecular entities in the B-centered cell, the calculated density was found to be 2.16 g cm⁻³ compared with the observed of 2.18 g cm⁻² obtained by flotation in carbon tetrachloride–bromoform mixtures. (This corresponds to two molecules in the primitive cell.)

A single crystal, $0.20 \times 0.15 \times 0.15$ mm, mounted on a GE single-crystal orienter with a Picker diffractometer using Zrfiltered Mo K α radiation was used to measure 2433 independent *hkl* intensity data by a scanning technique at room temperature. Background was estimated by stationary counting at $\pm 0.8^{\circ} 2\theta$ from the peak maxima for 10 sec. The peak was then scanned for 40 sec with a 2θ scan. The integrated intensity was obtained by subtracting the background scaled to 20 sec from the 2θ scan. The value of the linear absorption coefficient (μ) for Mo K α radiation is 132 cm⁻¹. No corrections were made for absorption and, consequently, no detailed physical interpretation should be made of the anisotropic temperature factors. Recently Srivastava and Lingafelter⁸ have shown that absorption effects with $\mu = 191$ cm⁻¹ do not appreciably affect atomic coordinates; hence, we feel our estimates of error in atomic coordinates are realistic. Corrections were made for anomalous dispersion (see below).

Structure Determination

In space group B2₁ with four molecules per unit cell, all atoms would be in the general positions: $(0, 0, 0; \frac{1}{2}, 0, \frac{1}{2}) + (x, y, z; \bar{x}, \frac{1}{2} + y, \bar{z})$. In space group B2₁/m: (a) the Pt, 2P, 2Cl, and one of the three carbon atoms on each phosphorus could lie in the mirror plane at $y = \frac{1}{4}$: $(0, 0, 0; \frac{1}{2}, 0, \frac{1}{2}) + (x, \frac{1}{4}, z; \bar{x}, \frac{3}{4}, \bar{z})$ and the remaining carbon atoms in the general positions $(0, 0, 0; \frac{1}{2}, 0, \frac{1}{2}) + (x, y, z; \bar{x}, \bar{y}, \bar{z}; x, \frac{1}{2} - y, z; \bar{x}, \frac{1}{2} + y, \bar{z})$; (b) the Pt could lie in the mirror

⁽¹⁾ In partial fulfillment for the Ph.D. requirements, University of Fittsburgh.

⁽²⁾ Address all correspondence to this author: Department of Chemistry, University of South Carolina, Columbia, S. C. 29208

⁽³⁾ G. G. Messmer and E. L. Amma, Inorg. Chem., 5, 1775 (1966).

⁽⁴⁾ For a more complete introduction and references, see preceding paper. $^{\delta}$

⁽⁵⁾ J. Chatt and R. G. Wilkens, J. Chem. Soc., 273, 4300 (1952); 70 (1953); 525 (1956).

⁽⁷⁾ P. D. Carfagna and E. L. Amma, unpublished results.
(8) R. C. Srivastava and E. C. Lingafelter, Acta Cryst., 20, 918 (1966).

 383
 460
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 < WN CONTRESS OF A

Table I

Observed and Calculated Structure Factors" $% \mathcal{A}^{\alpha}$

 $\begin{array}{c} 1 & 36 & 19 \\ -3 & 55 & 549 \\ -3 & 55 & 549 \\ -7 & 7 & 237 & 446 \\ -111 & 23 & 137 \\ -14 & 137 & 447 & 548 \\ -111 & 23 & 137 & 147 & 448 \\ -14 & 123 & 137 & 148 \\ -15 & 452 & 459 \\ -114 & 176 & 148 & 548 \\ -15 & 448 & 548 & 459 \\ -114 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 161 & 1619 & 548 \\ -16 & 1619 & 1618 & 1618 \\ -16 & 1618 & 1618 & 1618 \\ -$ -a 152 149 -a 46 51 10 38 25 -17 149 -14 65 25 -17 149 38 -18 147 72 57 -18 147 72 57 -18 28 41 -18 28 41 -18 28 41 -18 28 41 -18 28 41 -18 28 41 -18 28 41 -19 88 98 -2 19 78 66 -2 19 78 68 -2 19 58 147 -4 68 58 68 -2 2 19 58 147 -2 19 58 68 -10 19 78 -11 58 68 -10 19 78 -11 58 68 -10 19 78 $\begin{array}{c} -14 & 31 & [2]\\ -14 & 30 & [2]\\ -16 & 33 & 43 \\ -16 & 33 & 43 \\ -2 & 64 & 73 \\ -2 & 73 & 63 \\ -2 & 73 & 51 & 51 \\ -2 & 73 & 51 & 51 \\ -2 & 73 & 51 & 51 \\ -3 & 51 & 51 \\ -3 & 51 & 51 \\ -1 & 55 & 52 \\ -1 & 51 & 51 \\ -1 & 51 \\ -1 &$ 63540612005153492652360260749+547311051567561758118581185504+**686369**63540612005153711467710864526271985609335557**5**710836987644122**64**,74**696** 0803673773840 8998865949878997 287686549037 638850097444454444544445441115 1004764486414154993175465593212778374833504231697264244454444541115 344444 8254676534 77353664443 7554654231 65355 54444 ' 333841 4313 -57799115577741435577993355784143558779111558417375779011556521444 910478398863848549931855765381868899755140150782644414522494614632455765384869544557340150782644414522

^a Far left column contains h followed by F_0 then F_0 . $F_0 = 10 F$ (Calcd). F(Calcd) on absolute scale. Reflections of zero observed intensity are not listed and were not included in refinement.

plane and the other atoms in the general positions; (c) all other special positions in this space group are centers of symmetry, and the asymmetric *cis* molecule could not be placed at a center of symmetry. The occurrence of a number of substantial peaks in the three-dimensional Patterson at $y \neq 0$, 1/2 rules out possibility (a) in B2₁/m. The existence of a large peak at y = 0 that can be most readily assigned to a Pt-Cl(P) interaction in the Patterson rules out possibility (b) of B2₁/m, and therefore the correct space group is B2₁. The structure was solved and refined on this basis.

The Pt, P, and Cl atoms were located from the threedimensional Patterson vector maps. The carbon atoms were located from three-dimensional electron density and difference electron density maps.⁹ The structure was refined by full-matrix least squares including anisotropic temperature factors: (a) without dispersion corrections, (b) with only the real part of the dispersion correction, and (c) with real and imaginary dispersion corrections.¹⁰⁻¹⁸ The function minimized was $\Sigma w \cdot$ $(F_o - F_o)^2$. The observations were weighted on counting statistics and a 4% intensity factor.¹⁴ Atomic co-(9) Fourier programs are due to Sly, Shoemaker, and van den Hende for the ordinate shifts for the final least-squares cycle were less than 4 \times 10 $^{-5}$ of a cell edge for Pt, P, and Cl and less than 4×10^{-4} for carbon. The final disagreement index R^{15} and the weighted R for refinements a-c were found to be: 0.100, 0.120; 0.101, 0.120; and 0.097, 0.115, respectively. A final difference map appeared qualitatively clean and showed no unusual features. Final calculated and observed structure factors from the refinement, including dispersion corrections, are listed in Table I. Table II contains atomic parameters and errors, and Table III shows interatomic distances, angles, and errors,¹⁶ as well as the best least-squares plane through Pt, P, and Cl.¹⁷ We are disappointed that the disagreement index is not lower, but some improvement could be obtained by neglecting a number of reflections that are obviously in error due to extinction. This relatively high disagreement index may also reflect the neglect of absorption corrections.

It is readily shown that in an acentric space group where the effects of anomalous dispersion are important Friedel's law fails. In particular, in P2₁ (B2₁) $F^2(hkl)$ is no longer equal to $F^2(h\bar{k}l)$ and it is necessary to test both possibilities if a complete data set is not available. The test is equivalent to refining two structures: structure 1 has the coordinates as given in Table II; structure 2 has essentially the same x and z coordinates but with the y reversed in sign. We carried out both calculations and have rejected structure 2 on the following grounds: (A) The structure obtained does not make chemical sense in that two distinctly different Pt-P and Pt-Cl distances result (Pt-P, 2.201 ± 0.008 , $2.244 \pm 0.005 \text{ A}$; Pt-Cl, 2.370 ± 0.007 , 2.423 ± 0.008 A). This arises from a shift of the Pt atom relative to the X-ray source. Templeton, Zalkin, and Ueki¹⁸ have recently noted this effect in their study of thorium nitrate pentahydrate. (B) Structure 2 refines to a weighted R factor of 0.121. If this is tested using Hamilton's¹⁹ R-factor test as a hypothesis of one degree of freedom, then structure 2 can be rejected at the 0.5% confidence level.

Results and Discussion

The crystal structure of cis-Pt[P(CH₃)₃]₂Cl₂ is made up of discrete molecular units separated by ordinary van der Waals distances (Figures 1 and 2). The average Pt–P distance of 2.247 A (2.256 ± 0.008, 2.239 ± 0.006 A) is significantly different from the 2.135 ± 0.004 and 2.300 ± 0.019 A Pt–P distances observed in *trans*-Pt[P(C₂H₅)₃]₂Br₂ and *trans*-Pt[P(C₂H₅)₃]₂Cl₂, respectively. However, a Pt–P distance of 2.267 ± 0.008 A has been observed in *trans*-Pt[P(C₄H₅)₂C₂H₅]₂HCl by Eisenberg and Ibers.²⁰ These numbers indicate that Pt–P distances may be as sensitive to substituents on the phosphorus as they are to *trans* substituents on the metal

- (19) W. C. Hamilton, *ibid.*, **18**, 502 (1965).
- (20) R. Eisenberg and J. A. Ibers, Inorg. Chem., 4, 773 (1965).

 ⁽⁹⁾ Fourier programs are due to Siy, Snoemaker, and van den Hende for the IBM 7090.
 (10) Least-squares refinement performed with ORFLS of W. Busing.

⁽¹⁰⁾ Least-squares refinement performed with ORFLS of W. Busing, K. O. Martin, and H. Levy as modified by Ibers for inclusion of anomalous dispersion. We are grateful to Professor L. Dahl and the University of Wisconsin for the CDC 1604 time to perform some of these calculations.

⁽¹¹⁾ Anomalous dispersion corrections made to F, as suggested by: J. A. Ibers and W. C. Hamilton, Acta Cryst., 17, 781 (1964).

^{(12) (}a) Scattering factors for neutral Cl, P, and C from: J. A. Ibers, "International Tables for X-Ray Crystallography," Vol. III, The Kynoch Press, Birmingham, England, 1962, p 202; (b) scattering factor for neutral Pt from: D. T. Cromer and J. T. Waber, *Acta Cryst.*, **18**, 104 (1965).

⁽¹³⁾ Real and imaginary dispersion corrections applied to Pt, P, and Cl from: D. T. Cromer, *ibid.*, **18**, 17 (1965).

⁽¹⁴⁾ S. W. Peterson and H. A. Levy, *ibid.*, **10**, 70 (1957).

⁽¹⁵⁾ $R = \Sigma ||F_0| - |F_0|| / \Sigma |F_0|$. Weighted $R = [\Sigma w (F_0 - F_0)^2]^{1/2} / [\Sigma w F_0^2]^{1/2}$.

⁽¹⁶⁾ Distances, angles, and errors were calculated with W. Busing, K. O. Martin, and H. A. Levy, ORFFE.

⁽¹⁷⁾ W. C. Hamilton, Acta Cryst., 14, 185 (1961).

⁽¹⁸⁾ T. Ueki, A. Zalkin, and D. H. Templeton, *ibid.*, 20, 836 (1966).

			TABLE II				
Atom Positional and Temperature Parameters and Errors; $\sigma' = \sigma imes 10^5$							
Atom	x/a	$\sigma'(x/u)$	y/b	$\sigma'(y/b)$	z/c	$\sigma'(z/c)$	
1ºt	0.4066	4	-0.5000	· · · ^b	0.7008	12	
Cl_1	0.5351	43	-0.5359	68	0.8523	153	
\mathbf{P}_1	0.4521	39	-0.3451	65	0.5378	125	
Cl_2	0.3578	55	-0.6533	77	0.9034	146	
\mathbf{P}_2	0.2825	27	-0.4950	102	0.5574	93	
C1	0.5556	224	-0.3032	353	0.5875	746	
C_2	0.4514	209	-0.3507	344	0,2500	5 28	
C ₃	0.3961	249	-0.2194	238	0.6115	679	
C_4	0.2543	180	-0.4076	275	0.3343	583	
C_5	0.2039	106	-0.4606	221	0.7485	424	
C_6	0.2557	71	-0.6306	177	0.4334	627	

Thermal Parameters and Standard Deviations; Anisotropic Temperature Factors of the Form

			$\exp[-(\beta_{11})]$	$h^{2} + \beta_{22}$	$k^2 + \beta_{33}l^2 +$	– $2\beta_{12}hk$ -	$+ 2\beta_{13}hl + 2\beta_{5}$	23 <i>kl)</i>]; σ	$\sigma = \sigma \times 10^{5}$			
Atom	β_{11}	σ'	β_{22}	σ'	$oldsymbol{eta}_{33}$	σ'	β_{12}	σ'	β_{13}	σ'	B 23	σ'
Pt	0.0021	2	0.0040	5	0.0152	20	0.0006	4	0.0001	4	-0.0010	16
Cl_1	0.0027	21	0.0067	49	0.0321	257	0.0010	26	-0.0031	62	-0.0012	87
\mathbf{P}_1	0.0022	19	0.0052	45	0.0217	202	-0.0006	24	0.0014	47	-0.0011	77
$C1_2$	0.0049	35	0.0064	55	0.0275	247	0.0002	36	0.0019	73	0.0054	97
P_2	0.0018	12	0.0040	31	0.0193	145	0.0004	35	-0.0008	32	-0.0034	129
C_1	0.0038	142	0.0077	280	0.0478	1556	-0.0017	167	-0.0050	404	0.0055	559
C_2	0.0048	127	0.0091	282	0.0166	815	0.0010	160	0.0042	254	0.0031	393
C_3	0.0073	182	0.0023	147	0.0386	1156	0.0006	131	0.0071	364	-0.0021	339
C ₄	0.0032	97	0.0048	191	0.0354	1125	0.0005	112	-0.0046	276	0.0020	376
C ₅	0.0012	46	0.0065	169	0.0251	709	0.0008	71	0.0040	149	-0.0040	278
C_6	0,0036	95	0.0021	101	0.0510	1229	-0.0012	77	0.0011	268	-0.0027	296

^a With real and imaginary dispersion corrections. ^b Parameter fixed.

TABLE III

INTERATOMIC DISTANCES, ANGLES, AND ERRORS^a FOR *cis*-Pt[P(CH₃)₃]₂Cl₂

		I. Ir	ıtramolecular		
Во	nded, A	No	ubonded, A	Nonb	onded, A
Pt-Cl ₁	2.364 ± 0.008	$P_1 - Cl_1$	3.304 ± 0.012	$C_4 - C_6$	2.73 ± 0.04
$Pt-Cl_2$	2.388 ± 0.009	P_2-Cl_1	3.131 ± 0.013	$C_{\delta} - C_{6}$	2.99 ± 0.04
$Pt-P_1$	2.256 ± 0.008	$P_1 - Cl_2$	4.639 ± 0.013		
$Pt-P_2$	2.239 ± 0.006	P_2-Cl_1	4.593 ± 0.008	$C_1 - Cl_1$	3.27 ± 0.04
		$P_1 - P_2$	3.350 ± 0.011	$C_2 - Cl_1$	4.59 ± 0.03
P_1-C_1	1.818 ± 0.034	$Cl_1 - Cl_2$	3.293 ± 0.013	$C_{6}-Cl_{2}$	3.40 ± 0.04
P_1-C_2	1.822 ± 0.035			$C_5 - Cl_2$	3.56 ± 0.03
$P_1 - C_3$	1.833 ± 0.029	$C_1 - C_2$	2.78 ± 0.05		
P_2-C_4	1.809 ± 0.033	$C_1 - C_3$	2.85 ± 0.06	C_3 - P_2	3.81 ± 0.04
P_2-C_5	1.851 ± 0.019	$C_2 - C_3$	2.94 ± 0.05	C_4-P_1	3.59 ± 0.03
P_2-C_6	1.849 ± 0.024	C_4-C_5	2.84 ± 0.05	C_5-P_1	4.59 ± 0.02
X-Pt-2	X angles, deg——	~Pt-P-	C angles, deg	———С-Р-С :	ingles, deg
P_1 -Pt- P_2	96.2 ± 0.4	$Pt-P_1-C_1$	118.4 ± 1.3	$C_1 - P_1 - C_2$	99.5 ± 2.0
Cl_1 - Pt - Cl_2	87.7 ± 0.3	$Pt-P_1-P_2$	115.7 ± 0.4	$C_1 - P_1 - C_3$	102.5 ± 2.0
Cl_1-Pt-P_1	91.3 ± 0.3	$Pt-P_1-C_3$	112.0 ± 1.1	$C_2 - P_1 - C_3$	107.1 ± 1.9
Cl_2 - Pt - P_2	85.1 ± 0.4	$Pt-P_2-C_4$	123.5 ± 1.1	$C_4 - P_2 - C_5$	102.0 ± 1.5
P_1 -Pt-Cl ₂	174.5 ± 0.3	$Pt-P_2-C_5$	113.7 ± 0.8	$C_4 - P_2 - C_6$	96.8 ± 1.8
P_2 -Pt-Cl ₁	171.1 ± 0.4	$Pt-P_2-C_6$	111.1 ± 1.1	$C_{5}-P_{2}-C_{6}$	107.7 ± 1.3

II. Intermolecular

Shortest Pt–Pt, 6.326 A

All intermolecular distances are equal to or greater than normal van der Waals distances with van der Waals radii of Cl = 1.80 A and $CH_3 = 2.0$ A.

Deviation of Pt, P, and Cl from Best Least-Squares Plane, ^b	aX + bY + cA	Z - d = 0
a = +4.717	Pt, +0.0002	\pm 0.006 A
b = -6.971	Cl_1 , +0.1209	\pm 0.009 A
c = -4.857	$Cl_{2}, -0.1451$	\pm 0.010 A
d = +2.000	P_{2} , $+0.0763$	\pm 0.007 A
	P_{1} , -0.0726	\pm 0.008 A

^{*a*} With real and imaginary dispersion corrections. ^{*b*} Positional standard deviations were used to provide weights for the least-squares plane. X, Y, and Z refer to the monoclinic coordinate system.

Figure 1.—Perspective view of the structure of cis-Pt[P(CH₃)₃]₂Cl₂ looking in the direction of negative c. C₂ is superposed in this view by P₁.

Figure 2.—Perspective view of the structure of cis-Pt[P(CH₃)₃]₂Cl₂ in the direction of positive b. For orientation purposes the "large" molecule approximately in the center in this view corresponds to the molecule approximately in the center of the cell in Figure 1.

atom. A Pt–P "normal" single-bond length²¹ of 2.41 A would be expected from covalent radii. The average Pt–Cl distance of 2.376 A (2.364 \pm 0.008, 2.388 \pm 0.009 A) is significantly longer than the Pt–Cl distance

(21) L. Pauling, "Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960, p 246.

of 2.294 \pm 0.009 A in the *trans* isomer which is a "normal" single Pt-Cl bond. The Pt-Br distance of 2.428 \pm 0.002 A in *trans*-Pt[P(C₂H₅)₃]Br₂ is also a "normal" Pt-X single bond. This 2.376 A distance is to be compared with the Pt-Cl distances of 2.422 \pm 0.009 A observed by Eisenberg and Ibers²⁰ and 2.42 A by Wunderlich and Mellor²² in which the chlorine is *trans* to a strongly *trans* labilizing ligand, hydride and ethylene, respectively. However, Pt–Cl distances of 2.343 ± 0.013 and 2.316 ± 0.008 A were observed in dipentene-platinum(II) chloride.

The Pt, 2P, 2Cl best least-squares plane (Table III) indicates that Pt and its nearest neighbors do not lie in a plane and there exists a nonnegligible distortion toward a tetrahedral geometry. The P₁--Pt-P₂ angle is considerably greater than the ideal value of 90° (96.3 \pm 0.3°). Further, Cl₁ is rather tightly packed to C₁ as is Cl₂ to C₅ and C₆. These facts suggest that the nonplanarity of the Pt, 2P, 2Cl entity is due primarily to steric effects. The general shortening of the Pt-P bond in going from the *trans* to the *cis* isomer is in line with the ideas of Chatt, Duncanson, and Venanzi,²³ as well as Craig, Maccoll, Nyholm, Orgel, and Sutton.²⁴

The average value of 1.830 A for the phosphoruscarbon distances is nearly that predicted from covalent

(24) D. P. Craig, Al Maccoll, R. S. Nyholm, L. E. Orgel, and L. E. Sutton, *ibid.*, 332 (1954).

radii sums (with or without electronegativity corrections).

The C-C nonbonded intramolecular distances are as long or longer than those predicted by Bartel1²⁵ based on a simple steric model assigning a nonbonded radius of 1.25 A to carbon atoms bonded to a common atom.

Although these results indicate a general shortening of Pt–P distances and lengthening of Pt–Cl distances from *trans*-Pt[P(C₂H₅)₃]₂Cl₂ and *trans*-Pt[P(C₂H₅)₃]₂Br₂ consistent with the thermodynamic results of Chatt and Wilkens⁵ and the nuclear spin-coupling results of Pidcock, Richards, and Venanzi,²⁶ we do not feel it profitable in view of the molecular distortions to discuss the relative effects of π -bonding and steric factors to the *trans* effect without considerably more data on Pt–X bonds.

Acknowledgment.—We wish to acknowledge financial support from the National Institutes of Health, Grant No. GM-08344-04 and GM-13985-01.

(26) A. Pidcock, R. E. Richards, and L. M. Venanzi, Proc. Chem. Soc., 184 (1962).

CONTRIBUTION FROM THE NOVES CHEMICAL LABORATORY, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS

Bis(1-phenyl-1,3-butanedionato)palladium(II). Crystal and Molecular Structure of the *trans* Form¹

BY PING-KAY HON, C. E. PFLUGER, AND R. LINN BELFORD

Received October 14, 1966

The crystal structure of bis(1-phenyl-1,3-butanedionato)palladium(II) has been determined by three-dimensional Fourier methods and the atomic coordinates refined by three-dimensional least-squares methods with anisotropic temperature factors. The crystals are monoclinic, space group P2₁/c with 2 molecules per unit cell. The cell dimensions are: a = 9.367 A, b = 10.518 A, c = 9.454 A; $\beta = 108.00^{\circ}$. The structure can also be described with an end-centered unit cell having nearly orthogonal axes and 4 molecules. The molecules pack into layers parallel to the *b* axis. In each molecule the palladium and the four oxygens are exactly coplanar, as required by crystal symmetry, and the axial positions are occupied by two neighboring methyl groups 3.75 A from the palladium. The palladium–oxygen distance is 1.97 A. The carbon–oxygen distances are 1.23 and 1.31 A. The final residue *R* is 0.097 for 1377 reflections.

Introduction

Recently we reported crystal structures of the vanadyl² and copper³ chelates of 1-phenyl-1,3-butanedione (benzoylacetone). Some differences in metaloxygen bond lengths were tentatively explained in terms of the resonant and inductive effects of the phenyl group. To further explore this point, and also to study a known host crystal into which copper benzoylacetonate could be introduced for oriented crystal electron spin resonance studies, we have determined the crystal structure of bis(1-phenyl-1,3-butanedionato)palladium (commonly called palladium benzoylacetonate)

Experimental Section

The compound precipitated from an aqueous solution of palladium chloride in excess mixed with an ethanol solution of 1-phenyl-1,3-butanedione. The straw-yellow precipitate was washed with water and air dried. The powder dissolved readily in chloroform giving an orange-red solution which, when evaporated to dryness, gave orange crystals of rod and diamond shapes. The compound also dissolved moderately in acetone giving a yellow solution from which small yellow needlelike crystals resulted.

⁽²²⁾ J. A. Wunderlich and D. P. Mellor, Acta Cryst., 7, 130 (1954).

⁽²³⁾ J. Chatt, L. A. Duncanson, and L. M. Venanzi, J. Chem. Soc., 4456 (1955).

⁽²⁵⁾ L. S. Bartell, J. Chem. Phys., 32, 827 (1960).

⁽¹⁾ Supported by the U. S. Public Health Service, under Institute of General Medical Sciences Grant GM-10907.

⁽²⁾ P. K. Hon, R. L. Belford, and C. E. Pfluger, J. Chem. Phys., 43, 1323 (1965).

⁽³⁾ P. K. Hon, C. E. Pfluger, and R. L. Belford, Inorg. Chem., 5, 516 (1966).