acterization has generally bccn incomplete, with some workers reporting nonstoichiometric materials. The phosphato and sulfato complexes reported here as formed on dissolution of $[Cr(en)(OH_2)(O_2)_2] \cdot H_2O$ in 5 *F* H_3PO_4 and in 6 *F* H_2SO_4 are evidently true complexes, although we have not been successful in their full characterization.

The nature of the equations by which the products described in this and previous papers are formed is not well understood. In all cases reaction in acid media takes place with reduction from $Cr(IV)$ to $Cr(III)$

together with the evolution of oxygen; it is not known, however, whether this is formed directly or from decomposition of the H_2O_2 or O_2^{2-} . In dilute acid solution, the product of reaction is $Cr(en)(OH₂)₄³⁺$, independent of the anion, and it is possible that the products formed in concentrated acids are formed by anation of this, which would be expected to be a slow process, or of a Cr(IV) species such as $Cr(en)(OH₂)₄⁴⁺$. The reaction is further complicated by the side reactions that occur with oxidation of ligand anions and production of other Cr(II1) complexes.

CONTRIBUTION NO. 2079 FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024

Hydrolysis Kinetics **of** the Blue Isomer **of Dichlorodiaquoethylenediaminechromium(II1)** Cation and **of** the Magenta Isomer of Chlorotriaquoethylenediaminechromium(III) Cation^{1a}

BY D. M. TULLY-SMITH,^{1b} R. K. KURIMOTO, D. A. HOUSE, AND C. S. GARNER

Received March 20. 1967

The aquation of $Cr(en)(OH_2)_2Cl_2^+$ (blue isomer) has been investigated spectrophotometrically and by C1⁻ release in 0.01-3 *F* HClO₄ from 15 to 35°. At 25.00° the aquation rate constant is $k_1 = (3.1 \pm 0.3) \times 10^{-5}$ sec⁻¹ in 0.1-0.01 *F* HClO₄ $(\mu = 0.1 \text{ M}, \text{NaClO}_4); E_a = 25.3 \pm 0.6 \text{ kcal mole}^{-1}$ and $\log PZ = 14.0 \pm 0.4 \text{ (sec}^{-1}).$ The product is the previously unreported complex $Cr(en)(OH_2)_3Cl^{2+}$ (magenta isomer). The rate constant k_2 for hydrolysis of the latter in 1.5 *F* HClO₄ was evaluated from 50 to 70°. At 50.12° $k_2 = (1.11 \pm 0.03) \times 10^{-5}$ sec⁻¹; $E_a = 2.74 \pm 0.2$ kcal mole⁻¹ and log $PZ =$ 13.55 ± 0.10 (sec⁻¹), giving $k_2 = 3 \times 10^{-7}$ sec⁻¹ at 25° by extrapolation. The product is Cr(cn)(OH₂)₄³⁺.

Introduction

Blue dichlorodiaquoethylenediaminechromium(III) chloride, $[Cr(en)(OH₂)₂Cl₂]Cl₂² has been prepared by$ Weinmann³ from oxalatobis(ethylenediamine)chromium(II1) dioxalatoethylenediaminechromate(III). More recently, the blue compound has been synthesized^{4,5} much more simply from diperoxoaquoethylenedi $aminechromium (IV)$ monohydrate, and the purple analogs dichloroaquopropylenediaminechromium(II1) cation, $Cr(pn)(OH₂)₂Cl₂⁺$, and dichloroaquoisobutylenediaminechromium(III) cation, $Cr(\text{ibn})(OH_2)_2Cl_2^+,$ obtained in solution.⁶

We report here the kinetics of hydrolysis of this blue complex (geometric configuration unknown), which we have found to hydrolyze in perchloric acid solution to a previously unreported magenta complex which we have characterized as one of the two theoretically possible geometric isomers of chlorotriaquoethylenediaminechromium(III) cation, $Cr(en)(OH₂)₃Cl²⁺$. An investigation of the hydrolysis of the magenta complex to tetraaquoethylenediaminechromium(II1) cation, Cr- $(en)(OH₂)₄³⁺,$ is also reported.

These complexes are kinetically of interest for comparison well with the well-studied^{$7-13$} dichloro- and chloroaquobis(ethylenediamine)chromium(III) cations, and to examine further the possibility of Cr-N bond breakage in competition with Cr-C1 bond breakage. Such competitive Cr-N bond breakage has been observed with some other chromium (III) chloroamine complexes. 9-12,14, **l5**

Experimental Section

Blue **Dichlorodiaquoethylenediaminechromium(II1)** Chloride. -This compound was prepared in several lots by the methods of

⁽¹⁾ (a) Work partly supported under Contract AT(1l-1)-34, Project So. 12, between the U. S. Atomic Energy Commission and the university. This paper constitutes Report *No.* UCLA-34P12-64 to the A.E.C. (b) National Science Foundation Undergraduate Summer Research Participant, Summer 1966.

⁽²⁾ Abbreviations used: en = ethylenediamine, $pn = propylene$ diamine $= 1,2$ -diaminopropane, ibn = isobutylenediamine = 2-methyl-1,2-diaminopropane.

⁽³⁾ E. Weinmann, Thesis, Zurich, 1919.

⁽⁴⁾ D. **A.** House and C. S. Garner, *Inuig. Siicl. Chem. Leileis,* **1, 137** (1966).

⁽⁸⁾ D. A. House and C. S. Garner, *1izoi.g. Clzein.,* **5,** 8-10 (1066).

⁽⁶⁾ D. A. House, R. G. Hughes, and C. S. Garner, *ibid.*, 6, 1077 (1967).

⁽⁷⁾ J. Selbin and J. C. Bailar, Jr., *J. Am. Chem. Soc.*, **79**, 4285 (1957).

⁽⁸⁾ D. J. MacDonald and C. *S.* Garner, *J. Iizovg. A7uci. Cheni.,* **18,** 21U (1961).

⁽³⁾ C. *S.* Garner and D. J. MacDonald, "Advances in the Chemistry of the Coordination Compounds," *S.* Kirschner, Ed., The Macmillan *Co.,* New York, N.Y., 1961, pp 266-275.

⁽¹⁰⁾ D. J. MacDonald and C. S. Garner, *J. Am. Chenz.* Soc., **83, 4152** (1961).

⁽I I) D. J. MacDonald and C. S. Garner, *Inorg. Chem.,* 1, 20 (1962). (12) D. C. Olson and C. S. Garner, *ibid.*, **2**, 414 (1963).

⁽¹³⁾ V. Holba, M. Dillinger, and C. Skoršepa, *Collection Czech. Chem. Commzzn.,* **SO,** 1331 (1365).

⁽¹⁴⁾ L. P. Quinn and C. *S.* Garner, *Iwrg.* Chein., **3,** 1848 (1964).

⁽¹⁵⁾ J. **M.** Veigel and C. *S.* Garner, *ibid.,* **4,** 1669 (1966).

Weinmann⁸ and of House and Garner,^{4,5} and characterized as described earlier.⁵

Magenta **Chlorotriaquoethylenediaminechromium(II1)** Cation. -This new complex was prepared by dissolving 0.5-0.7 g of blue [Cr(en)(OHz)zClz]Cl in 50-100 ml of 0.01 *F* HClO4 and allowing the complex to hydrolyze in the dark for $ca. 7.5$ hr at 35° or 50 min at 50'. The solution was cooled and charged onto an 8-cm \times 1-cm diameter column of H⁺ Dowex AG50W-X8 cation-exchange resin (100-200 mesh) at 0-2", then 50-100 ml of 0.3 *F* HClO₄ was used to elute unreacted blue Cr(en)(OH₂)₂Cl₂⁺. *Cu.* 100 ml of 1.5 *F* HC104 was then used to elute the magenta Cr- $(en)(OH₂)₃Cl²⁺$, giving a solution usually *ca*. 10 mF in the complex. Center cuts of the 1.5 *F* HClO₄ effluent were used in the kinetic and spectral studies.

Tetraaquoethylenediaminechromium(II1) Cation .-Solutions of this pink complex were prepared and chromatographed as described earlier⁵ to obtain the complete visible absorption spectrum accurately.

Other Chemicals.--- All other chemicals were CP or reagent grade, except the NaC104, which was prepared by dissolution of reagent grade $Na₂CO₃$ in CP HClO₄ and recrystallized twice from water. All water was doubly distilled water which was passed through a mixed-bed cation-anion-exchange resin and monitored for purity by electrical conductivity.

Analytical Methods.--Analyses of solids and certain solutions for Cr, Cl, C, H, and N were made as described earlier.^{6,8}

Kinetic Runs.--Weighed samples of blue $[Cr(en)(OH₂)₂Cl₂]$ Cl were dissolved in the appropriate HClO4-NaClO4 solutions in glass-stoppered volumetric flasks, which were wrapped in A1 foil to exclude light and immersed in baths thermostated at $14.81 \pm$ 0.02, 25.00 \pm 0.10, or 35.00 \pm 0.05° for the primary hydrolysis studies. For the secondary hydrolysis runs, magenta Cr(en)- $(OH₂)₈Cl²⁺ chromatographically isolated with 1.5 *F* HClO₄ was$ allowed to react in glass-stoppered flasks *(ca.* 50% of the runs) or was sealed by torch in Pyrex ampoules, which were wrapped in A1 foil and put in baths thermostated at 50.12 ± 0.05 , 59.92 ± 0.05 0.02, 60.15 \pm 0.02, or 70.10 \pm 0.05°. Zero reaction time was taken as 10-20 min after the reaction solutions were put in the baths.

In the spectrophotometric method, aliquots of reaction solution were removed at known times and the visible absorption spectrum scanned at $20-25^{\circ}$ (for the spectral runs at 15 and 25° the reaction was followed by leaving the cells containing the reaction solution in the thermostated cell compartment of the spectrophotometer). To gain precision in obtaining the locations of isosbestic points, samples were held refrigerated at 0° until all the samples in a given run were taken, at which time the spectral scans were made one after the other after warming to 20-25".

In the titrimetric method, 2.00- or 5.00-ml aliquots of reaction solution removed at known times were quenched by delivery into 23.0 or 20.0 ml, respectively, of 0° water, then 75.0 ml of acetone-detergent solution (1 gal of CP acetone, 50 ml of Tergitol NPX Nonionic detergent, and 25 ml of concentrated $HNO₃$) at 0° were added, and the free Cl⁻ was determined by potentiometric titration with AgNO₈ at 0° .⁸ Chloride blanks were determined on control solutions containing everything except the complex and subtracted from the reaction sample titration volumes. Tests showed that the presence of the Cr(II1) complexes did not interfere with the determination of free Cl⁻. In the Cr(en)(OH₂)₃Cl²⁺ hydrolysis runs, the Cl⁻ titrations were made on solutions the spectra of which were taken first.

Spectrophotometry.-All spectra were recorded in 10.00-cm matched silica cells with Cary Model 11 or Model 15 spectrophotometers, with identical solutions except for the complex in the reference cell.

Results

Aquation of Blue $Cr(en)(OH₂)₂Cl₂ + ...$ Table I presents the rate constants k_1 defined by the equation

$$
-d(Cr(en)(OH_2)_2Cl_2^+)/dt = k_1(Cr(en)(OH_2)_2Cl_2^+)
$$
 (1)

TABLE I FIRST-ORDER RATE CONSTANTS FOR AQUATION OF BLUE $Cr(en)(OH₂)₂Cl₂⁺$ IN AQUEOUS HClO₄ IN THE DARK

	Temp,	HC104,			
$\mathrm{Method}^{\bm{a}}$	۰c	\boldsymbol{F}	C_0 , m F	μ , M^b	$10^{5}k_1$, sec ⁻¹⁰
$C1$ ⁻	35.00	1.5	0.99	1.5	13.8 ± 0.4
$C1$ ⁻	35.00	1.5	0.85	1.5	13.9 ± 0.4
Cl^-	35.00	0.10	0.53	0.10	12.7 ± 0.4
Cl^-	25.00	3.0	1.4	3.0	4.35 ± 0.12
Spectro	25.00	3.0	2.9	3.0	±1.0 3.0
Spectro	25.00	3.0	2.5	3.0	±0.9 4.3
Spectro	25.00	1.0	2.6	3.0	$\pm 0.9^d$ 4.0
Cl^-	25.00	1.0	1.2	3.0	3.78 ± 0.19
$C1 -$	25.00	0.10	1.8	3.0	3.53 ± 0.10
Cl^-	25.00	0.10	1.5	3.0	3.21 ± 0.32
Spectro	25.00	0.10	2.2	3.0	$\pm 0.7^e$ 3.3
Spectro	25.00	0.10	3.0	3.0	3.5 ± 0.7
Spectro	25.00	0.10	2.6	0.10	2.8 $\pm 0.6^{\prime}$
Spectro	25.00	0.10	2.3	0.10	3.1 ±0.8
Spectro	25.00	0.10	2.5	0.10	3.1 ± 0.6
Spectro	25.00	0.10	3.0	0.10	± 0.6 3.0
Spectro	25.00	0.10	3.1	0.10	± 0.6 2.9
Spectro	25.00	0.10	2.6	0.10	3.1 ± 0.6
Spectro	25.00	0.10	3.3	0.10	3.2 ± 0.6
Cl^-	25.00	0.10	1.3	0.10	3.13 ± 0.10
Cl^-	25.00	0.10	1.7	0.10	3.00 ± 0.10
Cl^-	25.00	0.010	1.3	0.10	3.40 ± 0.34
Spectro	25.00	0.010	2.7	0.10	2.7 ± 0.6
Spectro	25.00	0.010	3.0	0.10	3.0 ± 0.6
Cl^-	14.81	0.10	0.52	0.10	0.729 ± 0.025
$Cl-$	14.81	0.10	0.46	0.10	0.741 ± 0.074
Spectro	14.81	0.10	3.2	0.10	0.73 ± 0.15^d

 a C1⁻ = titration of released C1⁻; spectro = spectrophotometric analysis at 580 mµ, except as noted otherwise. ^b Ionic strength, controlled with NaClO₄. \circ Errors are standard deviations estimated from uncertainties in A_{∞} . Φ Same value also obtained from 400 -m μ data. $\;\;$ $\;\;$ Value from 400 -m μ data 15% larger. *1* 585-mp data.

for the disappearance of blue $Cr(en)(OH₂)₂Cl₂$ ⁺ in HC104-NaC104 solutions of various acidities and ionic strengths at 35, 25, and 15°. In the spectrophotometric method *kl* was evaluated for each kinetic run by the relation

2.303 log [(A₀ - A_∞)/(A - A_∞)] =
$$
k_1t
$$
 (2)

where A_0 , A , and A_∞ are the optical absorbancies (at **a** given wavelength) at reaction time zero, at time *t,* and at 100% aquation of one chloro ligand, respectively; A_{∞} was obtained by letting the reaction solution age for 4.3-8 half-lives, since the secondary hydrolysis is negligible under those conditions.¹⁶ Rate plots based on eq 2 gave good linearity to $50-75\%$ reaction (except for three runs linear to only $35-40\%$ reaction). In the Cl^- release method k_1 was determined with the relation

2.303 log [(V_∞ - V₀)/(V_∞ - V)] =
$$
k_1t
$$
 (3)

where V_0 , V , and V_∞ are the volumes of AgNO₃ titrant for a standard aliquot at reaction time zero, at time *t,* and for complete release of one chloro ligand, respectively. Plots of eq 3 were linear to 50-85% reaction.

Characterization of Magenta $Cr(en)(OH₂)₃Cl²⁺$.

(16) The use of A_{∞} values calculated from the spectrum of magenta Cr-(en) $(OH_2)_3Cl^2$ ⁺ gave k_1 values *ca.* $5-15\%$ different from the Table I values and with less linear first-order rate plots, probably due to spectrophotometer errors and slight errors in molar absorbancy indices.

-The new complex $Cr(en)(OH₂)₃Cl²⁺$ (magenta isomer) was characterized by its mode of formation (aquation of blue $Cr(en)(OH₂)₂Cl₂⁺)$, its hydrolysis product $(Cr(en)(OH₂)₄³⁺)$, its C1:Cr atom ratio $(1.00-1.05)$, and its elution behavior (typical of a $2+$ cation of this size) in cation-exchange chromatography. As expected for this species, its visible absorption spectrum (Figure 1) exhibits d-d absorption bands at wavelengths intermediate to those of blue $Cr(en)(OH_2)_2Cl_2^+$ and $Cr(en)$ - $(OH₂)₄³⁺$. The spectrum is substantially different from that of the purple isomer¹⁷ of $Cr(en)(OH₂)₃Cl²⁺$, but almost identical, except for small intensity differences, with the spectra of the magenta isomers of $Cr(pn)$ - $(OH₂)₃Cl²⁺$ and $Cr(ibn)(OH₂)₃Cl²⁺,⁶$ as expected. At present the geometrical configurations of these species are unknown.

Hydrolysis of Magenta $Cr(en)(OH₂)₃Cl²⁺$. --Table II gives the rate constants k_2 defined by the equation

 $-d(Cr(en)(OH_2)_3Cl^{2+})/dt = k_2(Cr(en)(OH_2)_3Cl^{2+})$ (4)

for the disappearance of magenta $Cr(en)(OH₂)₃Cl²⁺$ in 1.5 *F* HC104. Equations analogous to eq 2 and 3 were used to evaluate k_2 , with A_{∞} calculated from the spectrum of $Cr(en)(OH₂)₄³⁺$. The rate plots were linear to $50-75\%$ reaction.

 M AGENTA $Cr(en)(OH₂)₃Cl²⁺$ IN 1.5 *F* HClO₄ $(\mu = 1.5 M^a)$ in the Dark FIRST-ORDER RATE CONSTANTS FOR HYDROLYSIS OF

^{*4*} Ionic strength. $\frac{1}{2}$ Cl⁻¹ = titration of released Cl⁻¹; spectro = weighted average of spectrophotometric values from 406- and 580-m μ data. \cdot Errors are estimated standard deviations.

Discussion

Figure 1 shows the near-ultraviolet and visible absorption spectra of $Cr(en)(OH_2)_2Cl_2^+$ (blue isomer), the new complex $Cr(en)(OH₂)₃Cl²⁺$ (magenta isomer), and $Cr(en)(OH₂)₄³⁺$. We see that spectral scans made between 340 and 700 $m\mu$ during aquation of blue Cr- $(en)(OH₂)₂Cl₂ +$ should give three isosbestic points, at 423 ± 2 m μ ($a_M = 25.4 \pm 0.8$ *M*⁻¹ cm⁻¹), 472 ± 2 $m\mu$ (a_M = 16.5 \pm 0.6 M^{-1} cm⁻¹), and 551 \pm 2 m μ $(a_{M} = 37.2 \pm 0.8 \text{ } M^{-1} \text{ cm}^{-1})$, if the aquation product is magenta $Cr(en)(OH₂)₃Cl²⁺$ and no other species are formed, *e.g.,* by isomerization, in spectrophotometrically detectible amount. Experimentally, we find three well-defined isosbestic points over a period of *ca.* two half-lives, at 420 ± 2 m μ ($a_M = 25.0 \pm 1.0$ M⁻¹ cm⁻¹), 471 ± 2 m_µ $(a_M = 16.0 \pm 1.0$ M⁻¹ cm⁻¹), and 547 \pm 3

(1T) D. **A.** House and C. *S.* Garner, unpublished research.

Figure 1.-Visible absorption spectra of some $Cr(III)$ ethylenediamine complexes at $20-25^\circ$: BDC, blue isomer of Cr(en)- $(OH₂)₂Cl₂$ ⁺ in 0.1 *F* HClO₄; MTA, magenta isomer of Cr(en)- $(OH_2)_3Cl^2$ ⁺ in 1.5 *F* HClO₄; TAE, Cr(en)($OH_2)_4{}^{3+}$ in 2.0 *F* HClO₄; the molar absorbancy index a_M (molar extinction coefficient **e**) is defined by the relation log $(I_0/I) = A = a_M c d$, where c is the molarity of the absorbing complex and d is the optical path in cm.

 $m\mu$ ($a_M = 36.9 \pm 0.5$ M⁻¹ cm⁻¹) (Figure 2), in reasonable agreement with the theoretical values for the reaction

$$
\begin{array}{l}Cr(en)(OH_2)_2Cl_2^+(blue)+H_2O \xrightarrow{\text{R_1}}\\ Cr(en)(OH_2)_3Cl^2^+(magenta)+Cl^-\quad (5)\end{array}
$$

This evidence and the agreement of k_1 values obtained spectrophotometrically and by Cl^- release (see Table I) suggest that reactions in which a $Cr-N$ bond is broken play a negligible role in the aquation. At first thought an alternative explanation of all of the above results might appear possible. *E.g.,* the blue dichloro reactant might be considered to isomerize with rate k_1 to one of the other two theoretically possible geometric isomers of $Cr(en)(OH₂)₂Cl₂⁺$ in a rate-controlling step, followed by aquation of that isomer to magenta $Cr(en)$ - $(OH₂)₃Cl²⁺$ with a rate much greater than $k₁$; one of these two other dichloro isomers is presumably the pink $Cr(en)(OH₂)₂Cl₂ + formed along with *cis-* and *trans-*$ $Cr(en)_2(OH_2)Cl^{2+}$ in the aquation of trans- $Cr(en)_2$ - $Cl₂$ ⁺,^{9,10} but preliminary experiments in this laboratory

Figure 2.-Change in absorption spectra during hydrolysis: **A,** blue $Cr(en)(OH_2)_2Cl_2^+$ ($C_0 = 2.6$ m*F*) in 0.1 *F* HClO₄ (μ = 0.1 *M*) at 25.00°, reading downward at 580 m μ , reaction time is *7,* 20, 40, *SO,* 120, 160, 210, 270, 330, 390, **450,** 510, 570, 1390, and 1530 min, respectively; B, magenta $Cr(en)(OH₂)₈Cl²⁺$ $(C_0 = 3.3 \text{ mF})$ in 1.5 F HClO₄ ($\mu = 1.5$ *M*) at 70.10°, reading downward at 400 m μ , reaction time is 0, 8, 15, 25, 35, 45, 60, *75,* 90, and 105 min, respectively; alternate curves are dashed for convenience in reading.

suggest the pink isomer aquates too slowly to account for the results, and the third dichloro isomer, green Cr- $(en)(OH₂)₂Cl₂$ ⁺, although aquating fast enough, gives only a purple isomer of $Cr(en)(OH₂)₃Cl²⁺$ having an absorption spectrum substantially different from that of the observed product, magenta $Cr(en)(OH₂)₃Cl²⁺.¹⁷$ Moreover, isomerization between the purple and magenta chlorotriaquo species is slow relative to the time scale involved. Thus, an isomerization pathway may be excluded.

At ionic strength 0.1 *M,* the aquation rate of blue $Cr(en)(OH₂)₂Cl₂ + may be taken as (3.1 ± 0.3) × 10⁻⁵$ sec⁻¹ ($t_{1/2}$ = 370 min) at 25.00°, independent of HClO₄ concentration in the rate $0.01-0.1$ *F* (see Table I), showing that the contribution of base hydrolysis is negligible under these conditions. At 3 *M* ionic strength and *25"* there appears to be a small decrease in k_1 in going from 3 to 0.1 *F* HClO₄, and in 0.1 *F* HClO₄ at 25° there is a similar decrease in k_1 in decreasing ionic strength from 3 to 0.1 M ; the errors are fairly large, however, and at such high ionic strengths the effects may represent ion pairing or specific salt effects. The value of k_1 in 0.1 *F* HClO₄ is approximately the same as found^{8,12} for Cl⁻ release from $trans\text{-}Cr(en)_{2}$ - Cl_2 ⁺ in 0.1 *F* HNO₃ or HClO₄ and *ca*. one-tenth that found⁷ for Cl⁻ release from *cis*-Cr(en)₂Cl₂⁺ in these media at **25".** The significance of this will not be known until the geometric configuration of the blue Cr- $(\text{en}) (\text{OH}_2)_2\text{Cl}_2$ ⁺ becomes known and further comparisons are made of aquation rates of related ethylenediamine and bis(ethy1enediamine) complexes.

Using the Cl^- -release k_1 values, which are considerably more accurate than the spectrophotometric values, we obtain a good Arrhenius plot, from which we calculate $E_a = 25.3 \pm 0.6$ kcal mole⁻¹, log $PZ = 1.40 \pm 0.6$ 0.4 (sec⁻¹), and $\Delta S^{\circ}{}_{298}$ ^{*} = 3.8 ± 2.0 cal deg⁻¹ mole⁻¹.

Because magenta $Cr(en)(OH₂)₃Cl²⁺$ was available to us only in 1.5 F HClO₄ and further significant dilution was not possible because of the low concentration of the complex, we investigated the hydrolysis only in that medium. Hence the contribution of base hydrolysis, if any, is not known. The spectral scans (see Figure 2 for a typical run) gave three good isosbestic points, at 386 \pm 2 m μ (a_M = 24.8 \pm 1.0 M^{-1} cm⁻¹), $452 \pm 2 \,\text{m}\mu$ $(a_M = 14.4 \pm 0.6 \, \text{M}^{-1} \,\text{cm}^{-1})$, and $526 \pm 2 \,\text{m}\mu$ $(a_M = 39.3 \pm 0.6 \ M^{-1} \ cm^{-1})$, in good agreement with the values $385 \pm 2 \text{ m}\mu$ $(a_M = 24.5 \pm 1.0 \text{ M}^{-1} \text{ cm}^{-1}),$ 454 ± 2 m μ ($a_M = 14.3 \pm 0.8$ *M*⁻¹ cm⁻¹), and 528 ± 2 $m\mu$ *.*($a_M = 38.8 \pm 0.8$ *M*⁻¹ cm⁻¹) predicted from Figure 1 for the reactions

$$
Cr(en)(OH_2)_8Cl^{2+}(magenta) + H_2O \xrightarrow{k_{2a}} Cr(en)(OH_2)_4{}^{3+} + Cl^-
$$
 (6

$$
Cr(en)(OH_2)_4^{3+} + Cl^- \quad (6
$$

$$
Cr(en)(OH_2)_3Cl^{2+}(magenta) + OH^- \xrightarrow{k_{2b}} Cr(en)(OH_2)_3OH^{2+} + Cl^- \quad (7
$$

$$
Cr(en)(OH2)8OH2+ + H+ \longrightarrow Cr(en)(OH2)48+ (rapid)
$$
 (8)

Together with the agreement between C1⁻⁻release and spectrophotometric values of the hydrolysis rate constant k_2 (see eq 4 and Table II), the isosbestic-point evidence indicates there is no appreciable contribution to hydrolysis from Cr-N bond breakage, the sole product being $Cr(en)(OH₂)₄³⁺$.

At 50.12° k_2 = (1.11 \pm 0.03) \times 10⁻⁵ sec⁻¹ in 1.5 *F* $\text{HClO}_4^{\text{+}}(t_{1/2} = 17.4 \text{ hr})$. The Cl⁻-release values of k_2 , which are more accurate than the spectral values, give an excellent Arrhenius plot, from which $E_a = 27.4 \pm 10^{-10}$ 0.2 kcal mole⁻¹, log $PZ = 13.55 \pm 0.10$ (sec⁻¹), and $\Delta S^{\circ}{}_{323}$ ^{*} = 1.7 \pm 0.4 cal deg⁻¹ mole⁻¹. Extrapolation to 25° gives $k_2 = 3 \times 10^{-7}$ sec⁻¹. This value is the same as the Cl⁻⁻release hydrolysis rate constant of *cis*- $Cr(en)_2(OH_2)Cl^2$ ⁺ in 0.1 *F* HNO₃,⁷ and about ten times the constant for trans-Cr(en)₂(OH₂)Cl²⁺ Cl⁻ release (estimated from 35° Cl⁻⁻release k^{11}) at 25° .

Thus, there appear to be no large rate differences in the region of $25-50^\circ$ between the singly-charged blue $Cr(en)(OH₂)₂Cl₂ +$ and $Cr(en)₂Cl₂ +$ isomers on the one hand and between the doubly-charged magenta $Cr(en)$ - $(OH₂)₃Cl²⁺$ and $Cr(en)₂(OH₂)Cl²⁺$ isomers on the other. We plan kinetic studies of the bromoaquo analogs for comparison purposes.

In the systems reported in this paper there is no evidence for Cr-N bond rupture competing with Cr-C1 bond rupture despite such evidence in the case of many bis(ethylenediamine) chromium (III) complexes. $9-12, 14, 15$

Acknowledgments.—We thank Mr. Gary A. Rogers for the preparation of several lots of blue $[Cr(en)]$ - $(OH₂)₂Cl₂Cl$, and Mr. Ray F. Childers, Jr., for assistance with several runs. One of us $(D, M, T-S.)$ 1966.

wishes to thank the National Science Foundation for funds received under the NSF Undergraduate Summer Research Participation Program for the summer of

CONTRIBUTION FROM THE INSTITUT FÜR PHYSIKALISCHE CHEMIE DER USIVERSITAT FRANKFURT AM MAIS, FRANKFURT **AM** MAIS, GERMANY

Luminescence Behavior and Light Absorption of Some Fluoro Complexes of Tervalent Chromium

BY HANS LUDWIG SCHLÄFER, HANS GAUSMANN, AND HANS-UWE ZANDER

IZecehed March 10. 1967

Together with spectroscopic data ligand field parameters, Dq , B_{56} , and B_{35} obtained from reflectance spectra of the compounds $(NH_4)_3[CrF_6]$, $K_2[CrF_5(H_2O)]$, $[CrF_3(H_2O)_3]$, $[CrF(H_2O)_5][SiF_6]$, $[Cr(H_2O)_6]F_5$, $[Cr(H_2O)_6]Cl_5$, and $NH_4[CrF_4en]$ are reported. The crystalline compounds show at liquid air temperature a broad-band fluorescence, which can be assigned assuming approximately octahedral microsymmetry to a transition ${}^4T_{2g}$ (de²d γ) $\rightarrow {}^4A_{2g}$ (de³). NH₄[CrF₄en] exhibits besides fluorescence a narrow-band phosphorescence ${}^2E_g(d\epsilon^3) \rightarrow {}^4A_{2g}(d\epsilon^3)$ at shorter wavelengths compared to the fluorescence. $[Cr(H_2O)_6]Cl_3$ yields phosphorescence only; $[Cr(H_2O)_6]F_3$ both types of luminescence. These findings are in agreement with a rule for the correlation between ligand field strength and the type of luminescence observed. The lifetime of the doublet state from which phosphorescence originates is, for $NH_4[CrF_4en]$, 2×10^{-7} sec at liquid air temperature.

Chromium(II1) complexes in crystalline form or in rigid solutions at low temperatures shom when excited by irradiation in the $d \rightarrow d$ ligand field, the charge-transfer, or the inner ligand bands a characteristic luminescence.^{$1-3$} Sometimes the emission takes place from the first excited quartet state as a broadband fluorescence. In a great number of compounds the emission occurs from the lowest doublet state as a narrow-band phosphorescence, often with typical vibrational structure.^{1,4,5} A majority of complexes yield phosphorescence only, a few give both types of luminescence simultaneously, and others are known where fluorescence only can be detected. In the case of $[CrA₆]$ or $[Cr(AA)₃]$ complexes (A stands for a mono- and AA for a bidentate ligand) with octahedral microsymmetry, we have found a rule⁶ which allows one to predict the type of luminescence for a certain compound. Complexes with ligands like Br^- , Cl^- , and F^- , which have small values of the ligand field strength parameter *Dp,* exhibit fluorescence only. Compounds where the coordinating atom is oxygen show both fluorescence and phosphorescence or phosphorescence only. For complexes where nitrogen or carbon is coordinated around chromium, where greater values of *Dq* are obtained, only phosphorescence can be observed.

increasing Dq

	increasing Dq	
Br. Cl. F.		
fluorescence only	fluorescence and phos-phosphorescence only phorescence or phos- phorescence only	

⁽¹⁾ G. B. Porter and H. L. Schläfer, *Z. Physik. Chem.* (Frankfurt), 40, 280 (1964).

We discussed elsewhere⁶ this empirical rule in terms of the shape and intersection of the potential-energy surfaces of the respective electronic states. Particularly of importance is the energy difference between the first excited quartet ${}^4T_{2g}$ and the lowest doublet state ${}^{2}E_{g}$. This quantity is closely related to the measurable difference *AE* between the wavenumber $\bar{\nu}_{\text{max}}(I)$ of the absorption maximum of the long-wavelength spin-allowed band ${}^4{\rm A}_{2g} \rightarrow {}^4{\rm T}_{2g}$ and $\bar{\nu}_{\rm max}(J)$ the wavenumber of the maximum of the intercombination band ${}^4A_{2g} \rightarrow {}^2E_g$; $\Delta E = \bar{\nu}_{\text{max}}(I) - \bar{\nu}_{\text{max}}(J)$ (cm⁻¹).

It is of interest to consider the luminescence behavior of mixed chromium(III) complexes $[CrA_{6-n}B_n]$, $n = 1-5$. To be sure that for such compounds the concept of approximate octahedral microsymmetry will still hold, the ligands A and B should be sufficiently close together in the spectrochemical series. Then it is to be expected that the deviation from regular octahedral symmetry, which is present in $[CrA_6]$ or $[CrB_6]$, is not detectable in the absorption spectra by a splitting of the spin-allowed $d \rightarrow d$ bands. Thus it is possible to obtain an average *Dq* value from the maximum of the long-wavelength spin-allowed band. Such *Dq* values can be calculated approximately from thc *Uq* values for A and B using thc rule of average cnvironment.'

M, C
*n*essence only cone has to sele If one is interested in compounds which fluorcsce, one has to select the ligand A from the left part of the spectrochemical series (small *Dq* values). That is the (4) G. B. Porter and H. L. Schläfer, Z. Physik. Chem. (Frankfurt), 38, *227* (1963).

⁽²⁾ G. B. Porter and H. L. Schläfer, *Ber. Bunsenges. Physik. Chem.*, 68, **316** (1964).

⁽³⁾ L. S. Forster and K. DeArmond, *J. Chem. Phys.*, **34**, 2193 (1961); *Spectrochim. Acta*, **19,** 1687 (1963).

⁽⁵⁾ H. L. Schlafer, H. Gausmann, F. Wasgestian, and H. U. Zander. *ibid.,* **61, 274** (196G).

⁽⁶⁾ H. L. Schlafer, H. Gausmann, and H. Witzke, *J. Chew. Phys..* **46,** 1423 (1967).

⁽⁷⁾ See C. K. Jørgensen, "Absorption Spectra and Chemical Bonding in Complexes," Pergamon Press, Oxford, 1962, p 109.