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The crystal and molecular structure of the bis-pyridine adduct of bis(Q,0’-diethyldithiophosphato)nickel(II), Ni(dtp):-2pyv,

has been determined by three-dimensional X-ray analysis.

The adduct forms monoclinic erystals, space group P2/c, ¢ =

811 A,b=1789A,¢c =994 A, 38 =104.8° andz = 2. The molecule has virtually Do,-mmm symmetry. The nickel atom

occupies a center of symmetry and lies on the plane formed by the four sulfur atoms.
adduct distorts the chelate rings in Ni(dtp), without affecting the coplanarity of the two rings.

Formation of the frans-bis-pyridine
The Ni-S distance increases,

the S-Ni-S angle decreases, and the S-P-S angle increases in comparison with the corresponding values in the Ni(dtp).

chelate.

Introduction

Metal chelates in which the metal ion is coordi-
natively unsaturated can act as electron acceptors and
form adducts with neutral molecules which are electron
donors. Adduct formation reactions have been found
useful for a wide variety of purposes. In a recent
study, a tetracoordinated nickel chelate was used as a
reference acceptor molecule in the determination of
thermodynamic constants for donor—acceptor reac-
tions.1'?2 In certain liquid-liquid extractions of metal
chelates, it has often been claimed that the extract-
ability of the metal chelate into an organic phase is
increased by the formation of hydrophobic adducts
with neutral donor molecules.®* Certain structures
that have been postulated for even the simplest metal
chelate adducts involved in liquid-liquid extraction
have been controversial. No attempts have been
made, however, to determine the structures of such
adducts, probably because of the difficulties experienced
in isolating them and because many are unstable in air.

In recent investigations on the behavior of the
analytically important ligand, O,0’-diethyldithiophos-
phoric acid (dtp), and its metal chelates, especially the
nickel(II) chelate, in solution, it was observed that the
metal-sulfur bond was disrupted in water or other
solvents of high dielectric constant.”® An X-ray
crystallographic structure determination of the nickel-
(1I) chelate of dtp showed no abnormalities in the
structure that could explain this unusual behavior of
Ni(dtp), in aqueous solution.® Although the tetra-
coordinated chelate, Ni(dtp)s, can be readily isolated
from organic solvents, there is little doubt that, in
polar solvents, the metal jon is hexacoordinated. Itis
possible that the solvent molecules that complete the
coordination sphere of the metal ion affect the struc-
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The distance between the nitrogen atom in the coordinated pyridine molecules and the nickel atom is 2.11 A.

ture of the metal chelate in such a manner that the
chelate rings in the resulting adduct are readily dis-
rupted. In order to test this hypothesis, we have pre-
pared Ni(dtp)s-2py, the diadduct of Ni(dtp), with
pyridine, and have carried out a single-crystal three-
dimensional X-ray structure determination on the
compound.

Experimental Section

Crystal Data.—Single crystals of the adduct of Ni(dtp), with
pyridine were prepared by the addition of pyridine to a solution of
Ni(dtp); in ethanol until the solution changed from purple to
pale green. Green, needle-shaped crystals of Ni(dtp),-2py
were obtained in a few hours. On exposure of these crystals to
air, pyridine was lost from the complex and the crystals reverted
to the original purple color of Ni(dtp).. The crystals used in
the X-ray work were therefore coated with a thin layer of paraffin
wax to prevent the loss of pyridine.

Laue symmetry and systematic extinctions of 020 reflections
with £ odd and 40! reflections with [ odd showed that the crystals
belong to the monoclinic system, space group P2;/c-Ca®. The
cell dimensions were determined by superimposing sodium chlo-
ride lines on Weissenberg photographs: ¢ = 8,11 % 0.02 A,
b =17.89 %= 0.02 A, ¢ = 9.94 = 0.02 A, and 8 = 104.8°. No
density measurenients were made because of the instability of
the compound. The unit cell contains two molecules and each
molecule is required to have a center of symmetry.

Structure Determination and Refinement.—Intensity data
(Okl and hkQ) were obtained at the beginning of the structure
analysis from Weissenberg photographs by means of the multiple-
film technique. The approximate positions of two sulfur atoms
and one phosphorus atom were obtained from Patterson synthe-
ses. An approximate molecular structure was obtained by suc-
cessive Fourier syntheses until the R factors for the (0kl) and
(h%0) reflections were 0.16 and 0.15, respectively.

Three-dimensional data were obtained with a Buerger auto-
mated X-ray diffractometer. The operation of the instrument
has been described previousiy.! Cu Ko radiation was used and
diffractometer data were collected about the x axis from & = 0
through 5; 1340 independent reflections were obtained. Lorentz
and polarization corrections were applied in the usual manner.
No absorption or extinction corrections were applied (ur = 0.4).
The fine needle-shaped crystals could not be cut into an appro-
priate shape in order to obtain intensity data around the y and z
axes. Interlayer scale factors were therefore determined em-
pirically by a comparison of F, and F, values,

The structure was refined by three-dimensional differential
Fourier syutheses. After the first three refinement cycles with
isotropic temperature factors, the value of R was 0.180. At this
stage interlayer scale factors were calculated and used to obtain
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a new set of F, values. Two more refinement cycles reduced R
to 0.145. The scale factors were recalculated (the changes in the
scale factors were very small) and a new set of F, values was ob-
tained; two more refinement cycles gave a value of 0.125 for
R. 1In the final refinement, the changes in the atomic coordi-
nates were well within their estimated standard deviations.

Table I gives the final atomic coordinates and temperature
factors that were obtained. F, and F, are listed in Table II.
The scattering factors were obtained from the ‘‘International
Tables’’ with the values for nickel corrected for the real part of
the dispersion.

TABLE I
AToMmIc COORDINATES X 10%¢
x 3y z B, A?
Ni 0 (0) 0 (0) 0 3.8(0.1)
S(1) 2501 (5) 660 (1) —461 (3) 4.4(0.1)
S(2) 878 (5) 721 (1) 2221 (3) 4.7 (0.2)
P 2708 (5) 1106 (1) 1401 (3) 4.4(0.1)
O(1) 2810 (19) 1003 (6) 1380 (12) 7.2(0.7)
0(2) 4543 (16) 1012 (4) 2429 (11) 5.9 (0.6)
N 1572 (14) —895 (4) 933 (9) 3.6 (0.4)
C(1) 1405 (36) 2446 (7) 492 (27) 9.2 (1.5)
C(2) 1947 (38) 3224 (9) 671 (19) 8.7 (1.4)
C(3) 5201 (22) 279 (7) 2945 (16) 6.9 (1.0)
C(4) 6928 (32) 374 (11) 3852 (21) 7.8(1.2)
C(5) 1479 (18) —1200 (5) 2146 (13) 4.6 (0.6)
C(6) 2384 (31) —1792 (8) 2723 (18) 6.8 (1.0)
C(7) 3565 (29) —2131 (8) 2040 (19) 8.4 (1.3)
C(8) 3730 (30) —1820 (7) 808 (23) 5.8 (0.8)
C(9) 2718 (18) —1206 (5) 276 (13) 4.7 (0.6)

e The formulas given by Cruickshank have been used to cale-
ulate the standard deviations given in parentheses: D. W. J.
Cruickshank, Acta Cryst., 2,65 (1949).

Results

The calculated values of the bond distances and bond
angles are given in Tables III and IV, respectively.
The projection of the structure down the z axis is
shown in Figure 1 and a perspective drawing of the
molecule in Figure 2. In the latter figure three planes—
(1), (2), and (3)—are also shown which simplify the
interpretation of the structure. No weighting factors
were used in the calculation of all least-squares planes.

Plane (1) consists of the two pyridine molecules and
the nickel atom. The equation of the best least-
squares plane (1) is

0.597X + 0.635Y + 0.491Y = 0 plane (1)

(In the equations of best planes, the orthogonal co-
ordinates X = x, ¥ = y, and Z directed along z*
are used together with absolute values of the orthogonal
coordinates.) The atom C(7) shows the maximum
deviation of 0.04 A from this plane. The two sulfur
atoms S(1) and S(2’) are 1.81 and 1.95 A, respectively
from this plane.

Plane (2) is formed by the two chelate rings and the
equation of the best plane through these rings is

0.503X — 0.755Y + 0.421Z = 0  plane (2)

The phosphorus atom shows a maximum deviation of
0.001 A from this plane. Both atoms O(1) and O(2)
are 1.16 A from this plane.

The group of atoms C(2), C(1), O(1), P, O(2), C(3),

B1s(0,0’-DIETHYLDITHIOPHOSPHATO)NICKEL (II)-BISPYRIDINE 1559

Figure 1.—Projection of the structure of Ni[S;P(OCyH;)].-
2C;H;N along the z axis.

Plane(3)
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Figure 2.—Molecular structure and numbering scheme of
Ni{S:P(OC:Hs)s]2 2CsH5N.

and C(4), together with the centrosymmetrically related
atoms (which are primed in Figure 2) and the nickel
atom constitute plane (3). Itsequation is

—~0.622X 4 0.050Y 4 0.781Z = 0O plane (3)

The atoms with the largest deviations from this plane
are C(7), C(2), and C(3), and the deviations are 0.14,
0.09, and 0.08 A, respectively. The atoms S(1) and
S(2) are 1.62 and 1.64 A from this plane.

The angles between planes (1), (2), and (3) are:
88.4° (between planes (1) and (2)), 88.8° (between
planes (2) and (3)), and 87.5° (between planes (1)
and (3)). Hence, the symmetry of the molecule ap-
proximates to Dyy-mmm within the limits of error.
This was confirmed by the calculation of the distances
of the atoms O(1), C(1), C(2), and the mirror-related
atoms O(2’), O(3’), and C(4') from plane (1); the dis-
tances of the atoms O(1), C(1), C(2), and the mirror-
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related atoms O(2), C(3), and C(4) from plane (2); and
the distances of the atoms C(5), C(6), and the mirror
related atoms C(8) and C(9) from plane (3).

Further least-squares planes were calculated through
selected portions of the molecule. The equation of the
plane formed by the pyridine ring is

0.611X + 0.611Y + 0.504Z = 0O

The nitrogen atom of the pyridine ring shows a maxi-
mum deviation of 0.01 A from this plane. The carbon
atoms C(3’) and C(1) are 3.73 and 3.65 A from this
plane.

The equation of the plane formed by the atoms C(1),
0(1), P, O(2), and C(8) is

—0.634X -+ 0.062Y + 0.771Z = 0.002

The atoms with the largest deviations from this plane
are O(2), with a deviation of 0.03 A, and the two termi-
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nal carbon atoms C(2) with deviations of

0.04 and 0.04 A.

and C(4),

Discussion

In Ni{dtp)s, the nickel-sulfur bond distance is 2.21
A, which is the value expected for a tetracoordinated,
planar, diamagnetic complex of nickel(II). In the
hexacoordinated  paramagnetic  compound,  Ni-
(dtp)2- 2py, the nickel-sulfur distance is increased to
2.49 A. In other nickel(II) complexes with similar
octahedral configurations, the nickel-sulfur bond
lengths lie between 2.4 and 2.6 A; e.g., 2.46 A in [Ni-
(thiourea)]Cl,,"® and an average value of 2.54 A in
Ni(thiourea)s(INCS),. 1

The formation of the bis-pyridine adduct of Ni(dtp)s

(10) A. Lopez-Castro and M. R. Truter, J. Chem. Soc., 1309 (1963).

(11) M. Nardelli, A. Braibanti, and G. Fava, Gezz. Chim. Lial., 87, 1209
(1957),
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TaBLE III

BoND DI1STANCES IN Ni(dtp):-2py (Esp’s IN ANGSTROMS; LATTICE
ERrRRORS HAVE BEEN TAKEN INTO ACCOUNT IN
THE CALCULATIONS OF THE EsD’S)

Ni-S(1) 2.49 (0.01)
Ni-S(2) 2.50 (0.01)
Ni-N 2,11 (0.01)
S(1)-P 1.98 (0.01)
S(2)-P 1.99 (0.01)
P-0O(1) 1.59 (0.01)
P-0(2) 1.58 (0.01)
O(1)-C(1) 1.49 (0.03)
0(2)-C(3) 1.46 (0.02)
C(1)-C(2) 1.46 (0.02)
C(3)-C(4) 1.47 (0.03)
N-C(5) 1.34 (0.02)
N-C(9) 1.38 (0.02)
C(5)-C(6) 1.33 (0.02)
C(8)~-C(9) 1.39 (0.02)
C(6)-C(7) 1.44 (0.03)
C(8)-C(7) 1.38 (0.03)
TABLE IV

Bonp ANGLES (DEGREES) IN Ni(dtp).-2py
(Esp’s 1IN DEGREES)

S(1)-Ni-S(2) 81.7 (0.1)
S(1)-Ni-N 90.7 (0.3)
S(2)-Ni-N 90.0
Ni-S(1)-P 84.2
Ni-S(2)-P 83.7 (0.2)
S(1)-P-8(2) 110.4 (0.3)
S(1)-P-0(1) 112.5
S(2)-P-0(1) 113.4
S(1)-P-0(2) 113.7 (0.6)
S(2)-P-0(2) 112.0
O(1)-P-0(2) 94.0 (0.7)
P-0(1)-C(1) 121.1 1.5)
P-0(2)-C(3) 121.4
O(1)-C(1)-C(2) 106.6 2.2)
0(2)-C(3)-C(4) 108.5
C(5)-N-C(9) 117.4 (1.2)
N-C(5)-C(6) 124.0 1.7
N-C(9)-C(8) 122.7
C(5)-C(8)-C(7) 119.4 (2.0)
C(9)-C(8)-C(7) 118.2
C(6)-C(7)-C(8) 118.2 (2.0)

not only increases the nickel-sulfur bond distance, but
also causes significant variations in the bond angles
in the chelate ring. The S-Ni-S angle in Ni(dtp), is
decreased from 88 to 81.7° in Ni(dtp),-2py; the
S-P-8 angle is increased from 103° in Ni(dtp), to
110.4° in the adduct. It is possible to interpret these
results on the basis of a simple electrostatic model.
Adduct formation reduces the net positive charge on
the nickel atom and increases the net negative charge
on the sulfur atoms. The latter effect results in an
increase in the S-P-S angle while the former effect
lengthens the Ni-S distance and decreases the S-Ni-S
angle. It is conceivable that if these effects become
more pronounced, the chelate ring will be disrupted.
The disruption of the chelate rings in Ni(dtp), in
aqueous solutions is probably brought about by water
molecules that form strong coordinate bonds with the
nickel atom thereby causing the Ni-S distance and the
S-P-S angle to increase to such an extent that the Ni—-S
bonds are disrupted.

B1s(0,0’-DIETHYLDITHIOPHOSPHATO)NICKEL (II)-BISPYRIDINE 1561

It has been shown recently by X-ray analysis that in
the complex, Te[(CH;0),PS,], the ligand, O,0’-di-
methyldithiophosphate, is monodentate.!’? Neverthe-
less, with the exception of the bond angles around the
phosphorus atom, the bond angles and bond lengths
in the rest of the ligand do not deviate significantly from
the corresponding values found in the chelate, Ni(dtp),,
or its adduct, Ni(dtp)s-2py. In the tellurium com-
plex the S—P-S angle is 106.9° and the O-P-O angle is
100.6°, whereas in the adduct, Ni(dtp).-2py, these
angles are 110.4 and 94.0°, respectively. The repulsion
between the pyridine molecules and the methylene
groups is probably responsible for the large decrease
in the O-P-0 angle in Ni(dtp),-2py. The proximity
of the methylene groups to the plane formed by the
pyridine molecuile is apparent from the distances of the
carbon atoms C(1) and C(3’) from this plane. These
distances (3.62 and 3.78 A, respectively) are slightly
smaller than the sum of the van der Waals radii of the
two groups, 2.0 A for the methylene group and 1.85 A
for the half-thickness of an aromatic group.

The P-O-C angles (121.1 and 121.4°) in the adduct
compare well with the values for the corresponding
angles (119 and 122°) found in dibenzilphosphoric
acid?® and in the tellurium complex (120.8°).22 The
P-O distances in the adduct (1.58 and 1.59 A) are very
similar to those found in the tellurium complex (1.57
and 1.59 A),2 in L-serine phosphate!4 (1.608 A}, and in
Ni(dtp), (1.63 A).? The P-S bond distances are
slightly larger than the average value of 1.97 A that
has been found in Ni(dtp),, but the differences are not
significant. The O-C distances in the adduct (1.46
and 1.4 A), in dibenzilphosphoric acid*® (1.464 and
1.465 A), and in L-serine phosphate (1.466 A)!4 agree
within experimental error. The two independently
measured bond lengths, C(1)~C(2), in the adduct show
fair agreement, but are significantly shorter than the
accepted value for a C-C single bond. This is at-
tributable to experimental errors; for example, no
attempt was made to correct errors caused by rotation—
oscillation effects.®

The shortest intermolecular distance was found to be
3.35 A, between an oxygen atom and the C(7) carbon
atom in pyridine. The broken lines in Figure 1 con-
nect the methyl groups and the atoms closest to them.

The nickel-nitrogen bond in the adduct does not
have any double-bond character and the bond distance
(2.11 A) agrees well with the distances found in [Ni-
(en)a](N03)2 (2120 A)ls and in NlYHszO (208 and
2.03 A),”” where Y = EDTA. Appreciably shorter
nickel-nitrogen distances have been found in bis(salicyl-
aldimine)nickel(II) (1.84 A), in bis(N-methylsalicyl-
aldimine)nickel(II) (1.90 A),®* and in biacetylbis-

(12) G. Husebye, Acta Chem. Scand., 320, 24 (1966).

(13) J. D. Dunitz and J. S. Rollett, Acte Cryst., 9, 327 (1956).

(14) G. G. McCallum, J. M. Robertson, and G. A. Sim, Nature, 184, 1863
(1959).

(15) D. W. J, Cruickshank, Acta Cryst., 9, 754 (1956).

(18) L. N. Swink and M. Atoji, tbid., 18, 639 (1960).

(17) G. S. Smith and J. L. Hoard, J. Am. Chem. Soc., 81, 556 (1959).

(18) E. Frasson, C. Panattoni, and L. Sacconi, J. Phys. Chem., 68, 1908
(1959).
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(mercaptoethylimine)nickel(II) (1.85 and 1.86 A).1®
Undoubtedly, the nickel-nitrogen bonds in these com-
pounds have double-bond character.

The accuracy of this structure determination was not
sufficiently high to detect any structural changes in the
pyridine molecule that could be attributed to coordina-
tion with the nickel atom.
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(19) Q. Fernando and P. J. Wheatley, I'norg. Chem., 4, 1726 (1965).
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The cations hexakis(2-aminoethanethiolo)tricobalt(III) and hexakis(2-aminoethanethiolo)dicobalt(III)zinc(II) have been

prepared in meso and optically active forms.
tical isomers.

The electronic and circular dichroism (CD) spectra are reported for the op-
Only the terminal cobalt(III) ions contribute to the visible CD spectrum of the heterometallic complex ion.

This spectrum was subtracted from that for the tricobalt(II1) complex to obtain the CD spectrum of the central cobalt,
Opposite configurations about the central and terminal cobalt ions are assigned from the CD spectra.

Werner’s verification of his octahedral stereochemical
model for coordination compounds by resolving the
completely inorganic complex [Co((OH):(NHj;)4Co);]8+
climaxed the preparation and resolution of numerous
cobalt(III) complexes including several novel bi-
§ These bi-
nuclear complexes may be considered as combinations
of two discrete monomeric compounds. If each of the
latter is optically active, the binuclear product will ex-
ist in optically active and meso isomers.

nuclear [(en);Co<,>Co(en);]** species.

MathieuZexamined Werner’s [(en)2C0<§> Cofen)s J**

binuclear complexes, concluding that the abso-
lute configurations of the polynuclear complexes were
inaccessible from either the ORD or CD measure-
ments. Recently, Garbett and Gillard® have reex-
amined the optical properties of some of these com-
pounds and their monomeric derivatives. By com-
paring the binuclear compound [(en);(NH;)Co(NH,)-
Co(NHj)(en), >+ with the products of its reaction with
HCI, [Co(en),NH;Cl]?+ and [Co(en).(NH;),]*+, these
authors established that the L configuration of the bi-
nuclear complex corresponds to the combination of two
monomeric units of L configuration.

There has been little work reported on the optical
properties of new polynuclear complexes since Werner's

(1) This work was supported by a research grant (GM-10829-08) from the
Division of General Medical Studies, Public Health Service.

(2) J. P. Mathieu, Buil. Soc. Chim. France, &, 105 (1938).

(3) K. Garbett and R. D. Gillard, Chem. Commun., 99 (1966).

classic work of 1915. Indeed, even the completely
inorganic complex prepared by Werner is, by that
author’s account, too unstable to lend itself easily to
more detailed study. We are reporting the results of
an examination of the electronic spectra, circular
dichroism, and optical rotatory dispersion of hexakis-
(2-aminoethanethiolo)tricobalt(III) bromide (Figure
1), the synthesis of which was first reported by Busch
and Jicha.*

Experimental Section

Commercially available salts and solvents of CP grade or
better were used without further purification.

Preparation of Hexakis(2-aminoethanethiolo)tricobalt(III)
Bromide, [Co(Co(H;NCH,CH,S);):|Br;.—The procedures given
by Busch and Jicha* were employed, giving identical products by
either route. Anal. Caled for [Cos(H;NCH:CH:S)s|Brs: C,
16.50; H, 4.58; N, 10.60; Br, 27.45. Found: C, 16.37; H,
4.40; N, 9.77; Br, 27.20.

Resolution of the Hexakis(2-aminoethanethiolo)tricobalt(III)
Cation, [Cos(H,NCH,CH,S);|3".—Three grams of silver anti-
mony d-tartrate (0.0075 mole) suspended in 100 ml of water was
added to a solution of 8.4 g (0.01 mole) of hexakis(2-amino-
ethanethiolo)tricobalt(III) bromide in 500 ml of water at 65°.
The solution was heated with stirring for 0.5 hr and then filtered
to remove the silver bromide. The filtrate was concentrated to
about 300 ml, whereupon the mixed meso- and (- )-hexakis(2-
aminoethanethiolo)tricobalt(1II) antimonyl tartrates (the sign
of the major CD peak in the low-energy absorption band is given)
began to crystallize from the solution. Methanol (500 ml) was
added and the mixture allowed to stand for several hours. The
antimonyl tartrates were filtered and an excess of potassium
iodide (10 g) was added to the filtrate to precipitate meso- and

(4) D. H. Busch and D. C. Jicha, Inorg. Chem., 1, 884 (1962).





