CONTRIBUTION FROM THE DEPARTMENT **OF** CHEMISTRY, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112

Complexes with **p-Bromo-N,N-dimethylaniline** N-Oxide

BY CARL J. **POPP** AND RONALD *0.* RAGSDALE

Received June 21. 1967

A series of complexes has been prepared with the tertiary amine oxide, p -bromo-N,N-dimethylaniline N-oxide. The complexes have the following stoichiometries: $Ca(CIO₄)₂·4L$, $Zn(CIO₄)₂·4L$, $Mg(CIO₄)₂·$ $(NO₃)₂·3L·H₂O, Ni(NO₃)₂·3L·2H₂O, ZnCl₂·2L, and$ $NiCl₂·L·H₂O$, where L represents the ligand. Table I shows the analytical data for the complexes. These are the first complexes prepared with a tertiary aniline Noxide. $4L \cdot H_2O$, $Cd(NO_3)_2 \cdot 4L \cdot H_2O$, $Mg(NO_3)_2 \cdot 3L \cdot 2H_2O$, Pb-

Recently, there has been a good deal of interest in complexes prepared with various derivatives of pyridine N-oxide. The bonding in the complexes is through oxygen. The N-0 bond exhibits double-bond character in the pyridine N -oxides,¹ whereas the ligand p -bromodimethylaniline N-oxide differs from the pyridine N-oxides in that the nitrogen is quaternary and the N-0 bond has no double-bond character. Complexes have been prepared with the amine oxide, trimethylmaximum coordination number of monodentate tertiary amine N-oxides to a metal ion has been four, with the exception of the chromium perchlorate complex which coordinates to six trimethylamine N-oxide ligands. 5

With the ligand p -bromodimethylaniline N-oxide, the most stable complexes formed with nontransition metal ions. Transition metal complexes can be formed but with the exception of the NiCl₂ and $Ni(NO₃)₂$ complexes, decomposition usually takes place within a few hours. The decomposition product shows the presence of p-bromodimethylaniline as well as the *p*bromodimethylaniline N-oxide and tar.

The visible spectrum of the $NiCl₂$ complex was obtained only as a mull owing to its insolubility. The spectrum showed peaks at 412, 652, and 710 m μ with a shoulder at 615 m μ . The spectrum of the Ni(NO₃)₂ complex was measured in nitromethane. Absorption peaks appeared at 405 and 650 m μ with ϵ 14 1. mole⁻¹ cm^{-1} at 405 m μ .

Table I shows the conductance data for the complexes with p -bromodimethylaniline N-oxide. All of the values are in the range expected for *2* : 1 electrolytes except for the very low value for $ZnCl_2 \tcdot 2L$. The low value for the molar conductivity of the zinc chloride complex indicates a nonelectrolyte. In this case, the chloride ions are in the coordination sphere of zinc giving a normal four-coordinate complex.

TABLE I ANALYTICAL DATA, CONDUCTANCE DATA, AND INFRARED SPECTRAL DATA FOR COMPLEXES

							Conductance data in nitromethane			
Compound	$\overbrace{}$ Carbon $\overbrace{}$ Calcd	Found	-Elemental analyses, $\%$ --- —Hydrogen— Calcd		-Nitrogen- Calcd Found		Mp, °C	Concn.	Λ (molar). $cm2$ mho	Infrared spectra
				Found				$M \times 10^4$	$mole^{-1}$	$\nu(N-0)$, cm ⁻¹
$Ca(CIO4)2 \cdot 4L$	35.21	34.84	3.94	3.65	4.76	5.08	$120 - 129$ dec	3.80	179	985, 939
Zn(CIO ₄) ₂ ·4L	34.41	34.06	3.61	3.57	4.81	4.96	134–136 dec	9.46	163	970, 943
$Mg(ClO4)2 \cdot 4L \cdot H2O$	34.97	34.77	4.21	3.83	5.16	5.07	$109 - 111$	4.24	200	973.958
$Ca(NO3)2 \cdot 4L \cdot H2O$	34.52	34.36	3.80	3.78	7.29	7.51	113-118	1.04	130	966
$Mg(NO8)2·3L·2H2O$	34.53	34.64	4.17	4.12	7.97	8.41	$124 - 127$ dec	6.19	129	968
$Pb(NO_3)_2.3L·H_2O$	29.50	28.91	3.25	3.23	6.80	7.01	115-119	Insoluble	\cdots	961
$Ni(NO3)2·3L·2H2O$	33.35	33.25	4.07	3.95	7.79	8.08	123-127	9.46	183	965
$ZnCl_2 \cdot 2L$	33.70	33.81	3.74	3.55	5.02	4.93	115-119	21.9	13.9	972.948
NiCl ₂ ·L·H ₂ O	26.40	26.42	3.98	3.33	3.65	3.85	96-99	Insoluble	\cdots	984, 957
Ligand										962, 941

amine N-oxide, 2^{-5} and with the bidentate ligand N,Ndimethylethylenediamine N-oxide.6 The N-oxide nitrogen is quaternary in both of these ligands. The ligand p-bromodimethylaniline N-oxide exhibits steric interaction with the complexes formed. This is also true of the trimethylamine N-oxide, and this steric interaction prevents the metal ions from achieving maximum coordination through the ligand alone. Because of this, less strongly coordinating ligands such as C1⁻ enter the coordination sphere as in $ZnCl_2 \tcdot 2L$. The

- **(2)** K. Isslieb and **A.** Kreibich, *Z. Anoug. Ailgem. Chem.,* **313,** 338 (1961).
- (3) *S.* Kida, Bull. *Chem.* **SOC.** Japan, **36,** 712 (1963).
- (4) R. L. Carlin and M. J. Baker, *J. Chem. Soc.,* 5008 (1964).

(Table I) for the aliphatic amine oxides shows little or no shift on complexation. Gallais' has attributed one of the two bands in the $950-970$ -cm⁻¹ region in the spectrum of N , N -dimethylaniline N -oxide to the N -O stretching mode. Kida³ has calculated a value for the N-0 stretching frequency for trimethylamine N-oxide of 960 cm⁻¹ and found a value of 950 cm⁻¹. Essentially no shift of the N-0 frequency was found **upon** coordination of trimethylamine N-oxide,³ and we have observed these same results for p -bromodimethylaniline N-oxide. This is anomalous when compared to the complexes of pyridine N-oxide where the N-0 frequency decreases as the double-bond character of the

The N-0 stretching frequency in the infrared region

(7) R. Mathis, R. Wolf, and F. Gallais, *Compt.* Rend., **242,** 1873 (1956).

⁽¹⁾ L. J. Bellamy, "The Infrared Spectra of Complex Molecules," 2nd ed, **John** Wiley and Sons, Inc., New York, N. Y., 1964, p 308.

⁽⁵⁾ R. **Si.** Drago, J. T. Donoghue, and D. **W.** Herlocker, *Inoug. Chem.,* **4,** 836 (1965).

⁽⁶⁾ J, V. Quagliano and J. T. Summers, *ibid.,* **8,** 1767 (1964).

N-0 bond decreases upon coordination. The fact that the N-0 frequency of the aliphatic amine N-oxides shows little or no shift on coordination can be attributed to the single-bond character of the N-O bond. Coordination relieves the electron density around the oxygen but has little effect on the K-O bond.

Experimental Section

Preparation.-The ligand p -bromodimethylaniline N-oxide was prepared by oxidizing p -bromodimethylaniline with hydrogen peroxide and acetic acid. The complexes were prepared by adding an acetone solution of the ligand to an acetone-dimethoxypropane solution of the metal salt. The complexes usually formed when stirred for several minutes.

Physical Measurements.-The infrared spectra were taken as

Nujol mulls on a Beckman IR5A recording spectrophotometer. with NaCl optics. The visible spectra were obtained with a Cary Model **14** recording spectrophotometer. Conductance data were obtained using a conductance bridge manufactured by Industrial Instruments Inc. The decomposition products were studied with the aid of thin layer chromatography.

Analyses.--Carbon, hydrogen, and nitrogen analyses were performed by Alfred Bcrnhardt Mikroanalytisches Laboratorium, Miilheim, West Germany.

Acknowledgment.—The authors are grateful for the support of this work by NIH Grant No. 1805FRO-7092 and by the Air Force Materials Laboratory, Research and Technology Division, Wright-Patterson AFB, Ohio.

of $Pd(\pi-C_3H_5)_2$ although the data cited are insufficient.³

Correspondence

Stereochemically Nonrigid Organometallic Compounds. VI. Configurational Equilibria of π -C₅H₅Mo(CO)₂ Allyl Complexes

Sir :

Recently evidence has been presented^{1,2} that the temperature dependence of the nmr spectra and their eventual collapse to dynamic A_4X spectra of certain π allyl complexes is due to a rapid exchange betxeen a π -bonded group and a short-lived σ -bonded intermediate. In certain isoleptic π -allyl complexes, such as $Zr(\pi-\mathrm{C_3H_5})_4$ and $Pd(\pi-\mathrm{C_3H_5})_2$, Becconsall, *et al.*,³ and Wilke, *et al.*,⁴ have rationalized the temperature-dependent spectra as resulting from internal rotation of the $CH₂$ protons about the C-C bond which leads to an averaging of the *syn* and *anti* protons to give A4X spectra. The former authors rejected a $\sigma-\pi$ interconversion on their misinterpretation^{3b} of their incompletely averaged high-temperature spectrum of $Pd(\pi-)$ C_3H_5)₂. It has been pointed out that other mechanisms can lead to temperature-dependent spectra for π allyl ligands: either rotation of the π -allyl about an axis through the C-C-C plane' or a mechanism involving a flip through a planar intermediate.⁵ The former mechanism does not interconvert the *syn* and *anti* protons of the allyl ligand, is clearly operative in the case of $Rh(\pi-C_3H_5)_{3}$, and is very probable in the case

 $King⁶$ has claimed that the existence of four infrared carbonyl stretching frequencies in $(\pi$ -C₅H₅)Mo(CO)₂- $(\pi$ -C₃H₅) and similar species is due to the presence of *cis* and *trans* isomers based on a piano stool arrangement of the allyl ligand and the two carbonyl groups about the $(\pi$ -C₅H₅)Mo moiety. We present evidence which shows that for $(\pi$ -C₅H₅)Mo(CO)₂(π -C₃H₅) a more reasonable interpretation is one involving a configurational equilibrium between species which in a formal sense could be regarded as conformers. We reject the presence of *cis* and *trans* isomers for the following reasons: (i) It seems unreasonable from steric considerations to have the π -C₃H₅ group occupying the *trans* positions, but even more unlikely for the case of the C_7H_7 group in $(\pi$ -C_{$\bar{p}H_{\bar{p}})M_0(CO)_2(\pi$ -C₇H₇), which also} shows four infrared-active carbonyl stretching modes. (ii) From numerous studies of the vibrational spectra of metal carbonyls, it is known that the interaction constants k_c and k_t between pairs of *cis* and *trans* CO groups obey the approximate relationship $k_t \approx 2k_c$.⁷ This leads to a marked difference between the separation of the symmetric and antisymmetric stretching modes in the *cis* and *trans* isomers, contrary to that observed in this case. (iii) The variable-temperature nmr spectra of Figure 1 show quite clearly that at low temperature $(ca. -10$ to -50°) the interconversion is slow enough to distinguish two distinct π -allyl groups and that these become averaged to a spectrum typical of a π -allyl *(i.e.,* AA'BB'X) at $+130^{\circ}$. The temperature dependence was essentially the same in CDCl₃ and C_6H_6 throughout the range from

 $+10$ to $+40^{\circ}$. However, spectra could not be obtained over the entire range in chlorinated solvents because of rapid decomposition at temperatures greater than *ca.* $+50^{\circ}$. It is clear that the averaging process at $+130^{\circ}$

⁽¹⁾ F. **A.** Cotton, J. W. Faller, and **A.** Musco, *Inorg. Chem.,* **6, 179 (1967). (2) K.** Vrieze, C. MacLean, P. Cossee, and C. W. Hilbers, *Rec. Trao. Chim.,* **86, 1077 (1966).**

⁽³⁾ (a) J. K. Becconsall, B. E. Job, and S. O'Brien, *J. Chem.* Soc., *Sect.* **A, 123 (1967):** (b) the broadening and partial collapse **of** the nmr spectra of Pd- $(\pi$ -C₃H_b)₂ in the incompletely averaged range *(ca.* $+30$ -70°) was suggested to be due to the onset of the internal rotation mechanism. Since the limiting spectrum was not observed, no valid conclusions can be drawn but there is a remarkable similarity between this behavior and that for $(\pi$ -C₅H₅)Mo- $(CO)_2(\pi-C_3H_5)$.

⁽⁴⁾ G. Wilke, B. Bogdanovic, P. Hardt, P. Heimbach, W. Keim, M. Kroner, W. Oberkirch, K. Tanaka, and D. Walter, *Angew. Chem. Intern. Ed.* **B?irl., 6,** 151 **(1966).**

⁽⁵⁾ Cf. the discussions of the article by G. Wilke, *et ai.,* in "Proceedings of the 9th Robert A. Welch Conference on Chemical Research, Nov 15-17, **1!JO6,"** especially those by F. **A.** Cotton, p 184.

⁽⁶⁾ K. B. King, i~org. *Chum.,* **5, 2242** (19tiO).

⁽⁷⁾ F. **A.** Cotton and C. *S.* Kraihanzel, *J. Am. Chewi. Soc.,* **84, 4432** (1962). (8) Solvent shifts for the various environments were observed in these spectra.