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The crystal and molecular structure of the compound Co;[(CoH;0)P(O)CHC(O)CH;]s has been determined by standard
single-crystal X-ray diffraction procedures. The unit cell, belonging to space group P2;/c, has the dimensions ¢ = 11.20,
b = 1283, ¢c = 23.95 A, 8 = 114.5°, and contains two trinuclear formula units, each lying at a center of symmetry. “The
calculated and measured densities are, respectively, 1.42 and 1.40 == 0.02 g cm 3. Using 2026 reflections above background,
collected with a manually operated counter diffractometer, the structure has been refined by full-matrix least squares to a
conventional R factor of 9.2%. In the trinuclear structure each cobalt atom is surrounded by six oxygen atoms in a slightly
distorted octahedral array, and the three octahedra are fused together so that the center one shares one of two opposite
triangular faces with each of the terminal octahedra. Three chelate rings are closed about each of the terminal cobalt atoms
and nome about the center cobalt atom. Thus, considerable rearrangement must occur in the association and dissociation
reactions in which the bis-chelate monomers and the trimers are interconverted. All Co-O distances lie within a small
range (2.09 & 0.05 A); this and other structural features are consistent with the idea, previously proposed on magnetic
and spectroscopic evidence, that all three cobalt atoms are to be regarded as octahedrally coordinated Co(II). The question
of whether there is significant = delocalization through the O-P-C-C-O chain of the chelate ring is not resolved by the

available data.

Introduction

Several years ago? as part of a general study of the
ability of the bis(dialkoxyphosphonyl)methane?? and
dialkoxyphosphonylacetylmethane? molecules to form
bidentate anionic ligands, and transition metal com-
plexes thereof, a cobalt(II) complex of the diethoxy-
phosphonylacetylmethanido ion (I) was prepared.
Sodium, zine, and chromium(III) complexes of this
ligand were also prepared. For brevity, we shall hence-
forth use the abbreviation DEPAM for the ligand (as an
anion) in the complexes.
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The cobalt complex was of particular interest, how-
ever, because magnetic and spectroscopic evidence
strongly implied that all cobalt atoms in this com-
pound are in octahedral environments in the crystalline
state. Moreover, molecular weight measurements
indicated that in freezing benzene at concentrations
around 0.05 M the compound is trimeric. In other
solvents, such as chloroform or 1,1,2,2-tetrachloro-
ethane,? the spectra were found to depend strongly on
temperature and concentration in a way which suggests
that an endothermic dissociation of the trimer, Cos-
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(DEPAM),, to an apparently tetrahedral monomer, Co-
(DEPAM),, takes place.

In view of the fact that an interesting variety of
structures has been found®~® for polymers of bis(g-
ketoenolato)metal(II) compounds, it was considered
worthwhile to investigate the crystal structure of Co-
(DEPAM), in order to see if it were really trinuclear in
the crystalline state and to obtain structural details.

Experimental Section

Collection and Reduction of Data.—Co(DEPAM), was pre-
pared by the reported method.? Well-formed light purple
crystals, obtained by slowly cooling a saturated solution in
ether to —5°, were monoclinic with well-developed faces includ-
ing {100}, {001}, {011}, and {01T}. The systematic absences
#0l for [ 5 2m and 0kO for £ # 2u uniquely indicated the space
group P2i/c. The unit cell dimensions,® measured at ca. 25°
on the General Electric XRD-5 manual diffractometer using Co
K radiation (N 1.7902 A), were ¢ = 11.203 &= 0.005, b = 12.825
=+ 0.010, ¢ = 23.945 = 0.010 A, and 8 = 114.48 & 0.05°, A
density of 1.40 g/cm?®, measured by flotation, is consistent with
that of 1.42 g/cin3 calculated for six Co(DEPAM ), units per unit
cell.

A crystal approximately 0.3 X 0.8 X 0.2 mm was mounted along
the ¢* axis and sealed in a thin-walled Lindemann glass capillary.
The 2515 independent reflections within the Co K« sphere, 28 <
115°, were collected at 25° using an iron oxide filter and a modi-
fied form of the moving-crystal-moving-counter technique,!®
with a 26 scan of 2.66°. FEach peak was scanned for 40 sec.
Two background counts, measured for 20 sec at each end of the
scan, were added to give total background. Of these, 2026 were
accepted as statistically above background (¢ < 0.5, where ¢ =
(peak + bgd)l/?/(peak — bgd)) and were used in refinement.
The data accepted as nonzero were corrected for Lorentz and
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polarization factors and were used as input for computing the
Patterson function.

Solution and Refinement of the Structure.—Cobalt atom posi-
tions were determined from the three-dimensional map of the
Patterson function.!! A three-dimensional Fourier synthesis
using the signs calculated from the cobalt atoms alone (119, of
the total electron density) indicated the coordinates of the phos-
phorus, bridging oxygen, and four other oxygen atoms. A
second Fourier synthesis phased on all these atoms was used to
locate the remaining oxygen atoms. At this point the atoms were
assigned reasonable temperature factors and a set of structure
factors, F.’s, were calculated!? using the atomic scattering
factors of Ibers;'? the residual R; (defined as EHFO] - \FCH/
Z|F,|) was 0.54.

After two cycles of full-matrix least-squares refinement!? of all
positional parameters for the atoms which had been located, a
new Fourier map showed all carbon positions. Five cycles of
refinement of coordinates and isotropic temperature parameters
for all atoms reduced R; to 0.115, with reasonable temperature
factors for all atoms except C26, which had an isotropic tempera-
ture parameter, B, greater than 24 A2 (vide infra).

After corrections for absorption!* made using p = 45.0 cm™!
(transmission coefficients ranged from 0.26 to 0.46) and anoma-
lous dispersion, using anomalous dispersion constants (Af' =
—2.19, Af"Y = 0.74) estimated by interpolation from values for
Cr in Cr radiation and Zn in Zn radiation reported by Cromer,s
five cycles of isotropic refinement again gave convergence.
Three cycles were then executed using anisotropic temperature
factors of the form exp[— (Buh? + Bak? + Bul? + 2Buhk + 281kl
+ 28xkl)] for cobalt and phosphorus atoms and isotropic ones
for all other atoms. In the next cycle of refinement, the weighted
Rfactor, Ry = {Zw[| Fy| — |Fo|12/Zw|F.|2}/, dropped from 0.121
to 0.102. A weighting scheme, chosen in accordance with Cruick-
shank’s criterioni® that wA? should be a constant, was assigned as

follows: for F, £ 20, ¢ = v/ _2.15F, + 55; for Fs > 20, ¢ =

V4 0.29F, + 4.2. One cycle of refinement caused no significant
shift in the parameters and a moderate decrease in the estimated
standard deviations.

The isotropic temperature parameter, B, for C26 was still
unreasonably high (23 A?), so a difference Fourier map was
calculated from structure factors derived after eliminating this
atom from the structure. A diffuse area of moderate electron
density was seen about 1.5 A from C25, indicating considerable
positional disorder for C26. Consequently four fractional posi-
tions were assigned to the disordered atom as shown below.

Fractional Assigned
atom X/a Y/b Z/c B Rel wt
C26A 0.467 0.200 0.294 12.0 0.2
C26B 0.467 0.236 0.300 12.0 0.4
C26C 0.427 0.260 0.317 12.0 0.3
C26D 0.393 0.266 0.327 12.0 0.1

A final cycle of refinement, using the weighted data and vary-
ing all parameters except those for C26, gave R, = 0.092, R; =
0.098, and no parameter shifts greater than half the estimated
standard deviations. A final difference Fourier map showed no
electron density greater than 0.7 e/A%. The observed and final
calculated structure amplitudes are given in Table I.
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Results

The numbering scheme for the atoms is shown in
Figure 1.

Positional coordinates for all atoms except C26 and
the isotropic temperature factors for oxygen and car-
bon atoms are listed in Table II. The components of
the anisotropic thermal vibration tensors for the cobalt
and phosphorus atoms are given in Table III. Bond
distances and angles within chelate rings are listed in
Table IV, Other bond distances and angles are given
in Tables V and VI. Figure 2 is a projection of the
structure on the ac plane.

Discussion

It has been found that the crystalline compound has a
trinuclear structure, as had been anticipated from the
molecular weight measurements on benzene solutions.
Moreover, the structure provides each cobalt atom
with a nearly regular octahedral environment so that
the electronic spectrum and magnetic properties pre-
viously reported can also be accounted for in terms of
structure. However, the way in which the chelate rings
are disposed about the metal atoms, namely, three rings
closed around each terminal atom and none around the
central metal atom, is a remarkable and entirely unan-
ticipated feature of the structure.

The structure consists of three octahedra sharing faces
as in the case of the trimeric form of bis(acetylaceto-
nato)nickel(1I)® but differs in the arrangement of the
rings. Like the [Ni(AcAc),]s structure, this one obeys
the numerical requirement!” that, in order to utilize
each oxygen atom at a coordination site and simul-
taneously satisfy a coordination number of 6 for each
metal ion in a polymeric structure consisting of # octa-
hedra fused together on faces, the number » must be 3.

Crystallographically, the structure has as its only
symmetry element a center of inversion. Hence the
molecule, consisting of two tris-chelated metal atoms
of virtual local symmetry Cs, is an optically inactive
meso form. Neglecting the conformations of the eth-
oxy groups, the molecule has very nearly a threefold
symmetry axis passing through the chain of metal
atoms. When this C; axis is combined with the in-
version center, the point group representing the virtual
symmetry of the skeleton of the molecule is S4(3).

The coordination polyhedron about the central co-
balt atom, Col, is an octahedron whose only apprecia-
ble distortion consists in being stretched out along that
threefold axis which corresponds to the molecular axis,
thus reducing the virtual local symmetry to Diq. The
largest difference between two Col-O bond lengths is
only twice the sum of the standard deviations and
presumably without chemical significance even if real.

This work has led to the most accurate!® structural
parameters yet determined for a polynuclear §-keto-
enolato complex with bridging keto oxygen atoms at
shared octahedral faces. It thus provides the best

(17) F. A, Cotton and J. P, Fackler, Jr., J. Am. Chem. Soc., 88, 2818
(1961),

(18) See, however, a forthcoming report from this laboratory on [Co-
(AcAc)s]sH:0,



20 T. ALnERT CoTrToN, RENE HUGEL, AND ROGER Ei1ss

OBSERVED AND CALCULATED STRUCTURE Facrors (X 10), 1N ELECTRONS, FOR Co;(DEPAM )g
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Ni-O distances in [Ni(AcAc):]; render the apparent
differences between them meaningless, with perhaps one

exception among the six pairs.
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case’ there appear to be consistent, real differences in
the range 0.1-0.3 A between the shorter Co—-O bond
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is within a chelate ring and the other longer one
completes the bridge to the next Co atom. The
estimated standard deviations of the Co-O bonds in
this case were about 0.03 A, so that the observed dif-

ferences should be real.

In the present case, there is
no significant asymmetry in any of the three crystal-
lographically distinct Col-~-0O-CoZ2 sets.
distances (bonds within chelate rings) lie in the narrow

The Co2-O
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Figure 1.—The numbering scheme for the atoms. The index

subscript # (=1, 2, or 3) identifies the particular crystallographi-
cally distinct chelate ring.

TasLE II

FractioNAL COORDINATES AND ISOTROPIC TEMPERATURE
FacTors FOorR THE AToMS OF Cos{ DEPAM )s*

Atom x y z B
Col 0.0 0.0 0.0

Co2 0.0034 (2) 0.1265 (2) 0.1019 (1)

P1 0.0851 (4) 0.3590 (3) 0.0865 (2)

P2 0.2057 (4) 0.0320 (3) 0.2288 (2)

P3 —0.2888(3) 0.1312 (3) 0.0932 (2)

013 —0.0439 (7) 0.1570 (6) 0.0085 (3) 3.41(18)
023 0.1481 (7) 0.0428 (6) 0.0868 (3) 3.12(17)
033 —0.0962 (8) —0.0105 (6) 0.0583 (3) 3.45(17)
014 0.0984 (8) 0.2691 (7) 0.1259 (4) 3.98(19)
024 0.0758 (8) 0.0758 (7) 0.1916 (4)  4.22(19)
034 —0.1632(8) 0.1829 (7) 0.1063 (4) 4.22(20)
011 0.0290 (9) 0.4587 (7) 0.1055 (4) 5.47 (23)
012 0.2235 (11) 0.4105(9) 0.1001 (5) 7.36 (28)
021 0.2016 (11) —0.0580 (9) 0.2716 (5) 7.51 (28)
022 0.2924 (10) 0.1036 (9) 0.2848 (5) 6.95 (26)
031 —0.3273(9) 0.1297 (7) 0.1495 (4) 5.20 (21)
032 —0.4085(9) 0.1994 (7) 0.0502 (4) 5.56 (23)
Cl —0.0009 (13) 0.3392 (10) 0.0092 (6) 3.89(28)
Cll1 —0.0494 (12) 0.2459 (10) —0.0193 (6) 3.583 (27)
Cl2 —0.1211(14) 0.2404 (11) —0.0899 (7) 5.17 (33)
C13 —0.1060 (20) 0.4551 (16) 0.0974 (9) 9.01 (52)
Cl4 —0.1462 (21) 0.5591 (18) 0.1109 (10) 9.88(56)
Cls 0.3303 (24) 0.3429 (19) 0.1042 (11) 10.79 (63)
Cl16 0.4525 (28) 0.3861 (24) 0.1421 (13) 13.67 (80)
C2 0.2955 (14) —0.0011(12) 0.1880 (7) 5.28 (33)
c21 0.2593 (12) 0.0071 (10) 0.1263 (6) 3.96 (29)
C22  0.3520(15) —0.0267(12) 0.0083(7)  6.11(37)
C23 0.1522 (23) —0.1548 (19) 0.2496 (10) 10.34 (60)
C24 0.0093 (23) —0.1665(18) 0.2292 (10) 10.64 (62)
C25 0.3211 (23) 0.2097 (19) 0.2717 (10) 10.79 (62)
C26 (See text)

C3 —0.3044 (13) 0.0044 (11) 0.0646 (6) 4.80(32)
C31 —0.2116 (13) —0.0432 (10) 0.0519 (6) 4.14 (30)
C32 —0.2411(15) —0.1562(12) 0.0243 (7) 6.03 (37)
C33 —0.2441 (18) 0.0619 (15) 0.2026 (9) 8.06 (47)
C34 —0.2995 (22) 0.0762 (18) 0.2499 (11) 10.83 (63)
C35 —0.4009 (19) 0.2478 (16) —0.0022 (9) 8.20 (47)
C36 —0.4660 (23) 0.3533(20) —0.0119(11) 11.75(69)

¢ Figures in parentheses are the estimated standard devia-

tions, occurring in the last recorded decimal place of each pa-
rameter.

range 2.096-2.111 A, each with an esd of 0.008 A, while
the three Col-O distances, each with an esd of 0.007
or 0.008 A, lie in the range 2.092-2.125 A. The aver-
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TABLE III

A. Anisotropic Temperature Parameterse for the
Cobalt and Phosphorus Atoms (X 104)

Atom Bu . P Bss Bz Bis B2

Col 86 (3) 33 (2) 17 (1) 1(2) 9 (1) 0(1)
Co2 92 (3) 36 (2) 18 (1) —1(2) 11 (1) 0(1)
Pl 120 (5) 373) 27(1) —14 (3) 21 (2) -3(1)
P2 136 (5) 68 (3) 20(1) 2(3) 13(2) 10 (1)
P3 92 (4) 56 (3) 27(1) —7(3) 21 (2) 2(1)

B. Rms Amplitudes of Thermal Vibration

Atom Minor axis Median axis Major axis
Col 0.1657 0.1931 0.2378
Co2 0.1731 0.2017 0.2401
P1 0.1683 0.2527 0.2638
P2 0.1937 0.2530 0.2914
P3 0.2025 0.2285 0.2580

@ Figures in parentheses are estimated standard deviations
occurring in the last significant figure.

TABLE IV
DISTANCES AND ANGLES IN THE CHELATE RINGS§®

A. Bond Lengths, A

Ring,
n Cn2-Cnl Cnl-Cn Cnl-On3 Cn—Pn Pn—-Ond
1 1.54 (2) 1.37 (2) 1.309 (15) 1.714(13) 1.458(9)
2 1.52 (2) 1.37 (2) 1.296 (15) 1.721(15) 1.467(9)
3 1.57 (2) 1.35(2) 1.306 (15) 1.746 (15) 1.467 (9)
Mean 1.543 (12) 1.363 (11) 1.304(9) 1.727(9) 1.464 (5)
Ring, Cn3-Cn4,
" Pn-Onl, Pn—-On2 Onl-Cn3, On2-Cnb Cn5-Cnbé

1 1.574 (10), 1.589 (12)
2 1.556 (12), 1.582 (11)
3 1.576 (10), 1.574 (10)

1.44 (2),1.453) 1.49 (3),1.41 (4)
1.37 (3), 1.46 (3) 1.48 (3),...0
1.50 (2), 1.44 (2) 1,51 (3),1.51 (3)

Mean 1.575 (5) 1.44 (1) 1.48 (2)
B. Bond Angles, Deg
Ring,
” Cn2-Cnl-Cn Cn2-Cnl-On3 On3-Cnl-Cn Cnl-Cn-Pn
1 120 (1) 114 (1) 125 (1) 127 (1)
2 120 (1) 114 (1) 126 (1) 128 (1)
3 118 (1) 112 (1) 130 (1) 123 (1)
Mean 119.3 (7) 113.3 (7) 127 (1) 126 (1)
Ring,
" Cn-Pn-Ond Onl-Pn—-On2 Cn—Pn-0Onl, Cn—-Pn-0On2
1 116.3 (6) 94.3 (6) 108.6 (6), 110.4 (6)
2 114.6 (8) 92.8 (8) 112.0 (7), 109.0 (7)
3 115.9 (8) 96.1 (5) 107.8 (6), 110.0 (8)
Mean 115.6 (4) 94.4 (3) 109.6 (4)
Ring, On4—Pn—Onl, Pn—0Onl1-Cn3, Onl1-Cn3-Cn4,
n On4—Pn—~On2 Pn—-0n2-~Cnb On2-Cnb5-Cnbé
1 113.6 (5), 111.5 (8) 117 (1), 118 (1) 110 (1.5), 111 (2)
2 113.0 (6), 113.5 (6) 122 (1), 118 (1) 115 (2), ...°
3 113.6 (5), 111.7 (5) 116 (1), 118 (1) 105 (1.5), 109 (1.6)
Mean 112.8 (2) 118.3 (5) 110 (1)

e Figures in parentheses are standard deviations occurring
in the last figure listed for each parameter. ? Dimensions in-
volving C26 are omitted for reasons explained in the text.

age values for each set, 2.105 = 0.005 and 2.107 =+
0.005 A, are effectively identical.

The Col—-Co2 distance, 2.916 = 0.002 A, may be
compared with the metal-metal separations across
shared octahedral faces in related compounds. In
[Ni(AcAc).]s the distances® are 2.88 and 2.90 A, each
with an esd of 0.02 A, while in [Co(AcAc),], this type of
Co-Co distance is 3.19 = 0.01 A.

Perhaps the most interesting dimensions in the struc-
ture are those within the chelate rings. This is because
one might hope that these bond lengths would provide
some basis for assessing the electronic structure and,
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TABLE V
Bonp DistanceEs To CoBALT AToMs (A)e
Col-013 2.103 (8)!
Co01-023 2.125 (7)Av 2.107 (5)
Co1-033 2.092 (8)
Co2-013 2.109 (8)
Co2-023 2.006 (8)pAv 2.105 (5)
Co2-033 2.111(8)
Co2-014 2.074(9)
Co2-024 2.062 (9),Av 2.061 (5)
Co2-034 2.046 (9)
Co1-Co2 2.916 (2)

¢ Numbers in parentheses following each bond length are
standard deviations occurring in the least significant figure.
For the average values, the numbers in parentheses are stan-
dard deviations of the mean occurring in the least significant
figure.

TaBLE VI

Boxp ANGLES INvoLvING COBALT
AND OXYGEN ATOMS (DEG)®

A, 0-Co02-0O Angles within the Chelate Rings

012~-Co2-014 90.3
023-Co2-024 91.1
033-Co02-034 90.7
Mean 90.7
B. 0O-Co02-0 Angles Involving Bridging Oxygen Atoms Only
013-C02-023 77.6
013-C02-033 77.4
023-C02-033 77.1
Mean 77.4
C. 0-Co02-0O Angles Involving Terminal Oxygen Atoms Only
014-Co02-024 93.1
014~-Co02-034 92.8
024-Co02-034 91.7
Mean 92.5
D. Remaining O~Co02-0O Angles
013-C02-034 98.9
014-Co02-023 98.9
024-C02-033 98.7
Mean 98.8
E. 0-Col-0 Angles
013-Co01-023 77.1
013-Co01-033 77.9
023-Co01-033 76.9
Mean 77.3
F. Co0l-0-Co2 Angles
Co1-013-Co2 87.6
Co01-023-Co2 87.4
Co01-033-Co2 87.9
Mean 87.6

@ The standard deviation in each angle is 0.3°.

particularly, the extent of w-electron delocalization in
the chelate rings. It has previously been proposed,?
on the basis of several types of spectroscopic data,
that there is considerable delocalization, as represented
by the assignment of an appreciable coefficient to ca-
nonical form III in a resonance description of the che-
lated ligand

H H H
C C c-
NSNS NSNS NSNS
P C P C P C
A | <= /] [ </ |
¢ - -0 0 O o0
II II1 v

Inorganic Chemistry

Co P OForming

Ethoxy C
Co-OBands O

Figure 2.—Upper: A schematic representation of the tri-
nuclear molecule of Cos(DEPAM )¢ as seen in the (010) projec-
tion. For clarity the ethoxy groups have not been included
and portions of the ligand rings are represented by heavy lines.
Lower: A more detailed view of the same projection in which all
atoms and bonds are shown. The origin of the unit cell is at
the middle cobalt atom.

It is to be noted, however, that the previous argu-
ments in favor of considerable delocalization were based
solely on data for compounds believed to be mono-
nuclear; that is, the data and deductions therefrom
applied only to the situation where the oxygen atoms
were nonbridging. It is reasonable to suppose that in
the compound studied here, where the carbonyl oxygen
atoms are coordinated to two cobalt ions, the con-
tribution of IT will be increased relative to I1I and IV.
This means that less delocalization would be expected
in this polynuclear compound than in the typical
mononuclear ones to which the previous discussion?
referred.

In comparing the observed bond lengths in the chelate
rings with values which might be expected for localized
(11) and delocalized (I1 «» TIT «» 1V) systems, we may
begin by noting that there are no significant differences
between the dimensions of the three crystallographically
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distinct rings. Hence, the mean values given in Table
1V may be used. These are listed in the third columa
of Table VII. Column 2 of Table VII lists bond lengths
which might be expected for a completely localized
structure, essentially the canonical form II. Column 4
has values for a delocalized structure, which we take
for simplicity to be an equal mixture of the canonical
forms IT and III, so that each of the four bonds should
have an order of 1.5. The boand lengths selected for
each of the reference structures were obtained from the
sources indicated in footnotes to the table,

TABLE VII

CoMPARISON OF OBSERVED CHELATE RING DIMENSIONS
WITH THOSE FOR LIMITING STRUCTURES

—+——————-—Bond lengths, A e — —_
Bond Jocalized Observed Delocalized
oP 1.40-1.52¢ 1.464 == 0.005 1.55-1.652
PC ~1.81¢ 1.73 £0.01 1.72-1.754
cC ~1.34% 1.36 = 0.01 ~1.40°
CO ~1.31% 1.30 =0.01 ~1,29%

@ Estimated from the compilation of D. E. C. Corbridge in
“Topics in Phosphorus Chemistry,” Vol. 3, E. J. Griffith and
M. Grayson, Ed., Interscience Publishers, Inc., New York,
N. Y., 1966, pp 57-394. °? From “Tables of Interatomic Dis-
tances and Configuration in Molecules and Ions,” Supplement,
Special Publication No. 18, The Chemical Society, London, 1965.

1t is evident that the present data do not resolve the
problem. Comparison of the observed C-C and C-O
bond lengths with those of the reference structures leads
to no decision because of the inherently small differ-
ences between the values expected for the two refer-
ence structures. The observed P-C distance by it-
self appears to favor the delocalized structure; how-
ever, the observed P-O distance appears, equally
strongly, to favor the localized structure. We believe
that this impasse arises from the fact that the relation
of P-O and P-C distances to bond orders depends on
the nature of the other bonds to the phosphorus atom,
Unfortunately, none of the compounds appearing in
the tabulations from which the bond lengths for the
reference structires were selected is a really close analog.
For example, as a standard of reference for the local-
ized structure, a coordination compound formed by a
diethylphosphonic acid would be appropriate, but no

THE DIETHOXYPHOSPHONYLACETYLMETHANE ANION 23

such compound, or even a very near relative thereof,
has yet been studied structurally.

Undoubtedly, the most important stimulating aspect
of this structure is the fact that it is built up of a non-
chelated Co(II) atom sandwiched between two tris-
chelated Co(II) atoms. This is particularly surprising
since there appears?* to be a readily reversible equi-
librium between Co3(DEPAM)s and the monomers,
Co(DEPAM),, in solution. This equilibrium, and the
rate laws, are being studied. One might reasonably
expect that with the extent of opening and closing of
chelate rings required in order to interconvert the
trinuclear molecule and the monomers, the association
and dissociation processes would differ in rate from
corresponding processes (as, for example, in the Co-
(AcAc); and Ni(AcAc), systems) in which no opening
and closing of rings is required.

A very obvious question concerning the structure of
Co;(DEPAM); is why the molecule has the unexpected
arrangement of rings. The DEPAM ion is quite un-
symmetrical, sterically and perhaps also electronically.
Models indicate that steric factors alone might provide
sufficient reasons for the observed arrangement. In a
structure like that of [Ni(AcAc):]s, in which two chelate
rings remain closed around each metal atom, several
close contacts (~4.6 A) between P atoms of (C,H;0).P
groups would have to occur, whereas in the structure
actually found, the six close P-P distances are about
7.1 A. With B-ketoenolato complexes of nickel(II) it
has been shown!” that by increasing the bulk of the sub-
stituents on both carbonyl carbon atoms equally, as-
sociation can be inhibited and, finally, prevented
altogether. However, the consequence of increas-
ing the bulk of only one substituent remains to be
determined. Such a study should help to show how
satisfactory a purely steric explanation of the structure
may be in the present case.

Finally, it may be observed that the structure of Cos-
(DEPAM); has some interesting chemical implications.
There must be an electronically excited state corre-
sponding to the description of the molecule as two tris-
chelated Co(III) atoms sandwiching a Co(0) atom.
The extent to which the molecule may actually react
as such a description might suggest is presently under
investigation.





