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In order to estimate theoretically the magnitude
of the Davydov splitting and the intensity en-
hancement for the direction parallel to the ¢ axis,
we carried out the calculation of the exciton—exciton
type of interaction for the pyridine molecules in the
crystal form. The actual calculation was made by the
SCFMO method which was adopted by Tanaka and
Tanaka?' for the calculation of anthracene, long-
range interaction (50 A-) being taken into account
following the approximate method developed by Rice,
et al.2? The result shows that the splitting is larger
for the direction parallel to the & axis than for the
direction parallel to the ¢ axis. Further, in consis-
tency with the theoretical consideration, the ab-
sorption band appears at lower frequencies for the
former direction than for the latter. The calculated
oscillator strengths depend strongly on the model used
for the estimation of the intermolecular Coulomb
integral.?®  This prevents us from discussing quan-
titatively the intensity change due to the exciton-
exciton type of interaction. However, from the qual-

(21) M. Tanakaand J. Tanaka, private communication,
(22) R. Silbey, J. Jortner, and S. A, Rice, J. Chem. Phys., 42, 1515 (1965).
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itative point of view, the calculation shows that the
intensity of the b-parallel band considerably decreases
as the result of exciton—exciton type of interaction and
that this absorption has comparable intensity with
the weak c¢-parallel band.?* From the above dis-
cussion, we consider that the two bands at 4.84 eV
(c)) and 4.65 eV (b)) may both be atrributed to the
local excitation within pyridine.

Acknowledgment.—The authors wish to express
their sincere thanks to Dr. Ichiro Hanazaki of the In-
stitute of Physical and Chemical Research for his kind
advice given them in doing the theoretical calcula-
tions.

(23) In the present calculation, interatomic Coulomb integrals for dis-
tances within 50 A were estimated by use of two models., In one of them,
the point charge approximation was adopted, and in the other, interatomic
Coulomb integrals were represented by e2¢~E/20/R (R is the interatomic dis-
tance). In the latter, the screening effect of the other electrons was con-
sidered. The calculated oscillator strengths sometimes differ by the order
of 10 by changing the model from one to the other. Moreover, it was found
that the long-range interaction over 50 A of interatomic distances gives great
effect on the oscillator strengths. Taking the latter model and considering
the long-range effect, the band under consideration turns out to have com-
parable intensities in the directions parallel to the & and ¢ axes.

(24) As already mentioned above, as far as the plane of pyridine molecule
tilts from the yz plane by only ~10°, the intensity of the ¢-parallel band is
small,
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Potentiometric and spectrophotometric techniques were used to determine the equilibrium constants for three reactions:
(1) Co(NH;)s0H*+ + HoO = Co(NH;):0H?* 4+ H30F; (2) Co(NH;:);0D:23* + D20 = Co(NH;);0D2+ 4+ D;O+; (3) Co-
(NDj3)s0D:22* + DO = Co(ND;)s0D2+ 4 D3O *at 25° in a medium with [C10,~] = 0.3000 M. Values of log *K; = —6.22,
-6.75 (899, D;0), and —86.70 (999, D:0), respectively, were obtained. Each value of the equilibrium constant was re-
fined by least squares. The partially exchanged species Co(INH;);OD;? * was studied using a flow system. Contrary to an
earlier report, the aquopentaamminecobalt(I1I) ion exhibits a rather normal isotope effect, log (Ku/Kp) = 0.48 =+ 0.01

(error at the 999, confidence limit).

A comparison of the dissociation constant of Co(NH;);OD,3+ with that of Co(NDs)s-

OD;?+, log Ky = —6.81 and —6.70 (valid for 100 mol %, D:0), respectively, indicates the size of any secondary isotope effect
which arises from the exchange of the 15 ammine hydrogens.

Introduction

Both theory and measurement of acid dissociation
constants in protium and deuterium oxides have in-
dicated a correlation between the magnitude of the
dissociation constant and the magnitude of the solvent
isotope effect. This equilibrium isotope effect is con-
veniently described in terms of log (Ku/Kp) where Ky
and Kp are the acid dissociation constants in H;O and

(1) Research sponsored by AFOSR(SRC)-OAR, USAF Grant No. AF-
AFOSR-6081-65 and -67; portions of this report are based on a dissertation
submitted by R. C. 8. to the Graduate School of the University of Minne-
sota in partial fulfillment of the requirements for the Ph.D, degree, 1867.

(2) Du Pont Fellow, 1964-1965.

(3) Research Fellow in Chemistry.

D,0 solution, respectively.® In general, this quantity
increases as the acid strength decreases.

Early measurements suggested an approximately
linear relation between log (Ku/Kp) and pKy. The
same conclusion was anticipated* on the basis of a very
simple model; however, more recent studies®:’ have
shown that this result is not necessarily true if the acids
are of different structural types.

One class of acid which has appeared to behave very

(4) See R. P, Bell, ““The Proton in Chemistry,” Cornell University Press,
Ithaca, N. Y., 1959, Chapter 11, and R. W. Gurney, “Ionic Processes in
Sotution,” McGraw-Hill Book Co., Inc,, New York, N, V., 1953, p 150, for
discussions of this effect.

(8) R. P. Bell and A. T. Kuhn, Trans. Faraday Soc., 59, 1789 (1863).
(8) A.O.McDougall and F, H, Long, J. Phys. Chem., 66, 429 (1962).
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irregularly is the aquo acid, that is, an acid where the
proton is transferred from water molecules in the first
coodination sphere of a metal ion. Huldis and Dodson
reported that the first dissociation of the hexaaquoiron-
(I1I) ion (p*K; = 2.92, 21°, u = 0.55) exhibited no
measurable isotope effect” and a similar result was re-
ported® for the first dissociation of the aquothal-
lium(III) ion (p*K; = 1.16, 25°, u = 3.0). Taubehas
reported? that the aquopentaamminecobalt(IIT) ion
showed an unusually small isotope effect: log (Ku/
Kp) = 0.18, p*K; = 6.16, 30°, u = 0.25.9

In contrast, measurements! on the aquo cation (C,-
H;)sSn+ indicated a normal isotope effect: log (Ku/
Kp) = 0.69, p*K; = 6.81, 25°, u =~ 3.0. The first
dissociation of the hexaammineplatinum(IV) cation'?
also shows a rather typical isotope effect: log (Ku/
Kp) = 062, pK; = 7.16, 25°. Simple ammine com-
plexes might be expected to show discrepancies analo-
gous to those exhibited by aquo complexes.

A better understanding of the structure and sol-
vation of aquo acids and the nature of their proton-
transfer processes may be gained from a study of the
apparent anomalies which they sometimes exhibit in
the isotope effect.,

It has been suggested!! that a possible cause of small
isotope effects with aquo and ammine complexes could
be large secondary isotope effects. Not only is the
ionizing proton changed to a deuteron in the study of an
ion like Fe(OH,)s®+ but 11 other hydrogens are also
exchanged. The studies of the aquopentaammine-
cobalt(IIT) ion were conducted on the species Co(INHj);-
OH,3* and Co(ND3);0D,** where 16 hydrogens other
than the one ionizing are isotopically substituted.
Since the charge on the acid is reduced in going to the
conjugate base, the hydrogens should become less sat-
isfactory donors in forming hydrogen bonds to the
solvent molecules. This has been reported to lead to a
strengthening of the N-H bonds within the first co-
ordination sphere of ammine complexes.®

This change in bond character going from reactant to
product could give rise to a secondary isotope effect
which would either oppose or, conceivably, com-
pletely compensate for the primary effect. Indeed the
reaction

Co(NH;);OH.**+ + ClI™ = Co(NH;);CI** + H,0

where no primary effect is involved, has been re-
ported® to exhibit an ‘“‘inverse” isotope effect: log
(Ku/Kp) = —0.167. A significant secondary isotope
effect has been observed!* with formic and deuterio-
formic acids, DCO.H, in H;O. The exchange of the
single hydrogen leads to a change in pKy of 0.035 =
0.002 unit.

(7y J. Huldis and R. W. Dodson, J. Am. Chem. Soc., 78, 94 (1956).

(8) T. E. Rogers and G. M. Waind, Trans. Faradaey Soc., 87, 1360 (1961).

(9) H. Taube, J, Am. Chem, Soc., 82, 524 (1960),

(10) J. Bjerrum, “Metal Ammine Formation in Aqueous Solution,”
Thesis, Copenhagen, 1941; reprinted by P. Haase and Son, Copenhagen,
1957, p 280.

(11) R. 8. Tobias and M. Yasuda, J. Phys. Chem., 68, 1820 (1964).

(12) R. G. Pearson, N. C. Stellwagen, and F. Basolo, J. Am, Chem. Soc.,
82, 1077 (1960),

(13) Seeref 11 for a discussion of the evidence for this.
(14) R. P. Bell and W. B. T. Miller, Trans. Faraday Soc., §9, 1147 (1963).

Inorganic Chemistry

In order to determine whether appreciable secondary
isotope effects occur with aquo and ammine com-
plexes, we have measured the equilibrium constants
at 25° in a constant ionic medium with [CIOs~] =
0.3000 M for reactions 1-3 using precise spectropho-

Co(NH):OH$+ + H,0 = Co(NH;);0H?+ + H,0+ (1)
Co(NH;);0D28% 4+ D20 = Co{NH;);0D2*+ + D,0*+  (2)
Co(ND;);0D;3" + D0 = Co(ND;);OD2+ + D;O+ (3)

il

tometric and potentiometric techniques. The aquo-
pentaamminecobalt(III) cation is probably the most
extensively studied aquo ion, and its equilibrium con-
stant is of a convenient magnitude for precise determi-
nation.

Since effects such as those outlined above could occur
in the formation of the transition state of a reaction in-
volving aquo or ammine complex cations, large sec-
ondary kinetic isotope effects might also occur with
these cations. For reactions proceeding by a conjugate-
base mechanism, a knowledge of the equilibrium iso-
tope effect is also necessary for an interpretation of the
observed kinetic effect. The change of solvent from
Hy0 to D:O affects both the magnitude of the equilib-
rium constant for the proton-transfer process as well
as the rate constant of the slow step. Some of these
aspects have been discussed by Pearson, et al.!2

Experimental Section

Preparation of Solutions.—Aquopentaamminecobalt(IIT) per-
chlorate was prepared from carbonatopentaamminecobalt{III)
nitrate which was synthesized by standard methods.’* Car-
bonatopentaamminecobalt(III) nitrate (70 g) was dissolved in
4500 ml of water at room temperature. Perchloric acid (390
ml, 2 M) was added, and the solution at pH 2 was evaporated to
1100 ml, filtered, and cooled overnight in an ice bath. The
crystals were separated by filtration, washed with 20 ml of ice
water, recrystallized three times from 2 M HC1O, and once from
water, and finally air dried at 50° for 4 hr. The compound was
analyzed for cobalt by destroying the complex with sodium
hydroxide, reducing the oxide with sulfur dioxide, and titrating
the cobalt (II) with EDTA.® The other analyses were carried
out commercially .17

Anal. Caled for [Co(NH;):0H,](Cl04): Co, 12.8; N, 15.2;
H, 3.72; Cl, 23.1. Found: Co, 12.9; N, 15.6; H, 3.79; Cl,
23.2.

Anhydrous NaClO,; and stock solutions of DCIO, and NaOD
were prepared as described earlier.!! Solutions containing Co-
(NH;);0H,%+ were prepared by adding weighed amounts of [Co-
(NH;);0H,](ClO04)s to standard HCIO4 or DCIO4 and protium or
deuterium oxide. The perchlorate ion concentration was ad-
justed to 0.3000 M by adding either anhydrous NaClO4 to the
deuterium-containing solutions or weighed portions of a standard
solution of the salt in H,O for the protium oxide solutions.

The near-infrared spectrum of solutions of the aquopenta-
amminecobalt(I11) in D;O was scanned, and the intensities of
the band at 3988 cm™? (», + »(HDO)) and the band at 6452
cm ™! of the ammine complex were measured as a function of time.
Exchange was found to be almost complete in 1.5 hr at the pH
of the stock solution, and it was only necessary to let the solu-
tions stand at 25° for 24 hr to ensure complete exchange.

All amniine hydrogens behave as if they were equivalent, and a
pseudo-first-order rate constant for their exchange was calculated

(15) A. B. Lamb and K, J. Mysels, J. Am. Chem. Soc., 67, 468 (1945);
Inorg. Syn., 4. 171 (1953).

(16) F. J. Welcher, “The Analytical Uses of Ethylenediaminetetraacetic
Acid,” D. Van Nostrand Co., Inc.,, New York, N, Y., 1958, p 230.

(17) Schwarzkopf Microanalytical Laboratories, Woodside, N. V.
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from the spectrophotometric data using the expression!® & =
(2.303/t) log [(Aw — Ao)/(Ae — A:)]. Here ¢ is the time after
mixing, 4., is the absorbance at infinite time, A4 is the absorbance
at zero time, and A4 is the absorbance at time ¢£. The stock solu-
tions prepared for the potentiometric measurements had pH 4.7
4+ 0.2. Under these conditions at 25°, measurements of the
disappearance of the 6452-cm ™ band with solutions having [Co-
(NH;);0H**] = 0.100 and 0.010 3 gave & = 0.064 = 0.005
min=!, Measurements of the growth of the 5988-cm~! band
with solutions 0.050 and 0.005 M yielded a value of 2 = 0.051 =
0.005 min—', These correspond to a second-order rate constant
of ca. 2 X 108 M1 sec™! similar to the value reported!® for Co-
(NHj)e?* of 1.6 X 108 M ~1sec™,

Emf Measurements.—The general procedures, the cell, and
the associated vibrating-reed electrometer circuitry have been
described before.®® The H;O+ and D3O+ concentrations of the
solutions were measured at 25 == 0.05° with the cell

10 mM Cl— H mM H;Ot (D;0)* %
Ag|AgCli290 mM 300 mM || Cu mM Co(NH;);OH?*Glass
Cl104~ NaClOy (Co(ND;)s;0D,+) elec-
300 mM 300—3Cy—H mM Nat |trode

Na* 1300 m3 ClO,~

The standard ‘“Wilhelm’’ type of reference electrode was used.?
For the measurements with the deuterium oxide solutions, the
solutions were made up with D;0 throughout, and the glass elec-
trode was stored in D;O. Beckman Type 40498 electrodes were
used. Although the suitability of the glass electrode for measure-
ments in D»0 solutions has been challenged,® they appear to give
reliable results.®:22-28 The electrodes were calibrated as con-
centration probes in the constant jonic medium. The parameters
E° and % in the expression E = E° + 59.152 log [H*] + k[H*]
were determined from titrations of excess HClIO; vs. NaOH or
DCIO, vs. NaOD in the same solutions used to obtain the data
on the dissociation of the ammine complex. In the 0.300 M
perchlorate ionic medium, 2 = —0.172 mV/mM with protium
oxide and ~0.05 mV/mM with deuterium oxide. The smaller
value for the junction potential term with D;O is to be expected
because of the lower mohility of the oxonium ion in the latter
solvent. A few data also were collected with a fast titration tech-
nique as exchange was occurring. A solution of Co(NH;);OH,®+
in H;O was added to D:0O, and several data sets were obtained ina
few minutes.

Flow Measurements.—In order to titrate the partially ex-
changed species Co(NH;);0D:%, a procedure was devised
whereby concentrated solutions containing Co(NH;);OH3*+ in
H,0 could be diluted very rapidly with D;O and subsequently
titrated with NaOD. The apparatus diagrammed in Figure 1
was used to collect data within a fraction of 1 sec after titration
of the ammine complex in D;O at #, the average number of pro-
tons transferred per aquopentaamminecobalt(IIT) ion, =0.5.
The solvent reservoir was constructed either from Pyrex glass or,
in some later experiments, from stainless steel. The motor-
driven piston burets were Aminco-Koegel Menisco-matic burets,
American Instrument Co., Silver Springs, Md. They were
equipped with 32-ml titrant reservoirs. The mixing chamber was
constructed from a solid block of Plexiglas with offset inlet jets
for the two splutions. A Beckman 40310 electrode was used.
The apparatus was housed in a room maintained at 25 4= 2°.

The concentrated acidic solution of the aquopentaammine-
cobalt(III) ion was injected into a stream of 99.5 mol 9, D,O.
This solution was then mixed with an NaOD solution. By vary-
ing the relative volumes of the DyO solution and of NaOD, dif-

(18) F. Basolo, J. W. Palmer, and R. G. Pearson, J, Am. Chem, Soc., 83,
1073 (1960).

(19) J. W. Palmer and F. Basolo, J. Inorg. Nucl. Chem., 18, 279 (1960).

(20) C. E. Freidline and R. S. Tobias, Inorg, Chem., B, 354 (1966).

(21) W. Forsling, S. Hietanen, and L. G. Sillén, Acte Chem. Scand., 8§, 901
(1952),

(22) V. Gold and B. M. Lowe, J. Chem. Soc., A, 936 (1967).

(23) P. K. Glascoe, J. Phys. Chem., 69, 4416 (1965).

(24) D. Bunn, F. S, Dainton, and S. Dickworth, Trans. Faraday Soc., 87,
1131 (1961). .

(25) N.C.Li, P. Lang, and R. Mathur, J. Phys. Chem., 88, 1074 (1961).

(26) K. Mikkelson and S, O, Nielsen, bid., 64, 632 (1960),
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Figure 1.—Flow system for the titration of Co(NH;);0D:%+ in
D;0.

ferent degrees of neutralization were obtained. For example, 45
ml of D;0 was streamed with 5.130 ml of a solution 50.08 mM/ in
Co(NH;);0H,**. During this time, 1.224 ml of 0.1035 M NaOD
was added. The degree of neutralization, which within the
experimental error is equal to 7, was then 0.494 at the mixing
chamber. The complex was titrated with OD~ within 10 sec
after it was streamed with D;O. Each run was of 3-min dura-
tion, a sufficient period for the electrode to attain a constant
potential.

Since the diluted amine complex solution was still slightly
acidie, exchange was negligible during this period. The hydro-
gen isotopic composition of the final solution was calculated
from the initial volumes of protium and deuterium oxide. It was
89 mol 9, deuterium.

Spectrophotometric Measurements.—Absorbance data were
obtained at 25.00 == 0.05° using a Cary Model 14 recording spec-
trophotometer equipped with a thermostated cell compartment.
The solutions were matched against blanks containing 0.300 M
NaClO, in either H;O or 99.9 mol % D.0O, and 1-cm quartz cells
were used throughout. All solutions containing deuterium were
prepared under dry nitrogen gas to prevent isotopic dilution, and
the solutions were filtered under the same gas prior to the absorb-
ance measurements. The absorbance values were varied as a
function of pH by mixing a solution of [Co{NH;)sOH,)(Cl04)s
with standard HCIO, or NaOH and adjusting [C10,~] to 0.300 M.
The D;0 solutions were prepared in a similar way. Molar
absorptivities of [Co(NH;);0H,](ClOs); and [Co(ND3):0D;]-
(Cl10y); were obtained from meastiremerts on solutions with pH 3.
The values for [Co(NH;);0OH](C104): and [Co(ND3);OD](Cl04);
were obtained with solutions adjusted to pH 11. Experiments
at pH 12.6 showed that the absorbance, particularly in the ultra-
violet region, increased appreciably in the time needed for the
measurements probably because of base hydrolysis of the com-
plex. No such drift was observed at pH 11, The absorbance
values for the acid and conjugate base represent the average of
nine independent measurements each. The remaining absorb-
ance values were measured in triplicate. Mass spectrometric
determination of the isotopic distribution of the aquopenta-
amminecobalt(ITI} solutions indicated that they still contained
more than 99 mol %, deuterium.

Results

Calculation of the Equilibrium Constants from Emf
Data.—The emf data were subjected to least-squares
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refinements using? the FORTRAN-60 program GAUSS Z
and the University of Minnesota CDC-1604 computer.
This program minimizes the quantity Z;w;(fi; obsd

iy caled)? Where w; is a weighting factor.

The input data for this calculation are the total
aquopentaammine concentration, the measured pH,
and experimental 7% values. For reasons discussed
earlier® equal weights were employed in the refine-
ment. The pH (or pD) value at # = 0.5 was used as
the input value of the equilibrium constant. (The
refined values are listed in Table III, and the ob-
served and calculated 7 values from the last cycle of the
least-squares refinement are given in Table IV.)

Calculation of the Equilibrium Constants from the
Spectrophotometric Data.—A modification of the
caUss method program described above was written
in order to carry out a least-squares refinement of the
spectrophotometric data. In this program, GAUSS AB,
the quantity minimized is Z;w;(4 ;005 — A4 ea1ca)? where
A is the solution absorbance.® The input data for
these calculations are the independently measured
absorptivities of the acid and conjugate base, the ob-
served absorbance of the solution, and the pH of the
solution. The pH values of these solutions were cal-
culated using the equilibrium constants obtained from
the standard emf measurements. Experimental de-
termination of the pH of some of the solutions used in
the spectrophotometric measurements, using the cell
described above for standard emf measurements,
gave values equal within the anticipated experimental
error to those calculated. The values of the con-
stants obtained from the emf measurements were used
as input values for the least-squares refinement. In
these calculations, w, was set equal to unity, since an
examination of the effect of errors in the ammine con-
centration, the wvalue of [HT], the measured absorb-
ance, and the two molar absorptivities indicated that
the weights would not be greatly different for the dif-
ferent points. The molar absorptivities are listed in
Table I for the different wavelengths studied. A
comparison with data obtained by other workers using
the same cation (though not necessarily the same anion)
is given in Table II. The agreement is generally
reasonable, although errors are difficult to estimate.
The refined values of the equilibrium constants are
given in Table III, and the observed and calculated
absorbances from the last cycle of the least-squares re-
finement are listed in Table I'V.

Discussion

The results from the spectrophotometric and po-
tentiometric measurements are not strictly independent
of one another. The quantity # can be expressed in
terms of the master variable « = *K;[HT]7%, 7 =
a/(1 + o). Similarly, the equilibrium concentration
of the hydroxopentaamminecobalt(III) ion is given by
[M] = Cu(1 + «)~! where Cy is the total cobalt am-
mine concentration. Since the aquopentaammineco-

(27) R. 8. Tobias and M. Yasuda, Inorg, Chem., 2, 1307 (1963).

(28) Deck listings of all of the least-squares programs may be obtained by
writing to R. 8. T.
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TABLE I

MOLAR ABSORPTIVITIES (CM~! M 1) AT
DIFFERENT WAVELENGTHS

[Co- [Co- [Co- (Co-
(NHg)sOHz]-  (NDg)sODz]-  (NHg)sOH]-  (NDgsODI-
x A (C109)5 (C108)5 (CI00):2 (C104)2
5500 20.3 18.2 38.7 36.2
5400 26.9 24.6 47.1 44,6
5300 33.65 31.35 55.3 53.2
5200 39.8 37.3 62.4 60.6
3100 43.7 42,1 66.6 68.0
5000 46.45 45.0 67.0 67.5
4900 47.3 46.2 63.4 64.5
4000 8.2 8.9 38.4 35.1
3900 10.3 8.7 51.6 48.9
3800 18.7 14.5 80,4 59.55
3700 26.65 23.7 63.1 63.35
3600 36.8 34.0 60.8 61.75
TaABLE I1

MoLaR ABSORPTIVITIES (cM ™1 M ~1) AT
SELECTED WAVELENGTHS

A A Co(NHi)sOHa3+ Co(NDg)sODzi* Co(NH:);OH2* Co(NDs)sOD2*+
5500 20.3,21.0° 18.2,219.2¢
5000 46.45,c47.0¢ 45.0,c45.3¢
50404
50204
4910¢ 47.3,647.5°
48904
3700¢
36804
3450¢ 44 .3,c44.88
34304 43.2, 43,20

@A, 'W. Adamson and F. Basolo, Acte Chem. Scand., 9, 1261

67.0,2 66.8
67.2¢

67.4,060.2¢
67.6¢
46.2,c 46.2¢b

63.4°
63.6°

(1955). ! Reference 9. ¢ This work. ¢ Band maxima.
TasLE [IT
REFINED VALUES OF THE EQUILIBRIUM
CONSTANTS AND THEIR STANDARD ERRORS®
Method Log Kg Log Kp Log (Ku/Kp)
Standard emf (Kpin —6.217 —6.702 0.485
99 mol ¢, D,0) +0.004 =+0.002 +0.005
(242, £0.022) (52, =0.005)
Spectrophotometric —6.216 —6.702 0.486
(Kp in 99 mol 9, =+0.002 +0.002 =+0.003
DzO)
(108, =£0.008) (96, +0.01)
Fast titration (Kpin —6.184 —6.78 0.59
89 mol 9% D;0) =+0.003 +0.01 +0.01
(20, &=0.008) (28, =0.01)
Flow system (Kp -—6.223 —6.748 0.525
in 89 mol 9, D:0) =+0.004 =+0.001 +0.004
(4, =0.004) (5, =0.002)

@ The number of experimental points used in calculating the
constants and the standard error to the fit are given in parenthe-
ses.

balt(III) ion is a weak acid, # in the range of interest
is essentially equal to the degree of neutralization of the
complex and can be calculated from the solution stoi-
chiometry. Experimental measurement of [H*] than
permits the calculation of *X;. The absorbance of the
solutions also can be expressed as a function of «, the
path length /, the molar absorptivities of the aquo acid
e and of the conjugate base e,,, and the total cobalt
ammine concentration Cy. Thus

A/l = {ebxa + ea)\}C}I/(l + a)

Measurement of the solution absorbance at different
wavelengths and different stoichiometries gives only
values of the master variable @. Once again, in order
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TasLE IV
CALCULATED AND OBSERVED % AND ABSORBANCE VALUES®
MCONC =LOG H NOBS NCAL MCONC ~LOG H NOBS MCONC «LOG H NOBS NCAL MCONC ~LOG H NOBS NCAL MCONC =LOG H NOBS NCAL  MCONC «LOG H NOBS NCAL
PROTIUM OXIDE B8.086 5,392 o141 4624 ~4038  ,001 9941 5,816 ,287 284 DEUTERIUM OX1DE 94879 84173 4,490 ,493
8,060 2,845 4183 4,618 ~e037 4001 94931 5,898 312 4324 94887 64218 %17 519
84246 23,014 ~4010 4001 8.038 870 229 2,607 =036 4002 40921 5.991 4358 4373 11,026 44770 4001 4012 9857 64232 +517 o827
8,233 3,104 ~:0i0 4001 8,009 .781 273 2,600 “e027 «00B 4e12 64071 4401 o417 10982 S,376 4038 ,043 FaEIT 6,262 ¢34t (548
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@ All aquopentaamminecobalt(III) concentrations in millimoles per liter.

to calculate *Kj, values of [H+] must be obtained ex-
perimentally. Consequently, there is one type of
error in the value of log *K; which would go undetected
in this work. If all values of the solution pH were in
error by a constant amount, e.g., if they were all 0.1
unit too large, the p*K; value calculated by both the
potentiometric and the spectrophotometric methods
would then be 0.1 unit too large. This follows from the
relation log « = pH — p*X,.

While small errors might be made in the determina-
tion of the cell £° giving a constant error in log [H*],
these should be randomized by the different sets of data.
Errors in the pH data other than one which is con-
stant throughout would give systematic deviations be-
tween the calculated and observed # and 4 data, and

an examination of the data in Table IV
these are absent.

The agreement obtained between the standard po-
tentiometric data and the spectrophotometric data is
excellent: log Kg —6.217 £ 0.010 and —6.216 =
0.005; log Kp —6.702 = 0.005 and —6.702 =+
0.005, respectively. In this discussion the errors are
those at the 999, confidence level.?® The values for
H;0 are in good agreement with those of earlier work-
ers: log *Kmg = —6.16, 0.25 M NH,NO;, 30°;9 —6.55,
1 M NaNO;s, 25°.% The most likely source of error in

(29) Tables of the *'t” test of significance were used: see, for example:
R. A. Fisher, *Statistical Methods for Research Workers,”” Hafner Publish-
ing Co., New York, N. V., 1954, p 174,

(30) G. E. Shaffer, quoted by L. G. Sillén and A, E. Martell, “Stability
Constants of Metal-Ton Complexes,” Special Publication No. 17, The Chemi-
cal Society, London, 1964,

indicates that
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the earlier spectrophotometric measurements lies in
the molar absorbtivity of the conjugate base since this
species is slowly hydrolyzed in strongly basic solution.

The rate of exchange of the ammine hydrogen in
similar complexes has been observed to vary inversely
with the hydrogen ion concentration,'®1% and Taube
has suggested that this is probably the case with the
aquopentaamminecobalt(III) ion.® Assuming this in-
verse first-order dependence obtains, the order of mag-
nitude of the half-life for exchange of the ammine hy-
drogens of Co(NH;);0H:3~ in D;0 at # =~ 0.5 and pD
~6.7 is ca. 8 sec.

With the flow system, no appreciable ammine hy-
drogen exchange will have occurred at the time the
[HT] is determined, but the exchange of the aquo pro-
tons is so rapid that these will have essentially the same
composition as the solvent. The small number of points
collected is a consequence of the large volumes of DyO
which were consumed in the 3-min flow measure-
ments. Because of the high rate of exchange, the data
in the fast titrations span the entire period during which
exchange was taking place.

Values of the dissociation constant in H,O were de-
termined by the fast titration and flow techniques to
assess the systematic errors inherent in these measure-
ments. As can be seen from the results listed in Table
I1I, the value from the flow measurementsisin very good
agreement with those from the standard emf and spec-
trophotometric procedures. The agreement of the
fast titration value is poorer, probably a consequence of
the short times allowed for the glass electrode to at-
tain equilibrium.

Using a linear extrapolation, the value of log Kp
for 100 mol 9, D,0 is —6.81 from both the flow and
rapid titration measurements. Considering the errors
in the rapid titrations, the agreement is probably
fortuitous.  This gives log (Ku/Kp) = 0.59 compared
to 0.48 from the standard emf and spectrophotometric
measurements. The former value involves the equilib-
rium constants for reactions 2 and 3, while the latter
depends on the values for reactions 1 and 3. While
the ratio of the dissociation constants of the complexes
with the same isotopic composition as the solvent is con-
siderably larger than reported by Taube, these data
also indicate a small secondary isotope effect of ca.
0.11 log unit in the quantity log (Ku/Kp).
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Figure 2,—The equilibrium isotope effect on the dissociation
of several different acids; #, benzoic acid; &, acetic acid; v,
2,5-dinitrophenol; 4, 3,5-dinitrophenocl; ¢, brom thymol blue;
®, Co(NH;);:OH:*"; V¥, H,PO,~; X, o-nitrophenol; O, p-nitro-
phenol; M, (C,H::Sn™; O, (CH;)SnOH™*; @, Pt(NH;)t™".

In summary, the decrease in the dissociation con-
stant in going from Co(NHj;);0H*+ in H,O to Co-
(NDj3);:0Ds%* in D;O is relatively typical for an acid
of this strength. Figure 2 illustrates data for isotope
effects on the dissociation of several acids of different
structural types. Any secondary effect caused by
exchange of the ammine hydrogens must be small.
There has been considerable confusion in the literature
concerning the magnitude of isotope effects. Rela-
tively small errors in the values of log Ky and log Kp
can lead to values of log (Ku/Kp) which apparently
are anomalous. It seems unlikely that the simple
aquoiron(IIT) and aquothallium(III) ions have the
same dissociation constants in HyO and in D,0 as re-
ported. In these cases, the acids are rather strong,
so that the isotope effect is probably relatively small.
In addition, because the values of Ky are greater than
108, they are very difficult to determine accurately.
While the small secondary effects observed with the re-
actions of the aquopentaamminecobalt(III) ion could
be explained in terms of changes in the N-H bonds in
going from the reactant to product, the data on the
vibrational frequencies of these bonds are all derived
from infrared studies on solid complexes. It is pos-
sible that Raman spectra will permit a direct compari-
son of the vibrations of Co(NH;);0H.%* and Co(NHj;);-
OH?* or of Co(NH;);OH,*+ and Co(NH;);Cl2t+ in
aqueous solution.



