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The crystal and molecular structures of tetra-n-butyratodiruthenium chloride, Rus(0.CC3H7)4Cl, have heen determined using
the intensities of 708 independent, statistically significant reflections collected with a counter diffract »ineter. The compound
crystallizes in the tetragonal space group 142d with unit cell dimensions a = 13.265 =+ 0.005 Aundc = 24.453 = 0.003 A
(pobsa = 1.76 == 0.03 g em 3 and pesied = 1.81 gem~2forZ = 8). The structure, excluding hydrogen atoms, was solved using
Patterson and Fourier methods and refined by full-matrix least-squares methods to a conventional unweighted residual of
7.3%. The compound contains the dinuclear, carboxylate-bridged species Rus(0:CC;H7), T with a very short Ru—Ru distance
of 2.2981 A. This short bond length and the reported presence of three unpaired electrons on the cation may be rationalized
in terms of molecular orbital theory. The two ruthenium atoms of a given molecule are equivalent by virtue of a crystal-
lographic twofold axis and therefore, barring disorder, for which we find no evidence, exist in the common, nonintegral oxida-

tion state of 4+2.5.
the a and b crystallographic axes.

Introduction
Several transition metals are already known to form

binuclear, carboxylato-bridged compounds. The gen-
eral structure of these molecules is shown as I. Com-
R
Cc

T

pounds with this type of structure are of interest
because they afford examples of homonuclear metal-
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Chloride ions bridge adjacent dinuclear cations in the crystal to form infinite zigzag chains parallel to

metal interactions ranging from weak, antiferromag-
netic spin-spin couplings to strong, multiple bonds.

The structure in its general features demands propin-
quity of the metal atoms but does not of itself assure or
require a bonding interaction between them, as em-
phasized elsewhere.® It is, in fact, precisely this
property which makes this type of structure particularly
interesting. It establishes a framework within which
metal-metal interaction may readily occur, but the
nature and extent of the interaction can vary over the
widest limits, depending upon the properties of the metal
atoms concerned.

The occurrence of the structure has been definitely
established by X-ray crystallography for the acetates
of copper(I),* chromium(II),* molybdenum(II),® and
rhodium(I1),” in all of which, except Moy(O:CCHjy),,
neutral ligands, L, are present. For the trivalent metal,
Re™, the same structure has been found in Re,(O.C-
CsH;),Cly,® the terminal ligands being Cl~ ions. There
are various known homologs, .., compounds Mo,-
(O,CR),L,, with other R groups for each of these metals
except rhodium, all of which seem certain to have the
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same type of structure. It has been proposed® that
V2(0:CR)s compounds also have such a structure, with
the terminal ligands being O,CR groups, but X-ray
evidence for this has not yet been presented.

On the basis of the structural data for the Cr'
Mo, Cu't, Rh', and Re™ compounds mentioned, one
would tend to believe that for the heavier metals,
the formation of metal-metal bonds would be likely to
occur within the M,(O;CR),L; structure; thus, ex-
tremely short M-M distances of 2.11 and 2.222 A are
found for the Mo'' and Re™! compounds, respectively,
and even for Rh™ the distance (~2.45 A) is short
enough to imply a significant amount of Rh-Rh bond-
ing.

In view of the above considerations, the synthesis by
Stephenson and Wilkinson!® of compounds with the
unusual stoichiometry Ruz(0.CR).Cl aroused our in-
terest. We naturally considered a structure of type
I, but polymeric, to be a likely possibility, as did Ste-
phenson and Wilkinson. Moreover, with 11 electrons
to be placed in molecular orbitals of the Rua(O.CR),~
unit, as compared with eight for Mo0.(0sCR),, where a
very strong quadruple bond is believed to exist,®!!
and 14 for Rhy(0,CCH,):«(H:0)s;, where there is also
significant metal-metal bonding, it seemed natural
to us that an appreciable degree of Ru-Ru bonding
would be expected in the Ru(O.CR),* units (assum-
ing, of course, that these dinuclear cations actually do
occur in the compounds in question). On the other
hand, Stephenson and Wilkinson, noting that several
of the compounds possess three unpaired electrons per
(dinuclear) molecule, formulated them as Ru-Ryu'™
species and concluded that ““...the metal-metal dis-
tance in these systems is large enough to prevent direct
orbital overlap.”

In order to resolve the uncertainties and differences
in viewpoint just discussed and provide a precise struc-
tural basis for a discussion of the electronic structure of
Ru2(0:CR)(Cl compounds, a single-crystal X-ray struc-
ture determination of one of them, namely, the #-
butyrato compound, Ru,(0.CCH;CH.CHjs)Cl, was car-
ried out.

Experimental Section

Tetra-n-butyratodiruthenium chloride was prepared accord-
ing to the method of Stephenson and Wilkinson.® Tetrag-
onal-prismatic crystals were grown by slowly cooling a hot,
saturated solution of the compound in m-butyric acid. Anal.
Caled for Ruy(0.CCyH;)Cl: Ru, 34.5; C, 32.8; H, 4.9; Cl,
6.1. Found: Ru,34.4; C,33.7; H,4.8; Cl,86.0.

Precession photographs (502, k1, h2l, kk0, hhl) indicated Laue
symmetry 4/mmm. The observed systematic absences, Akl
forh + & + 1 # 2n and Akl for 2k + | 5 4n, are compatible with
space groups I4; md and 142d. The Patterson function, and in
particular the Harker section z = 0, was consistent only with
142d, and this was taken as the correct space group. The unit
cell dimensions, determined by a method previously described!?
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with Cu radiation [N(Ke) 1.5405 A, A(Kaz) 1.5443 A] on a General
Electric XRD-5 manual diffractometer (24°) are ¢ = 13.265 +
0.005 A and ¢ = 24.453 = 0.008 A. The uncertainties quoted
represent maximiuim estimated errors based on previous calibra-
tions with NaCl. The observed density, measured by flotation
in carbon tetrachloride-iodobenzene, is 1.76 =+ 0.03 g cm™3,
while that calculated for eight formula units per unit cell is 1.81 g
cm T3,

The intensities of 1372 independent reflections [(sin 8)/A <
0.65] were measured using Mo Ke radiation filtered by zirconium
foil. The diffractometer geometry and method of data collec-
tion have been described previously.’? The crystals were de-
composed by molybdenum radiation, the decomposition being
retarded somewhat by coating the crystal with a thin layer of
shellac. Nine standard reflections, distributed over a wide
range of 8, were monitored, and the crystal was discarded when
any intensity dropped to 859, of its initial value. Four crystals
were used in collecting the data. All were morphologically
similar with well-developed {100}, {010}, and {001} faces.

Experimental data were corrected for background, assuming
linear variation over the scan range. Of the 1372 observed in-
tensities (I) 708 were judged to be statistically significant using
the criteria I > 0 and I/[P + (t,/8)2B1 + B:)]Y* > 3, where
t, and #, are the total counting time for peak and background;
P, Bi, and B, are total counts in the peak and two backgrounds,
respectively; and I = P — By — Bs, Only these statistically
significant reflections were used in the subsequent refinement.
The intensities of these 708 reflections were then corrected for
Lorentz and polarization effects. Absorption corrections were
neglected (u = 15.5 cm ™1, average crystal dimensions 0.027 X
0.027 X 0.152 mm).

Solution and Refinement of Structure!s

The positions of the ruthenium and chlorine atoms
were determined by examination of a three-dimensional
map of the Patterson function. After one cycle of
least-squares refinement, the locations of all carbon
and oxygen atoms were found from a difference Fourier
map. Three cycles of refinement of the scale factor
and the positional and isotropic thermal parameters
of the 14 independent nonhydrogen atoms yielded a
discreparncy index, R; = X |F| — | F||/Z|F.], of 0.076.
At this point, a weighting scheme with the weights,
w(F,), equal to 0—2(\F0’) was introduced. Standard
deviations were derived from the standard deviations
of the observed intensities according to Doedens and
Ibers,** using an ‘‘uncertainty factor,” p, of 0.045.
Two more cycles of least-squares refinement resulted in
convergence at &y = 0.077 and R, = [Ew[lFoj — |Fc| 12/
Sw|Fo|?]”* = 0.074. The validity of the weighting
schemie is reflected in the lack of dependence of 'wd Fo‘ -
IF.)? on |F,| and (sin 6)/\. Although no parameter
changed as much as one standard deviation upon chang-
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p 202,
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TABLE 1
OBSERVED AND CALCULATED STRUCTURE AMPLITUDES ( X 10, IN ELECTRONS ) FOR R11:(0,CC;H7).Cl
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ing from umnit weights to w = a=2( F.|), the standard
deviations of these parameters decreased by 10-20%.

A difference Fourier map with all nonhydrogen atoms
removed showed evidence for anisotropic motion of the
heavy atoms particularly in the vicinity of the ruthe-
nium atoms. The ruthenium and chlorine atoms were
therefore assigned amisotropic temperature factors of
the form exp[— (Buh? + Buk? + Bul® + 2Bwhk + 2813kl
- 2B4skl) ], and three cycles of least-squares refinement
varying all scale, positional, and thermal parameters
resulted in convergence to Ry = 0.073 and R, = 0.072.
A statistical test'® based on the R factors affirms the
anisotropic model at the 99.5%, confidence level.

A difference Fourier map, using only the data for
which (sin 6)/A < 0.35, was now computed in an at-
tempt to locate hydrogen atoms. Although a number
of peaks were found in positions where some of the
hydrogen atoms might be expected, other expected
hydrogen atoms were not resolved. This phase of the
refinement was therefore abandoned.

For an acentric space group, |F(hkl)| = |F(hRD)|
when the effects of anomalous dispersion are important.
In the absence of a complete data set, one might con-
sider using the R-factor test to decide whether F(hkl)
or F(hEI) was observed. However, since four crystals
were used, such a test would have to be performed on
each of the four data sets individually and in each case
there would be an unfavorable ratio of data to parame-
ters. Since the effect of anomalous dispersion is thus
quite small, it was neglected, and the results reported
here are based on the refinement neglecting anomalous
dispersion.

A comparison of the observed and calculated struc-
ture amplitudes did not suggest that a correction for
extinction was necessary. The final standard devia-
tion of an observation of unit weight is 1.15. - Calcula-
tion of the structure factors for the rejected reflections
gave 10 IF°| greater than the minimum observable.

(15) W. C. Hamilton, Acta Crysi., 18, 502 (1965).
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Results

In Table I are listed the final calculated and observed
structure amplitudes. The final fractional coordinates
and thermal parameters for the atoms of the asymmetric
unit are given in Table II. Tables III-V contain data
on molecular bond lengths, angles, and planes, respec-
tively.

TABLE 11
FINAL POSITIONAL AND THERMAL PARAMETERS®

Atom % LY z BY A2
Ru 0.03738 (15) 0.07743 (15) 0.13358 (8) 2.21
Cl1 0.1269 (7) 0.25 0.125 3.10
O1 0.1326 (14) 0.0273 (15) 0.1929 (7) 3.31(38)
O 0.1314 (14) 0.0290 (14) 0.0775 (6) 3.16 (37)
O3 0.0541 (13) —0.1228 (12) 0.1937 (6) 2.36 (34)
O4 0.0615 (13) —0.1228 (13) 0.0771 (6) 2.70 (36)
1 0.1204 (22) —0.0627 (22) 0.2109 (10) 3.24 (58)
Ce 0.1289 (16) —0.0606 (17) 0.0600 (8) 1.22 (42)
Cs 0.1806 (25) —0.0943 (25) 0.2627 (12) 4.42 (74)
Cy 0.2098 (19) —~0.1012 (19) 0.0201 (10) 2.95 (54)
Cs 0.2902 (28) —0.0578 29) 0.2614 (13) 6.85 (97)
Cs 0.2908 (26) —0.1601 (27) 0.0525 (14) 6.30 (90)
Cr 0.3442 (28) —0.0967 (26) 0.3158 (14) 6.40 (94)
Cs 0.3476 (26) —0.0896 (26) 0.0906 (12) 5.82 (85)

Anisotropic Temperature Parameters ( X10%)
Atom Bu Bz Bz Bz Bis Bz
Ru 33.8(12) 27.5(11) 9.95(28) 2.4(14) 0.0(6) 0.1(6)
Cl 48,7 (59) 28.8 (47) 16.3(20) 0 Q 0.7 (28)

« Numbers in parentheses are esd’s in the last figure quoted.
b Equivalent isotropic B’s are quoted here for the anisotropically
refined atoms.

Figure 1 shows a projection of the Rus(O,CCyH7)sT
cation and two associated Cl~ anions onto the (100)
plane. Unnumbered atoms are related by the two-
fold rotation axis shown in Figure 1 to the numbered
ones and will be given corresponding numbers aug-
mented with primes. Figure 2 is a packing diagram
showing the projection of the structure on the (001)
plane.

Discussion

Tetra-n-butyratodiruthenium chloride contains di-
nuclear units consisting of two ruthenium atoms
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TasLE III
BoND LENGTHS®
Atoms Dist, A Atoms Dist, A Atoms Dist, A
Ru-Ru’ 2.281 (4) 0,-C, 1.26 (3) GG 1.55 (4)
Ru-Cl 2.587 (3) 0~Cy 1.28 (3) Cs—Cs 1.53 (58)
Ru-0, 2.04 (2) 04-Cy 1.29 (3) C—Cr 1.60 (5)
Ru-0, 1.96 (2) 0;—-C4 1.26 (3) Co-Cs 1.55 (3)
Ru-05’ 2.00(2) Ci—Cs 1.55 (4)
Ru-0y  2.00(2) CoCs  1.52(5)

¢ Standard deviations occurring in the last figure of each hond
length are given in parentheses.

TasLE IV
BonND ANGLES®
Atoms Angle, deg Atoms Angle, deg

Ru’-Ru-Cl 175.1(1) Ru-0-C, 122 (2)
Ru’-Ru-Oy 88.6 (5) Ru-0,-C; 118 (2)
Ru’-Ru-0, 88.9 (5) Ru’~04-C, 119 (1)
Ru’-Ru-0y’ 90.4 (4) Ru’-0;-C 119 (2)
RLI"‘RLI—Og/ 89.2 (5) C]"Cs"Cs 110 (2)
Oz—Rll—()\ 89.8 (8) Cs*C:,—C'[ 110 <3)
Ol—Ru—Og,’ 87 2 (6) C2—C4—Co 113 (3)
03 ’—Ru—O/ 91.1 (7) Cr‘Ce—‘Cs 108 (3)
0,/-Ru~-0, 91.9(7) 0,-Co-04 121 (2)
CL-Ru-0, 86.6 (3) 0,-C1-Oy 124 (3)
Cl-Ru-04 93.6 (5) 0,-Co-Cy 122 (2)
Cl-Ru-0s’ 94.1(5) 04-Co-Cy 117 (2)
Cl-Ru-0,’ 88.8(5) 0-Ci-G; 118 (2)

0-C1-Cs 117 (2)

2 Standard deviations occurring in the last figure quoted for
each angle are given in parentheses,

TABLE V
WEIGHTED LEAST-SQUARES PLANES®

Plane

no. ~——=Atoms Equatiou”
1 RuRu’020:C2Cy 0.6161x — 0.2973y + 0.7294z = —2.382
2 RuRu’/0:10:Ci1Cs —0.6625x + 0.3210y + 0.67682 = 2,211
3 Ru010:05' 04 —0.4454x — 0.8953y + 0.0049z = —1.115

Distances of Atoms from Planes {A)e
Plane 1: Ru/, 0.0004; Ru, 0.0006; Oz, —0.040; 04, —0.019; Cs, —0.020;
Cq, 0.091

Plane 2: Ru’, —0.0017; Ru, —0.004; Cy,

—0.045; Cs0.148
Plane 3: Ru, —0.0098; 0i,0.004; 0+, 0.030; 0Oi,0.030; O3/, —0.001

2 Atoms weighted by the inverse of their standard deviations.
® The orthogonal-coordinate system (x, v, z) corresponds to the
crystal (a, b, ¢) axes. ¢ Average esd’s in atom positions derived
from uncertainties in fractional coordinates are (A): Ru, 0.0020;
0, 0.018; C, 0.020.

0.0007; O:, ~—0.067; Oy,

bridged by four w-butyrato groups, a configuration
which has also been found for various other My(O,CR )
species as noted in the Introduction. In the crystal,
these dinuclear units are linked by bridging chlorine
atoms into infinite zigzag chains parallel to the ¢ and
b crystallographic axes. Although crystallographically
the dinuclear unit possesses only a twofold axis per-
pendicular to the Ru-Ru axis, it has virtual Dy, sym-
metry if the alkyl chains are neglected.

The four independent Ru-O bond lengths show no
significant deviations from the average value of 2.00
A, and all four O-Ru-O angles are 90° within experi-
mental error. The two crystallographically inde-
pendent Ru0,C groups deviate negligibly from planar-
ity and are essentially orthogonal (89.5°) to each other.
The a-carbon atoms, C; and C4, show slight deviation
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Figure 1.—A projection of the Ruy{O,CCiHy)st cation and two
associated C1~ anions onto the (100) plane.

from the planarity expected for the C-CO, group.
The four oxygen atoms of the RuO, groups are planar,
while the ruthenium atom is slightly out of the plane
since the Ru-Ru distance (2.281 A) slightly exceeds
the mean O-O distance (2.24 = 0.03 A) in the car-
boxylate group.

The detailed geometry of the ruthenium-—chlorine
skeleton is a very interesting aspect of the crystal
structure. The packing diagram given in Figure 2
shows that the dinuclear cations, Rus(O.CCsHi),™,
are bridged symmetrically by chloride ions into infinite
chains. The Ru-Ru-Cl angle deviates by a small but
statistically significant amount (5°) from linearity.
The Ru-Cl bond length of 2.587 A is unusually large in
comparison to the value of about 2.35 A usually ob-
served!® in chloro complexes of Ru'"", The weakness
of the Ru—Cl interaction indicated by the length of this
bond is in accord with the observation that the com-
pound behaves as a 1:1 electrolyte in solution. This
weak interaction with ligands bonded along the metal-
metal axis seems to be characteristic of carboxylate
dimers. Re(0.CCeH;),Cly exhibits a long Re-Cl
bond? with an appropriately low metal-chlorine stretch-
ing frequency,'” and, in Mo,(O,CCHjs),, the axial groups
are absent altogether. A closely related phenomenon
is the ease of substitution of the axial ligands in the
copper and rhodium acetates.

The Ru-Ru bond length, 2.281 A, is very short; in
ruthenium metal, the shortest Ru-Ru distance!® is
2.65 A. In the absence of detailed structural informa-
tion, Stephenson and Wilkinson envisioned Ri(0,C-
CsH7)4Cl as a complex containing ruthenium ion oxida-
tion states 42 and 43 and interpreted the magnetism

(18) T. E. Hopkins, A, Zalkin, D. H. Templeton, and M. G. Adamson,
Inorg. Chem., B, 1427, 1431 (1968).

(17) W. K. Bratton and F. A, Cotton, to be submitted for publication.
(18) A. Hellawell and W. Hume-Rothery, Phil. Mag., 46, 707 (1054).
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Figure 2.—A packing diagram of the contents of the unit cell projected onto the (001) plane.
The fractional z coordinate appears beside each ruthenium-—chlorine chain.

pictured for only one dinuclear cation.

of the compound on this basis. As Figure 1 shows,
however, the two metal atoms of a given dinuclear
cation are related by a crystallographic twofold axis.
Since we see no indications of disorder, we believe that
these atoms are structurally equivalent and therefore
chemically equivalent and must be thought of as exist-
ing in the same nonintegral oxidation state of +2.5.
The electronic structure of such a compound is best de-
scribed by molecular orbitals.

Qualitative!® and semiquantitative® discussions of
the electronic structures of Re;Clg?~ and other sp cies
containing strong metal-metal bonds have been given
and may be used as a point of departure in the present
instance. Figure 3 shows a partial molecular orbital
(MO) diagram for an M,Xs species, only those MO’s
which are of predominantly metal character being in-
cluded.

The eleven electrons contributed by the two ruthe-
nium atoms must be allocated to the most stable MO’s.
Eight of these electrons will completely fill the aig,
ey, and by, MO’s, which have ¢, 7, and é symmetry,
respectively, relative to the metal-metal axis. The

(19) F. A. Cotton, Inorg. Chem., 4, 334 (1965),
(20) F. A. Cotton and C. B. Harris, ibid., 6, 924 (1967).
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TETRA-#-BUTYRATODIRUTHENIUM CHLORIDE 5

),

For clarity, the butyrate groups are

eight-electron configuration up to this point is analo-
gous to the configurations in Re,Cls?~, Res(0:CCeH)s-
Cly, and Mo0,(O,CCHj;)s. There are, however, still three
electrons to be allocated.

The next available orbitals are those of aj,, azq, and
by, symmetry. Of these, the first two are essentially
nonbonding in the metal-metal sense; they are directed
outward along the metal-metal axis. The by, orbital
is the é-antibonding one. Since the paramagnetism
of the Ruy(O.CR).Cl compounds is indicative of three
unpaired electrons per pair of metal atoms, it is clear
that each of these three MO's contains one electron.
The energy required to pair spins is evidently large
compared to the separation of the orbital energies, and
a high-spin system results.

It is unusual for a second-row transition metal to
adopt a high-spin configuration, and this point there-
fore warrants discussion in terms of the molecular struc-
ture found here. From the electronic absorption
spectrum of Re,Cly?~, to which a molecular orbital
diagram quite similar to that of Figure 3 applies, it is
believed!®:® that the as. and a;, nonbonding orbitals
are about 18 kK below the by, orbital. If a separation
of this magnitude existed in Ruy(O,CR),C], spin pairing
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Figure 3.—A qualitative molecular orbital diagram for an
M,Xs species of symmetry Dy The electron distribution
shown is that for Ruy(O,CR)CL.

would result leaving only one unpaired electron. How-
ever, the weakly bound, symmetrically bridging chlo-
ride ions in the ruthenium compound can interact
with the axially directed a;; and as, orbitals, thereby
raising their energy somewhat. This effect moves the
a1 and ag, orbitals closer to the by, orbital, and stabi-
lizes the high-spin *Bs, ground state. The reported
electronic spectrum!® of Ruz(0.CR)Cl species sup-
ports this reasoning. If the band at 425 mu is assigned
to the by, — a3, and/or by, — ag, transitions (both
vibronically allowed) and the band at 310 my is taken
as the by, — by, transition, then the by, orbital is only
about 9 kK above the a;, and as, orbitals. This is half
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the observed separation in Re,Clg?~ and is sufficiently
small to allow the high-spin configuration to be stable.

It is of interest to compare the metal-metal dis-
tances in the series of isostructural molecules formed by
metals of the second transition series, viz., Moy (O.C-
CH3)4, RU2(02CC3H7)4C1, and RhQ(OQCCH3)4(HQO)Q
In the first, there are just enough electrons to fill the
bonding orbitals ¢, 27, & of Figure 3. A quadruple
bond is formed, and the Mo-Mo distance is extremely
short, 2.11 A.

In the diamagnetic rhodium(Il) carboxylates, there
are fourteen electrons to be placed in the orbitals
shown in Figure 3. After eight electrons have filled
the bonding orbitals, there are still six electrons. These
completely fill the next three orbitals, namely, the ap-
proximately nonbonding aj, and a;, orbitals and the ¢-
antibonding by, orbital. Filling of the a;, and a;, or-
bitals should not have a major effect on the metal-metal
bond, although a small weakening effect appears likely,
especially through the a;, orbital, according to the cal-
culations® on ReyClg?™.

The two electrons in the §-antibonding by, orbital
should have a very marked effect on the bond, how-
ever. First, they will at the very least cancel the
bonding effect of the electron pair in the by, orbital; theé
bond is effectively nullified and we have here only a triple
(¢, 27) Rh—Rh bond. Second, because of the constraint
on rotation imposed by the carboxyl groups, the two é-
type d orbitals, one on each rhodium atom, remain di-
rectly opposite each other. Since each of these orbitals is
now occupied by an electron pair, there is a substan-
tial amount of repulsion tending to push the metal
atoms apart. Thus, the Rh-Rh distance is consider-
ably longer, ~2.45 A, though still short enough to be
consistent with the existence of strong metal-metal
bonding.

For Ruy(0.CC3H7).Cl, we would expect a bond order
and repulsive forces about halfway between those in
the molybdenum and rhodium compounds. In agree-
ment with this, the Ru-Ru distance, 2.281 A, is about
midway between those in the molybdenum and rho-
dium compounds.





