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through the sulfur S(2) atom. The optically excited
electron is assumed to be spread over both the copper
atoms and the intervening bridging sulfur atom, in
agreement with McConnell and Davidson.’® This fact
might also explain the particularly low B factor of sul-
fur S(2).

The effect of these different functions of the thio-

(15) H. McConnell and N. Davidson, J. Am. Chem. Soc., T2, 3168 (1950).
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cyanate groups on the interatomic distances and on the
valence angles is shown in Table V.
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The crystal and molecular structure of dichlorobis(2,6-lutidine N-oxide)copper(I1), (C:HyNO),CuCly, has been determined
by single-crystal X-ray diffraction techniques. The crystals belong to the orthorhombic space group Pna2; with unit cell
dimensions ¢ = 13.88 (1), b = 7.677 (5), and ¢ = 16.23 (1) A. There are four molecules per unit cell, and the observed and
calculated densities are 1.49 and 1.48 g/cmi?, respectively. The equiinclination Weissenberg technique was used to record

the intensities of 981 nonzero reflections.
to a conventional R factor of 8.3%.

intermediate between tetrahedral and cis square planar.

distances are 1.97 (1) and 1.93 (1) A.

Introduction

Complexes of Cu(II) compounds and various N-
oxide ligands have been the subject of a number of
studies. Most of the ligands form complexes in both a
1:1 and a 2:1 ligand-to-metal ratio;'~" however, com-
plexes with other ligand-to-metal ratios also occur.
Most 1:1 complexes have low magnetic moments at
room temperature, and an oxygen-bridged dimeric
structure was proposed.®® A single-crystal study of
dichloro(pyridine N-oxide)copper(II) showed the
structure to be composed basically of oxygen-bridged
dimeric units.’!* The dimeric units are chlorine
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(6) R. Whyman and W. E. Hatfield, ¢bid., 6, 1859 (1967).

(6) S. J. Gruber, C. M. Harris, E. Kokot, 8. L. Lenzer, T. N. Lockyer,
and E. Sinn, Australian J. Chem., 20, 2403 (1967).

(7) R. Whyman, D. B, Copley, and W. E. Hatfield, J. Am. Chem. Soc.,
89, 3135 (1967),

(8) C. M. Harris, E. Kokot, 8. L. Lenzer, and T. N, Lockyer, Chem. Ind.
(London), 651 (1962).

(9) M. Kubo, Y. Kuroda, M. Kishita, and Y. Muto, dAustralian J, Chem.,
16, 7 (1963).
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Positional and isotropic thermal parameters were refined by least-squares methods
The molecules are monomeric, and the coordination around the central Cu ion is
The Cu-Cl distances are 2.221 (4) and 2.247 (4) A while the Cu-0O

bridged to adjacent dimers to form infinite chains, and
the geometry around the Cu(II) ion is square pyrami-
dal'? with the apical chloride bond elongated to 2.836 A.
The two bridging oxygen atoms form an edge of the
square base, and the apical chlorides are trans with
respect to the joined basal planes. The low magnetic
moments of the 1:1 complexes are rationalized in terms
of a superexchange mechanism.

The structure and properties of the 2:1 complexes
have not been studied as extensively as the 1:1 com-
plexes. The 2:1 complexes in general are monomeric
and have normal magnetic moments although both
low-moment and normal-moment dimeric structures
are known. The low-moment dimers are similar to the
1:1 complexes with the extra pyridine N-oxide ligands
in the fifth coordination site rather than a bridging
chloride ion. The normal-moment dimers are similar
except one bridging oxygen is apical and the other
basal. If the magnetic electrons are restricted to
orbitals of approximately d;..,. symmetry, superex-
change does not occur becausé the orbitals of the mag-
netic electrons do not overlap significantly at the
shared oxygen atoms,

(12) R. 8. Sager, R. J. Williams, and W. H. Watson, submitted for publica-
tion.
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The green form of dichlorobis(4-picoline N-oxide)-
copper(II) belongs to space group P2;/c with two mole-
cules per unit cell.* The complexes must therefore be
centrosymmetric and like ligands are required to be
trans. A recent refinement of the structure in this
laboratory confirms the frams-square-planar molecular
conformation and the absence of any intermolecular
coordination between Cu(II) ions which are separated
by 6.29 A.

The structure of the yellow form of the 2:1 complexes
must be determined before the chemistry of these sys-
tems can be understood. We have completed a three-
dimensional X-ray structural analysis of the yellow
form of dichlorobis(2,6-lutidine N-oxide)copper(II),
and we wish to report the details of the structure.

Experimental Section
The 2,6-lutidine N-oxide (I), obtained from Reilly Tar &

CH3 CH3

A O—Z;\ />

Chemical Corp., was purified by vacuum distillation. Copper-
(II) chloride obtained from Allied Chemical Corp. was used
without further purification. Ethano! solutions of the ligand
and copper(II) chloride were prepared in which the molar ratio
of N-oxide ligand to copper was 2:1. The solutions were mixed,
and the complex precipitated within a few minutes. The com-
plex was recrystallized from an ethanol solution, and a mixture
of the yellow and green crystalline modifications were obtained.
A crystal of the yellow form with dimensions0.63 X 0.17 X 0.16
mm was selected for all intensity measurements. The systematic
absences observed on precession and Weissenberg photographs
(Ok! absent for 2 + [ odd and k0! absent for % odd) are consistent
with both the centric space group Pnma, k and ! interchanged,
and the acentric space group Pna2;. A positive pyroelectric test
and Rogers’ N(2) test!® indicated the crystal belonged to the
acentric space group. This choice was justified by the success-
ful refinement of the structure.

The unit cell dimensions were determined using an a-axis
layer line and the Okl Weissenberg photographs which were cali-
brated with superimposed NaCl powder lines, ¢ = 5.6402 A.
The cell dimensions are @ = 13.89 (1), b = 7.677 (5), and ¢ =
16.23 (1) A. The errors are standard deviations obtained from a
manual calculation of the cell edges from a number of reflections.
The density of 1.49 (3) g/cm?® was determined by the flotation
method using a mixture of CHCl; and CCl,. The calculated
density for four molecules per unit cell is 1.48 g/cm?. Three-
dimensional intensity data were collected at room temperature
around the a axis for levels O through 8 using the multiple-film
(three films) equiinclination Weissenberg technique. Nickel-
filtered copper radiation [\(Cu Ka) 1.54178 &) was used, The
intensities of 981 nonzero reflections were estimated visually by
comparison with a calibration strip. Lorentz-polarization cor-
rections were applied to the observed intensities, and the data
were corrected for absorption using Bond’s values!4 for a cylinder
with 4 = 48.6 cm™ and uR = 0.428. The maximum error in

(13) D. Rogers, Acta Cryst., 8, 455 (1950).
(14) “International Tables for X-Ray Crystallography,” Vol. II, The
Kynoch Press, Birmingham, England, 1959, p 295.
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any structure factor due to the absorption approximation is less
than 29,

The computer programs used for the structure determination
are listed in ref 15.

Structure Determination

Scale factors obtained from Wilson plots were used
initially to scale the nine levels together. The x and
¥ coordinates of the copper(II) ions were determined
from a three-dimensional Patterson map. The z
coordinate of one copper atom was chosen arbitrarily
to be 0.2500. Peaks tentatively identified as copper—
chloride vectors appeared to have approximately the
same x coordinate as the copper ion. Structure factors
were calculated with these coordinates using the atomic
scattering factors of Cromer and Waber.’® Those for
Cu?+ and CI~ were corrected only for the real part of the
anomalous dispersion.’” An R factor of 469, was ob-
tained where R = EHF0| — ’FGH/EIFO}. Because of the
large R factor, an 20! Fourier map was calculated using
only the phases of the copper positions. Peaks identified
as chloride ions were found to lie at =0.053 A in the
direction with respect to the copper positions. Struc-
ture factor calculations gave an R value of 309, and
the phases were used to calculate a three-dimensional
Fourier map. The coordinates of two oxygen atoms
and one carbon atom were assigned from this Fourier
map. A three-dimensional Fourier map was calcu-
lated using the phases from the additional atoms, and
approximate positions were obtained for all atoms ex-
cept hydrogen. The contributions of the hydrogen
atoms have been ignored. A structure factor cal-
culation indicated an R value of 209 at this stage.

A preliminary full-matrix, least-squares refinement
of three cycles was carried out on scale, positional, and
isotropic thermal parameters. A version of the Busing
and Levy program which had been modified for the
IBM 7094 was used, and the quantity Ew(\F0
|Fc )? was minimized. The weighting factors in the
initial calculation were given the value of unity. This is
satisfactory only for preliminary refinement and scaling
and is not acceptable for a final set of parameters.
The R factor dropped to 9.99, Three additional
refinement cycles were carried out on positional and
thermal parameters using the IBM 360 Model 50.
This program also minimized the quantity 2w(| Fo‘ -
IFcl)g, but a modified Hughes!®:1% weighting scheme was
used where w = 1.00 for F, < 4Fnim and w = 4Fnin/Fo

- (15) W. H., Watson and R. J. Williams, Data Reduction Program (IBM
1620); D.Hall and R. Shiono, General Three-Dimensional Fourier Synthesis
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for Least-Squares Matrix (IBM 360/50); V. Okaya, Bonds and Angles
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Fitter (IBM (1620).
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TABLE I

OBSERVED AND CALCULATED STRUCTURE FACTORS
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for Fy > 4Fnin. No unobserved reflections were in-
cluded. This lowered R to 8.29.

Three more isotropic least-squares refinement cycles
were carried out using a different weighting scheme,
where w = 1.0 for Fy < 4Fnin and w = (4Fumin/Fo)?
for F, > 4Fmin. The R value after this refinement
increased slightly to 8.89,. Essentially the same
bond lengths and angles were obtained as with the other
weighting scheme. The average esd’s for the two re-
finements were about the same. This also was found
to be the case in the structure determination of (DM-
SO),PdCl, 0 where different weighting schemes gave
essentially the same parameters.

An attempt was made to differentiate between the
hkl and hkl reflections in order to determine the polar-
ity. No observable differences were found on close
examination of the photographs. This is not surprising
owing to the small values of the complex part of the
anomalous dispersion correction (0.75 e~ for Cu and
0.72 e~ for CI).22 Thus it was not possible to deter-
mine the polarity, and the complex part of the anomal-
ous dispersion term was ignored. We feel that any
errors in atomic positions due to this term should be
less than the estimated standard deviations.

After the last refinement cycle, the final shifts in all
parameters were well below their estimated standard

(20) M. J. Benuett, F. A, Cotton, D. L. Weaver, R. J. Williams, and W, H.
Watson, Acla Cryst., 28, 788 (1967),
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deviations. The largest shift is less than one-seventh

the esd for that parameter. The observed and calcu-
lated structure factors are listed in Table I while
Table II gives the final positional and thermal pa-
rameters with their esd’s. The estimated standard
deviations are obtained from the normal equations
matrix of the last least-squares cycle. A final three-
dimensional difference Fourier was calculated. No
peaks larger than 0.60 e/A® were found. Most of
the large peaks were located where one would expect
to find hydrogen atoms.

Results and Discussion

Table III gives the molecular dimensions and short-
est nonbonding distances while Figure 1 shows a pro-
jection of the structure down the & axis. The arrange-
ment of ligands around the copper ions can be de-
scribed as intermediate between tetrahedral and cis-
square-planar configurations. The angles around the
copper ion are CI-Cu-Cl = 100.8°, O-Cu-O = 86.7°,
Cl-Cu-04 99.1°, and O0,~Cu~Clp 99.0°. The
Cu~O bond lengths of 1.93 and 1.97 A are slightly
smaller than the Cu~O distances in (C;H;NOCuCly),,
1.98 and 2.04 A, while the Cu~Cl distances of 2.221
and 2.247 A are slightly larger than the 2.206 and
2.217 A found in the pyridine N-oxide complex.
The angle between the copper-oxygen and copper—
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TABLE II
ATOMIC PARAMETERS WITH STANDARD DEVIATIONS?®
Atom x LY z B, A2 Atom x LY 2 B, Az
Cu 0.2071 (2) 0.0459 (2) 0.2500 3.06 (6) Cs 0.370 (2) 0.829 (2) 0.102 (1) 3.9 (3)
ClL 0.2473 (5) 0.2141 (5) 0.1441 (3) 3.81(8) Cs 0.441 (2) 0.001 (8) 0.309 (1) 5.2 (4)
Cly 0.1741 (4) 0.2481 (5) 0.3460 (3) 3.86 (8) Cy 0.282 (2) 0.740 (3) 0.076 (1) 5.8 (5)
Oy 0.,2974 (9) 0.852 (1) 0.2310 (6) 3.1(2) Cs 0.084 (2) 0.840(3) 0.421 (1) 4.8 (4)
0, 0.114(1) 0.871 (2) 0.2823 (7) 4.12) Cy 0.025 (2) 0.858 (3) 0.489 (1) 5.4 (5)
Ny 0.374 (1) 0.880(2) 0.1852 (9) 3.8(3) Cu —0.085 (3) 0.935 (4) 0.480 (2) 7.1(7)
N 0.054 (1) 0.895(1) 0.3476 (7) 2.5(2) Cu —0.092 (3) 0.990 (4) 0.406 (2) 6.9 (7)
C 0.453 (2) 0.957 (2) 0.221 (1) 4.3 (4) Cu —0.034 (2) 0.977 (3) 0.335 (2) 5.8 (5)
Cs 0.534 (2) 0.991 (3) 0.170 (1) 5.6 (5) Cus 0.186 (2) 0.748 (3) 0.425 (1) 5.4 (5)
Cs 0.530 (3) 0.942 (4) 0.085 (2) 7.5(7) Cu —0.054 (2) 0.038 (2) 0.253 (1) 4.7 (4)

Cy 0.453 (2) 0.863 (3) 0.054 (1) 4.7 (4)
e Standard deviations of the least significant figures ate given in parentheses.
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Figure 1.—A projection of the yellow form of (C/HNO),CuCl; down the b axis.
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chlorine planes is 54.6°. The N-O bond lengths,
1.31 and 1.36 A, are comparable with that of 1.35 A
in (C;H;NOCuCly),, and they show the expected in-
crease in length over those in the free aromatic amine
N-oxides (1.24-1.28 A) where considerable = bonding
occurs. *1—%

TaBLE III
INTERATOMIC DiIsTANCES (A) AND BOND ANGLES (DEG)®

Shortest nonbonding ——-Bond angles——

—Bond lengths— distances 0:-N:1-Cs 118 (1)
Cu~Cli 2.221(4) Ch-Clz 3.442 (4) Ni~Ci~C: 118 (2)
Cu-Clz 2.247 (4) 0102 2.68 (1) Ci~Co-Cs 119 (2)
Cu-0: 1.97 (1) Cl=-Curs 4.05 (3) Co-Cs-Cy 121 (2)
Cu~02 1.93 (L) ClL-Cr 3.84 (3) Cs—Cs—Cs 123 (2)
0O1-N1 1.31 (1) Cl2a~Cr1e 3.87 (3) Ci—Cs-N1 117 (2)
0-N2 1.36(1) Cl2a—Crp 3.78 (2) Ci-N1-Cs 123 (2)
Ni~C1 1.39 (2) Clip—Cusp 3.68 (2) N1-Ci1-Cs 114 (2)
Ci—C2 1.41 (3) Clip~Clae 3.79 (2) Co~Ci-Cs 128 (2)
Cr-Cs 1.44(3)  CuaCue 3.83 (3) N1=Cp-Cr 116 (2)
Cs—Cy 1.32 @) Ci3a=Ci10 3.68 (4) Ci—Cs-Cr 127 (2)
Cs—Cs 1.41(2) Cga=Cap 3.95 (4) 0s-N:2-Cs 117 (D
Co=N1 1.41(2) Cuae~Nig 3.53 (3) Or-N2-Cr2 119 (1)
Ci-Cs 1.48 (2) Coa~Cals 3.62 (4) Nz-Cs—Cs 120 (2)
Cs—Cr 1.47 (3) Cia—Cre 3.77 (&) Cs—Cs—Cu 119 (2)
N2~Cs 1,33 (2) — Bond angles——— Cy—C1—Cn 118 (2)
Cs=Cs 1.39 (2) Cl1-Cu-Clx 100.8 (2) C10—Cn—Cr2 124 (3)
Ce-Cie  1.39(4) 0,-Cu-0: 86.7 (5) Cu—Cu—Na: 114 (2)
Cu~Cnn 1.33(3) 01—Cu~-Cly 99.1(3) Ci—N2Cuz 124 (2)
Cu~Crz 1.41(3) 0s~Cu-Cl2 99.0 (4) No—-Cs—Crs 118 (2)
Ci-Nz  1.38(3) Cu-0:1-N3 118.6 (9)  Co=Cs~Cua 122 (2)
Ce—Ciz  1.59 (3) Cu-0:-N3 121.6 (9) Cu—Cp-Cu 129 (2)
Cre~Cu 1.43(3) 0-N1~Ct 119 (1) N2-C1—Cue 117 (2)

@ Standard deviations of the last significant figures are given in
parentheses,

The bond lengths around the ring are too inaccurate
for any conclusions to be drawn concerning the ef-
fects of complex formation on the aromatic = system.
The atoms of each ring were least-squares-fitted to a
plane with all atoms weighted equally. The average
deviation of the atoms from the planes is 0.008 A.
The largest deviation is 0.015 A, which is less than the
estimated standard deviations of the atoms.

The yellow form of (4-CH;C;H:NO),CuCly is ir-
reversibly converted to the green frams-square-planar

(21) E. L. Eichhorn, Acta Cryst., 9, 787 (1956).

(22) R. Curti, V. Riganti, and 8. Locchi, 7bid., 14, 133 (1961).
(28) E. L. Eichhorn, ibid., 12, 746 (1959).
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form on heating. The green form is also formed pre-
dominantly when the complex is prepared by heating
an ethanol solution with a large excess of ligand. The
trans isomer probably is stabilized by = back-bonding
of the appropriate copper(II) d orbitals with the low-
lying antibonding « orbitals of the aromatic N-oxide.
There is little steric interaction in the frans configura-
tion which would hinder the ligands from obtaining a
configuration compatible with maximum = bonding.

In contrast, the yellow form of [2,6-(CH;),C;H;NOJs-
CuCl; does not convert to the green form when the
solid 1s warmed. The reason for this is not known,
but it seems likely that the steric effects of the methyl
groups could hinder the conversion. The energy of
transformation would then be too high and the complex
would melt before converting to the green form.

There is considerable steric and electrostatic inter-
action in a cis-square-planar structure, and it probably
cannot be stabilized by =-bond formation. A tetra-
hedral structure is the most stable from electrostatic
considerations. This is demonstrated by the struc-
ture of [2,6-(CH;).C;H;NOLZnCl** where no crystal
field stabilization is present. The structure is tetra-
hedral with a small expansion of the Cl-Zn-Cl angle
due to electrostatic repulsion. The tetrahedral Cu(II)
structure would be unstable due to a Jahn-Teller dis-
tortion. The E-symmetry vibration of a tetrahedral
molecule is Jahn-Teller active and in the extreme
would lead to either a ¢is- or frams-square-planar con-
figuration. The distorted configuration of the yellow
form of [2,6-(CH,),C;H;NOJ,CuCl, is probably a com-
promise between the sterically unstable c¢is and the
Jahn-Teller unstable tetrahedral configurations.

Acknowledgment.—We wish to acknowledge The
Robert A. Welch Foundation and the TCU Research
Foundation for financial support of this project. We
also gratefully acknowledge the NASA traineeship
awarded to R. S. Sager and express our appreciation
to the TCU, Texas A & M, and SCAS computer centers.

(24) R. S. Sager and W. H. Watson, I'norg. Chem., T, 1358 (1968).



