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A single-crystal X-ray structural analysis has confirmed the proposed structure of (CH;N );Fe;(CO),, one of several products
of the reaction of methyl azide or nitromethane with Fe;(CO)s. This material crystallizes in space group Cil-P1 of the tri-
clinic system, with reduced cell constants e = 831 (2) A, = 890 (2) A, ¢ = 12.79 (3) &, « = 80° 29’ (10"), 8 = 108°
27/ (10"), and v = 111° 29’ (10’). Observed and calculated densities for two molecules per unit cell are 1.89 (2) and 1.90
g/cm?, respectively. The structural determination was based upon 773 independent film data; full-matrix least-squares
refinement resulted in a conventional R factor of 6.5%. The crystal structure is made up of discrete (CH;N ).Fe3(CQ)y
molectles, in which the iron atoms of three Fe(CO); groups are triangularly situated and triply bridged on opposite sides of

the Fe-Fe-~Fe plane by the two N-CHj groups. Two of the iron-iron distances (mean 2.462 (7) A) are of a magnitude
indicative of iron-iron bonds, and the third is a nonbonded contact of 3.044 (8) A. The six iron-nitrogen bond distances
are equal within experimental error and have an average value of 1.928 (11) A.

Introduction

A variety of organonitrogen—iron carbonyl deriva-
tives have recently been prepared by the reactions of
organic azo, azido, nitro, and isocyanato compounds
with the iron carbonyls.?~7 Several of these reactions
have been interpreted as proceeding through nitrene
intermediates,” and a number of the products may be
regarded as containing nitrenes as ligands. The
structures of these compounds are of interest because of
their possible relevance to the proposed reaction
mechanisms, because of the presence of several new
types of ligand systems in the proposed structures,
and because of the close analogy of some of the pro-
posed structures to the known structures of other
compounds, particularly to sulfur-containing iron
carbonyl derivatives. Compounds containing one,
two, and three iron atoms are known, and a number of
these compounds are the subjects of structural in-
vestigations in this laboratory. This paper reports
the results of a crystallographic analysis of (CH;N),-
Fe;(CO)y, for which the proposed structure’ analogous
to that of S;Fe;(CO)¢® has now been confirmed.

Experimental Section

Preliminary precession and Weissenberg photographs of the
deep purple crystals of (CH;N );Fes(CO)y suggested that this
compound crystallizes in the triclinic crystal system. These
photographs were indexed on the basis of a face-centered triclinic
unit cell, chosen because of its near-orthogonality. Lattice
constants of this cell at 22°, determined from NaCl-calibrated
(a(NaCl) = 5.640 A, A\(Mo Ka) 0.7107 A) k0! and k0 precession

(1) Part I: R. J. Doedens, Inorg. Chem., 7, 2323 (1968).

(2) Presented in part at the 156th National Meeting of the American
Chemical Society, Atlantic City, N. J., Sept 1968.

(3) T. A. Manuel, Tnorg. Chem., 8, 1703 (1964).

(4) M. M. Bagga, P. L. Pauson, F. J. Preston, and R. I. Reed, Chem.
Commun., 543 (1863).

(5) W. T. Flannigan, G, R, Knox, and P. L. Pauson, Chem. Ind. (London),
1094 (1967).

(6) M. M. Bagga, P. E. Baikie, O. S, Mills, and P. L. Pauson, Chem.
Commun., 1106 (1967).

(7) M. Dekker and G. R. Knox, bid., 1243 (1967),

(8) C. H. Wei and L, F, Dahl, Inorg. Chem., 4, 493 (1965).

photographs, are: a = 831 (2) A, b = 16.66 (4) A, ¢ = 24.26
(6) A, @ = 86° 47’ (10’), 8 = 90° 11’ (10"), and v = 96° 10’
(10”). The standard deviations in parentheses are estimates
based on the reproducibility of the measurements and on pre-
vious experience with this technique., No evidence of higher
symmetry resulted from a Delaunay reduction of this cell. The
three shortest noncoplanar lattice translations define a reduced
cell with @’ = 8.31 (2) A, b’ = 890 (2) 4, ¢/ = 12.79 (3) 4,
o’ = 80° 29’ (10'), B’ = 108° 27’ (10’), and v’ = 111° 29’
(10’). All results are reported in terms of the face-centered cell,
from which the reduced cell may be derived by the transforma-
tions: a’ = —a, b’ = /s(a 4+ b), ¢’ = 1/s{a — ¢). The observed
density of 1.89 (2) g/cm?, determined by flotation in aqueous zinc
bromide solution, agrees well with the value of 1.90 g/cm? calcu-~
lated on the basis of eight formula units per face-centered cell,
The centrosymmetric space group C-F1 {equivalent general
positions: [(0, 0, 0), /2, /2, 0), (Y2, 0, */2), (0, Yo, 1/2)] =
(x, v, z)} was assumed; no evidence arose in the course of the
structural analysis to contradict this assumption. In the centro-
symmetric space group with Z = 8, all atoms may occupy general
positions, and thus no crystallographic molecular symmetry is
imposed.

Intensity data for reciprocal lattice levels 0kl-7k] were collected
by the multiple-film equiinclination Weissenberg technique from
a fragment of a tabular crystal of dimensions 0.23 X 0.22 X 0.10
mm mounted parallel to its longest dimension in a sealed thin-
walled glass capillary. Zirconium-filtered Mo Ka radiation and
a Supper nonintegrating Weissenberg camera were employed in
the data collection. A full 360° of data was collected for each
nonzero reciprocal lattice level, and the intensities of only the
reflections recorded on the top halves of the films were measured.
Intensities were estimated visually by comparison with a
calibrated strip, and the usual Lorentz-polarization and spot-
shape corrections were applied. With g = 25.3 cm ™, the maxi-
mum variation due to absorption of the intensities observed on a
given layer was estimated to be of the same order of magnitude
as the uncertainty in judgment of the data, and hence no absorp-
tion correction was attempted. The total number of independent
data measured above background was 773, which represents 519,
of the experimentally accessible data with § < 20°. Beyond
this value of the Bragg angle, very few reflections were above
background. No attempt to place the data on a common scale
was made prior to the preliminary least-squares refinement;
for the calculation of the Patterson map, it was assumed that
all data were on a common scale by virtue of the identical expo-
sure times for all levels. In the final refinement, the observed
structure factors were assigned standard deviations as follows:
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if F < 4Fumin, o(F) = 1.0; if F > 4Fuin, o(F) = F/4Fuin.
Frin is the minimum observed F for the entire data set.

Solution and Refinement of the Structure

Trial coordinates of the three iron atoms were de-
termined from a three-dimensional Patterson function
and refined by full-matrix least-squares methods to
discrepancy factors Ry = 1003 F,| — |Fl|/
2| F,| = 27.6% and R, = 100[Zw(|F.| — |F.])¥/
Sw| F,|?]/* = 36.09%. A difference Fourier map clearly
revealed the locations of the remaining nonhydrogen
atoms. Refinement of all atomic positional param-
eters, isotropic atomic temperature factors, and individ-
ual scale factors for each reciprocal lattice level yielded
discrepancy factors Ry = 8.29%, and R, = 9.8%,. A
difference Fourier map revealed positive peaks of up to
1.1 e/A% in the immediate vicinity of the iron atoms
and no other peaks greater than 0.6 e/A3. For com-
parison, peaks due to light atoms on the previous dif-
ference map ranged in height from 2.0 to 4.1 e/As
Further refinement with anisotropic temperature factors
for the iron atoms resulted in a reduction of Ry and R,
to their final values of 6.5 and 7.99, respectively. In
the final least-squares cycle, no parameter shifted by
more than 109, of its standard deviation. Unit weights
were used during the early stages of refinement; com-
mencing with the final cycles of isotropic refinement,
weights were taken as 1/0%(F,) for each reflection.
The appropriateness of the weighting scheme was
tested by calculation of average values of AF/c for
various subsets of the intensity data; it was found that
this average was essentially independent of the range
of the magnitude of F,, the uncorrected intensity, or
the Bragg angle included in a subset. The final stand-
ard deviation of an observation of unit weight was 0.85.

Final observed and calculated structure factors (in
electrons) are tabulated in Table I. Unobserved data
were not included in the refinement and are not listed.
Only six experimentally accessible unobserved data
with § < 20° had calculated structure factors greater
than twice the minimum observed value for their
reciprocal lattice level. Final positional and thermal
parameters are listed in Table II, and intramolecular
distances and angles are given in Tables III and IV,
respectively. Standard deviations include correlation
effects, and in the case of bond lengths and angles the
effects of cell constant errors are also included.

The scattering factors tabulated by Ibers® were
used in all structure factor calculations, and the Af’
and Af’’ values of Cromer!® were employed in the cor-
rection of the calculated structure factors for the
anomalous scattering of the iron atoms. Programs for
the IBM 360/50 computer used in this structural
determination included modified versions of Zalkin's
FORDAP Fourier summation program, the Busing-
Martin—Levy ORFLS and ORFFE least-squares and error
analysis programs, the Brookhaven-Northwestern data

(9 J. A. Ibers in ‘“‘International Tables for X-Ray Crystallography,”
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reduction programs, and various locally written pro-
grams.

Description and Discussion of the Structure

The crystal structure of (CH;N).Fe;(CO); is made
up of monomeric molecular units, in which the three
iron atoms are triangularly situated. Two of the iron-
iron distances (2.436 (7) and 2.488 (7) A) are of a mag-
nitude generally associated with iron—iron bonding,
while the third (3.044 (8) A) is in the range of non-
bonded iron-iron distances. Each iron atom is bonded
to three terminal carbonyl groups, and the two methyl-
imido groups triply bridge the iron atoms on opposite
sides of the Fe-Fe-Fe plane. The bridging groups
are symmetrically situated, as shown by the fact that
none of the six Fe-N bond distances deviates sig-
nificantly from their mean of 1.928 (11) A and by the
small range of 121.9 (14)-128.3 (13)° for the Fe-N-C
(methyl) angles. Though no crystallographic sym-
metry is imposed on the molecule, the plane of the iron
atoms is an approximate mirror plane. The molecular
structure is shown in Figure 1, and in Figure 2 the
central portion of the molecule is viewed from another
perspective.

The molecular structure of (CH;N),Fe;(CO)g is
closely related to that of [(CsHj;):CNN],Fe;(CO),, the
only other compound for which a structure containing
three iron atoms bridged by an N-R group has been
reported.!* These two compounds, in turn, are directly
related to a variety of binuclear N-bridged iron car-
bonyls whose structures are known. For example,
the structure of the pz-methylimido complex may be
formally derived from that of the dimethylureylene-
bridged compound, [(CH;N).:CO]Fex(CO)s,! by re-
placement of the carbonyl group of the bridging ligand
by a third Fe(CO); moiety and formation of a metal-
metal bond to the new iron atom from one of the two
original iron atoms. The central portion of the re-
sulting configuration may be envisioned as consisting
of two Fe;N, tetrahedra which share a N-Fe-N tri-
angular face. The mean iron-nitrogen distance of
1.928 (11) A is at the low end of the range of 1.94-2.00
A for mean Fe-N distances in a variety of closely re-
lated binuclear and trinuclear species. All of these
bonds may be regarded as single bonds, and the varia-
tions within this range are reasonable ones. The
shorter distances occur for tetrahedral triply bridging
nitrogen atoms [1.928 (11) A in (CH;N).Fe;(CO)
and 1.95 A in [(CsHs)sCNN },Fe;(CO),] and for trigonal
doubly bridging nitrogen atoms [1.94 (1) A in [(p-
CH;CsH,);CNFe(CO);].].12 Bonds from iron atoms to
tetrahedral doubly bridging nitrogen atoms are in
general longer than these values [e.g., 1.98 (1) Ain [H.N-
Fe(CO)3)p, 2 1.996 (6) A in [(CeHN);CO]Fes(CO)g, 14015
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Atomic Positional and Thermal Parameters
for (CH;3N ):Fe;(CO)y
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Figure 1.—The molecular configuration of (CH;N ):Fes(CO),.

pairs of planes (Fe;~Fes~Ni, Fe—Fey-N,) and (Fes—
Fe;~N;, Fey-Fes~Ny), respectively. These values are
intermediate between the observed dihedral angles of
104.0 (10)° in [HyNFe(CO);];, in which the amido
groups are unconstrained by any bond or bridging
group between them, and 84.9 (10)° in [(CH;N),CO]l-
Fey(CO)g, in which the bridging nitrogen atoms are
bridged in turn by a CO group. The nonbonded
N...N distance of 2.24 (2) A between the two triply
bridging nitrogen atoms is likewise intermediate be-
tween the values of 2.10 (2) and 2.50 (3) A reported for
the corresponding distance in the (CH;N),CO-bridged
complex and NH-bridged dimer, respectively.

The confirmation of the proposed structure of (CHs-
N)sFe;(CO),y extends the analogy between nitrogen-
and sulfur-bridged iron carbonyls and permits further
comparisons of the geometries of these two types of
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TABLE III

BOND LENGTHS AND SELECTED INTRAMOLECULAR NONBONDED ConTACTS (A)
Fei-Fesz " 2.436 (1) Feg—Fes 2.488 (7) Fer--Fes 3.044 (8)
Mean Fe-Fe 2.462 (7) : )
Fer-Ni 1.80 (2) Fes-Ni 1.96 (2) Fer-N1 1.95(2)
Fer-Nz 1.94 (2) Fex-N3 1.92(2) FerN3 1.90 (2)
Mean Fe-N 1.928 (11)
Fer-Ci-1 1.70 (3) Fer—Ca-1 1.72(3) Fer-Cs-1 1.76 (3)
Fer-Ci-1 1.73 (3) FerCo2 1.72 (3) ) FerCi-2 1.74 (3)
Fei~Ci-3 1.76(3) Fer—Ci-s 1.75 (3) Fer-Ca~3 1.77 (3)
Mean Fe-C 1.739 (9) . .
Ni~Ca - 1.49 (3) Ne-Cs 1,48 (2)
Meéan N-C 1.482 (18) . ) )
Ci1-1-01-1 1,19 (3) Cs-1-02-1 1.21(3) C3-1-Oz-1 1.18(3)
Ci-2-0O1-2 1.20 (3) Ca1-3-0z-2 1.20 (3) Cs-3-03-2 1.19 (3)
Ci-+O1-3 1.19 3) Co-+02-5 1.14(3) Ci-+-0s-3 1.14(3)
Mean C-0 1,181 (9) .
Ci-1-++Ci-2 2.46 (4) ~Csy+ - Ch-g 2.50 (4) Co-1--Cs—2 2.51 (4)
Cr~1- - Ci-s 2.60 (4) Cs-1-+-Cos 2.58 (4) Ci-1- - Cs-3 2.60 (4)
Ci~g'+Ci-3 2.57 (9 Ca-2:+:Cos 2.55 (4) Cs~2++Ca-3 2.60 (4)
N+ Ci-2 2.67 (3) Na-++Cig 2.69 (4)
Ni+ -+ Co-g 2.66 (3) Ny« Cry 2.85 (3)
N+ Cs-id 2.76 (3) Ng«»+Cs~1 2.74 (3)
Ni+--Ci-3 2.81(3) Ng-»+Cs~s 2.79 (3)
Ni+«-Cs=s 2.94(3) N+ +Ci~s 2.99 (3)
Ni-«:Ce-3 3.01(8) Ny-++Ca~3 3.05 (8)
N3+« -Ne 2.24 (2)
) TasLE IV
. INTRAMOLECULAR ANGLES (DEG)

Feg—Fe{—Fea 52.6 (2) Féz‘Fes—Fei 51.0 (2)

Fes—Fe-Ny 51.9 (5) Fe,-Fey-N: 50.5 (5)

Fey-Fe;~Ny 50.6 (8) Fe;~Fey-N; 49.8 (5)

Fez“Fel—C1—1 107.7 (9)
Feg'-'Fel—Cl—g 104.4 (8)
Fez~Fel—C1~3 147.1 (9)
Ni-Fe~N, 71.5(7)
Nl—Fe1'—C1—1 159 . 6 (10)
Nr—F61—C1-2 04.9 (10)
N—Fe;-Ci-3 100.9 (10)
Nz—Fer‘Ci—]_ 95.0 (1 1 )
Nz——Fer-C;—z 1549 (10)
Ng"Fel—C1—3 107 9 (10)
Ci-1~Fe;~Ci-2 91.6 (12)
Ci-1-Fe;~Ci—s 97.8 (12)
Ci—~Fe-Ci-3  95.1 (12)

Fer-Fer-Ci-i  108.4 (8)
Fey-Fey-Cy—z  118.3 (9)
Fey-Fey-Co-s  141.8 (9)
Ni-Fer-N, 71.1(7)
Ni-Feg—Cs—1 158.9 (10)
Ni-Fer-Ca—z 96.3 (10)
Ni—Fes~Cs3 103.9 (10)
Nz—Fea—Ca-q 96.6 (10)
Nz-Fez~Cas 162.9 (10)
'NZ—FEE—-CQ-S 98.7 (10)
Cs—1-Fey~Cs—g 91.7 (12)
C3—1¥Fe3—Ca—3 94 7 (12)
Cs-—g—Fes—Ca—s 95.4 (12)

FerFerFe;  76.4(2) o
Fe:—Fez—Nx 49.5 (5) Fea¥FEz—N1 50 4 (6)
Fe;-Fé-N; 51.3 (6) Fe;~Fé;—N; 49.0 (6)

FEI—Fez*-Cz—-l 104 1 (9)
Fe1—Fez—C2-—z 100 N 1 (9)
Fe1—Fez—‘Cz~3 153.9 (9)
Ni-Fee—Co-1 153.7 (10)
Ni-Fer-Co—» 92.6 (10)
Nr‘Fez—Cz—s 1088 (10)

Cor-FerCyz  93.3 (13)
Cp-1-Fer-Co-y  96.2 (12)
Co-o-Fey-Co-y  94.8(13)

F63~F62—C2—1 131 .8 (9)
Fes-Fey—Co—2 134.7 (9)
Fea-Fez—Cz—s 77.9 (9)
Np-Feg-Co-y 93.0 (10)
Ny-Fe—Co-2 151.4 (10)
Np-Fer-Cpp  112.2 (11)

FeL—Nr'C4 128 . 2 (14) Fé1—N2—C5 125.5 (14)
Fe,-N1—C4 128.3 (13) Fer~No—Cs 127.8 (13)
Fe-Ni-Cy 121.9 (14) Fey~Ny-Cs 124.2 (14)
Fei-Ny-Fe; 78.6 (7)  Fer-Ny-Fe, 78.0(7)
Fe,—Ni-Fes 104.7 (8) Fe;~Ny~-Fes 104.7 (8)
Fe;—Ni-Fes 79.1(7) Fey~Ny-Fes . 81.2(7)

Fey-Cy—1-0s-1 1%3 .8 (23)
Fes-Cy—g-0s-2  179.3 (33)
Fer-Co--0s-s  171.8 (22)

Fei~Cr-1-Oi—;  177.4 (26)
Fei~Ci-2~01~2 178.0 (24)
Eel—Cl—s—Ol_s 177 4 (24)
FerCpo1-0z-1  176.9 (24)
Fez“C2—-2—Oz-—2 1780 (26)
Fez*‘Cz—a—Oz—a 174 1 (23)

bridging systems. The méthylimido groups in the
present compound are analogous to the triply bridging

Figure 2.—The central portion o_f the (CH;N),Fe;(CO)s mol-
ecule, with bond lengths (in 4).

chalcogen dtoms in Se;Fey(CO)!® and S,Fe;(COJod
the doubly bridging C.H:S groups in [C:H:SFe(CO); L
have found parallels in the nitrogen-bridged compounds
[HzNFe(CO)s]Z and [(RN)QCO]Feg(CO)s (R = CHs,
CeH;). In these compounds, the SR and NR, groups
are formal three-electron donors, and the NR group
and the S atom function as four-electron donors. The
shortening of the mean Fe-N distance from 1.965
(10) A in [(CHsN)COJFey(CO)e to 1.928 (11) A in
(CH;N),Fes(CO)q is closely similar to the contraction
in-the mean Fe-S distance from 2.259 (6) A in [CoH,-
SFe(CO);s s to 2.229 (5) A in S;Fes(CO)s.  The mean

(16) L. F. Dabl and P. W. Sutton, Inorg. Chem. 3, 1087 (1963).
(17) L. F. Dahl and C. H. Wei, ibid., 3, 328 (1963).
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values of 79.2 (4) and 104.7 (6)° for the two inde-
pendent Fe-N-Fe angles are greater than the values of
71.2 (2) and 98.4 (4)° observed for the corresponding
Fe-S-Fe angles in S;Fe;(CO)y; the difference is of a
comparable magnitude to that observed in the cor-

responding binuclear compounds [e.g., 75.0° in [(CHs-

N),COIFey(CO)s vs. 68.4° in [C;H;SFe(CO)sl:].

The two outer iron atoms, Fe; and Fe;, are each co-
ordinated to three terminal carbonyl groups, the two
bridging nitrogen atoms, and Fe; in a distorted octa-
hedral configuration similar to that found in a variety
of related compounds. The central iron atom, Fe,,
has a seven-coordinate geometry of the type observed
in the isostructural sulfur complex S;Fe;(CO)s# and
closely related to that of the selenium analog Se;Fe;-
(CO)y.2* A view of this coordination, projected onto a
plane perpendicular to the vector defined by Fe; and
the point midway between Fe; and Fe,, is shown in
Figure 3.

The two iron—iron bond distances of 2.436 (7) and
2.488 (7) A differ significantly on the basis of their
estimated standard deviations. As can clearly be seen
in Figure 3, the seven-coordinate configuration about
Fe; is one which leaves the outer iron atoms Fe; and
Fe; nonequivalent. The steric and electronic factors
which might lead to a difference in iron—iron bond
lengths cannot be sorted out with any confidence; it is,
however, worth noting that the Fe;- - -C,_; contactis a
rather short one of 2.72 (3) A while the Fe;- - -Cy_y and
Fe;- - - Cos nonbonded distances are 3.31 (3) and 3.22
(3) A, respectively. The Fe-Fe bond lengths in
[CeH;CNN J;Fe;(CO)q are reported to differ by 0.03 A1
but it cannot be determined from the preliminary pub-
lished results whether this difference is significant or
whether it is consistent with that observed in the
present case. The mean iron—iron bond distance of
2.462 (3) A in this compound and that of 2.445 A in
[CsH;CNN JoFe; (CO)y are significantly longer than the
range of 2.37-2.40 A observed for iron-iron bond dis-
tances in compounds containing two Fe-N-Fe bridges.*
This effect is also observed in the analogous doubly
and triply bridged sulfur compounds. The nonbonded
Fe,~Fe; distance of 3.044 (8) A is again close to the
value of 3.06 A found for the corresponding distance
in [CeH;CNN J,Fes(CO)y; it is longer than any reported
iron—-iron bond, and simple electron-counting con-
siderations suggest that no bond should be required.

The only other compound in which a crystal struc-

(18) See ref 13 for a summary of these bond lengths,
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Figure 3.—The coordination of Fe;, as projected onto the plane
perpendicular to the line defined by Fe; and the Fe;—Fe; midpoint,

ture analysis has confirmed the presence of a triangle
of metal atoms triply bridged by an N-R group is
the paramagnetic nickel complex -CHN(NiC;H;)s.2®
Though final comment on this structure must be re-
served until full structural results are published, the
preliminary bond lengths quoted do not appear to fall
into the pattern established by the iron compounds.

Normal values are observed for the mean Fe-C,
C-0, and N-C bond lengths, with none of the individual
bonds of these types showing significant variations
from the averages. The Fe-C-0O angles range from
171.8 (22) to 179.3 (33)°. Intermolecular contacts
are of normal lengths for molecular crystals, with the
shortest (not considering the methyl hydrogen atoms)
being a distance of 3.11 (3) A between two carbonyl
oxygen atoms. The trends in the isotropic tempera-
ture factors of the light atoms are in accord with
qualitative expectations, and the anisotropic thermal
parameters for the three iron atoms give rise to reason-
able principal rms amplitudes of motion—0.165 (8),
0.176 (7), and 0.195 (11) A for Fey; 0.134 (8), 0.188 (6),
and 0.214 (13) A for Fey; and 0.135 (7), 0.186 (9), and
0.192 (9) A for Fe;.
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