1084 JuprirH K. STALICK AND JAMES A. IBERS

The Crystal and Molecular Structure of

Inorganic Chemistry

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY,
NORTHWESTERN UNIVERSITY, EvansTox, ILLiNoIS 60201

Dicyanotris(phenyldiethoxyphosphine)nickel(II), Ni(CN).(P(C:H;)(OC.H;),);

By JUDITH K. STALICK axp JAMES A. IBERS

Received November 25, 1968

The crystal and molecular structure of dicyanotris{phenyldiethoxyphosphine)nickel(11), Ni(CN),(P(CsH;)(OCH;))s, has
been determined from three-dimensional X-ray data collected by counter methods. The structure has been refined by
least-squares techniques to a final R factor on F of 6.99,. The material crystallizes in space group C,>-P2; of the mono-
clinic system, with two molecules in a cell of dimensions ¢ = 19.51 (3), 5 = 9.90 (2), ¢ = 9.65 (2) A, and g = 96° 29 (2)".
The calculated density is 1.265 g/ecm3.  The absolute configuration of this crystal was inferred by comparison of intensities
of Friedel pairs. The inner coordination about the Ni is intermediate between the two idealized five-coordinate geometries—
the trigonal bipyramid and the tetragonal pyramid—and is strikingly similar to the geometry about Ni in one of the Ni-
(CN);#~ ions in [Cr(NH,CH,CH,NH, )] [Ni(CN);]-1.56H,0O. The Ni and three P atoms are coplanar, with Ni-P bond
distances of 2.289 (5), 2.205 (6), and 2.189 (6) A. The P-Ni-P angle opposite the long Ni—P bond is 133.5 (2)°, while the

cyanide groups are bent away from this bond with a C-Ni-C angle of 170.8 (8)°.

(2) A, and the Ni-C-N linkages are linear.

Introduction

Recently there has been much interest in complexes
of the type Ni(CN)2(PRj);. Five-coordinate complexes
have been isolated for PR; = P(CsH;)(OC.Hjs)s,t
P(CGH{,) (OCH3)2 and P(OCQH5)3,2 P(CGH:,) (C2H5)2,3
P(C4H;)(CH;)s,4 P(OCHs)s;, P(OCH,);:CCH;, P(O-
(CHQ)gCHa)g, and P(OC6H5)3,5 but not for PR3 = P-
<C6H5)3 or P(CsHs)g(OCgHa).2’5 l\Iolecular orbital cal-
culations® have been made for two of these compounds,
NI(CN)Q(P (CGHO) (OC2H5)2>3 and NI(CN)Q(P<CCHO)-
(OCHs)s)s. For these calculations a trigonal-bipyrami-
dal geometry with axial cyanide groups was assumed, as
indicated by the electronic and infrared spectra.’:?

The determination of the structure of Ni(CN)e-
(P(C4H;s)(OCoHy)z); is part of a long-range series of
studies in this laboratory on the structures of five-
coordinate transition metal complexes containing mono-
dentate ligands. The number of such complexes has
multiplied rapidly in recent years,®~—% but it is still diff-
cult to predict which, if either, of the two idealized
geometries—trigonal bipyramidal or tetragonal pyra-
midal—will be utilized in a given complex, Our recent
study of the geometry of the two independent Ni-
(CN);#~ dons in [Cr(NH,CH.CH,NH,);][Ni(CN);]:
1.5H;O clearly demonstrates that the two idealized
geometries are not always utilized.® Whereas one
Ni(CN)z*~ ion was found to be a nearly perfect tetrag-
onal pyramid, the other was found to be a highly dis-
torted trigonal bipyramid. Whether such a distortion
occurs as the result of hydrogen-bonding requirements
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The Ni-C distances are 1.87 (2) and 1.89

among the cations, anions, and water molecules is diffi-
cult to assess. For this reason it is of importance to
examine closely related systems and this provided addi-
tional motivation for the present study of the structure

Collection and Reduction of the Intensity Data

Crystals of Ni(CN)(P(CsH;)(OC:Hs)s)s were kindly
supplied by Dr. E. A. Rick and Dr. R. L. Pruett.> The
material is moderately air sensitive and was handled
under a nitrogen atmosphere. Several attempts at
recrystallization were made; it was possible to precipi-
tate material that looked crystalline from two solvents
—anhydrous diethyl ether and dry hexane-—although
single erystals were quite difficult to obtain. About
two dozen crystals sealed in 0.2-0.3-mm glass capil-
laries were mounted and examined using Weissenberg
or precession techniques before one suitable for data
collection was found. A crystal in a properly sealed
capillary did not decompose but tended gradually to
sublime onto the glass walls. The crystal used for data
collection was of approximate dimensions of 0.16 X
0.25 X 0.40 mim. It was obtained by slow evaporation
of a dilute hexane solution.

Precession photographs of zero and upper layers of
the reciprocal lattice indicated monoclinic symmetry
and exhibited systematic absences only for 0k0 when
k # 2, suggesting space groups Co2-P2; or Cop*P2;/m.
Preliminary cell constants were obtained from the
films, and subsequent refinement of cell parameters
from diffractometer measurements using Mo Koy radi-
ation (A 0.7093 A) gave values of @ = 1951 (3), b =
9.90 (2), c = 9.65 (2)A, and 8 = 96° 29 (2)’ (at 22°).
The calculated density for two molecules per cell is
1.265 g/em®. It was not possible to obtain an accurate
experimental deusity owing to the extreme solubility of
this material in organic solvents tested and immediate
reaction with aqueous solvent systems. It could be
determined only that the density was somewhat
greater than 1.0 g/cm?.
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The crystal had moderately well-formed faces, and it
was carefully measured by means of a micrometer eye-
piece. The eight crystal faces of the forms {100 },
{001}, and {110} were identified by optical and X-ray
means. Before data collection on the Picker four-circle
automatic diffractometer the crystal was deliberately
misaligned so that the symmetry axis was not parallel
to the spindle axis. This should reduce the possibility
of multiple reflections.’ The cell parameters and orien-
tation angles were determined from a least-squares re-
finement of the setting angles of 12 centered reflections
as previously described.!!

Mo Ko radiation was used for the data collection.
The diffracted beams were filtered through a 3.0-mil Zr
foil, and the intensities were collected by the §-28 scan
technique at a takeoff angle of 1.3°. A symmietrical
scan range of 1.6° was found to be sufficient for all
reflections. The scan rate was 1.0°/min. Stationary-
crystal, stationary-counter background counts of 10 sec
were taken at each end of the scan. The counter was
placed 21 cm from the crystal and had an aperture of
4.0 X 4.0 mm.

A unique data set for which 26 < 40° was initially
collected. The intensities of four standard reflections
were monitored after 250 reflections had been processed,
and they were found to have dropped in intensity by
approximately 3%; these standards were subsequently
monitored after every 125 reflections and continued to
drop slowly in intensity throughout the data collection.
A second shell for 40° < 28 < 42.5° showed little in-
tensity, and, as one of the four standards appeared to
be dropping more rapidly than the others, data collec-
tion was terminated at this point. The peak and back-
ground counts were corrected for this apparent decom-
position, the maximum correction being about 9%,.

The data were then processed as previously de-
scribed,!! a value of p = (.04 being used in the estima-
tion of ¢(7). The data were also corrected for Lorentz—
polarization effects at this time. An absorption correc-
tion'? using u = 6.96 cm ™! for Mo radiation gave trans-
mission factors ranging fromi 0.83 to 0.92. Of the 2225
reflections processed, 245 were less than one standard
deviation above background. Only the 1612 reflections
for which F,2 > 3¢ (F,%) were used in the solution and
refinement of the structure.

Solution and Refinement of the Structure

A three-dimensional Patterson function was calcu-
lated, and the coordinates of the Ni and two of the
three P atoms were determined. Since the Ni and P
atoms define a plane that is inclined at an angle of
approximately 45° to the y axis, the noncentric space
group P2; was established. The fractional y coordinate
of the Ni atom was set at !/, to fix the origin of the
unit cell. The solution of the Patterson function yields
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two possible sets of P positions, as reflected across a
mirror plane at y = !/,; one set was arbitrarily chosen
at this point in the solution of the structure.

Two cycles of least-squares refinement yielded dis-
crepancy factors By = ZZHFO — ’Fc‘ /Z’Fo{ and R, =
(2w(|Fo| — |Fcl)"’/2-ze,'F°2)l/2 of 36.7 and 45.49, respec-
tively, where the weights w were taken as 4F.2/a*(F,2).
In this and succeeding refinements the function mini-
mized was Sw(|F,| — |F¢)2. The atomic scattering
factors for Ni, P, O, N, and C were those tabulated by
Ibers,'? and those of Stewart, et al.,** were used for H.
The anomalous scattering factors of Cromer!® were used
for both the real and imaginary anomalous scattering
by Ni and P.'® Subsequent difference Fourier maps,
interspersed with least-squares refinements, led to the
positions of all remaining nonhydrogen atoms. After
one cycle of least-squares refinement assigning isotropic
temperature factors to all atoms and treating the phenyl
rings as rigid groups!” with a single group temperature
factor, the R factors were reduced to 10.5 and 12.69%.
The Ni and three P atoms were then assigned aniso-
tropic thermal parameters, and after three cycles of
refinement, the R, and R, discrepancy factors were 8.0
and 9.49, respectively. A difference Fourier calcula-
tion contained no peak higher than 0.44 e—/A3, com-
pared with an average value of 1.9 e~/A? found for the
32 C atoms.

There were at this point two possible structures to
consider: enantiomorph A, the structure as heretofore
assumed, and enantiomorph B, the mirror image of A
as reflected across a plane at y = 1/,. One cycle of
least-squares refinement with (%%l) assumed in place of
(hkl) gave the same R factor as before, so this could not
be used as a criterion for preference of one enantio-
morph over the other. The bond lengths and angles
were significantly affected by this reversal of configura-
tion;*® for example, the Ni-P; distance increased from
2.261 to 2.289 (5) A, but neither enantiomorph pre-
sented a chemically more ‘‘reasonable’” model, as both
were quite distorted from an idealized five-coordinate
geometry. Accordingly, 25 reflections were selected
that seemed to show the greatest difference between the
values of F, for (hkl) and (hkl). The original crystal
was returned to the diffractometer and recentered, and
data were collected under essentially the same condi-
tions as previously described. All four members of
{hkl} (hkl, hEl, hEl, and hEl) were collected for one re-
flection before moving on to the next; consequently, no
standards were monitored. These four members of the
form were each collected twice to provide better statis-
tics, as the intensity differences were not large between
Friedel pairs (the values of Af’' for Ni and P are only
1.2 and 0.12 electrons, respectively) and most of these
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reflections were rather weak. The results of this experi-
ment are summarized in Table I; only those reflections
for which the final values of F,(hkl) and F.,(kkl) differ
by 109 or more are listed. It can be seen that enantio-
morph B is to be preferred to enantiomorph A in the
seven cases for which a definite intensity difference was
observed. Thus all y fractional coordinates were re-
flected across a plane at ¥ 1/,, and refinement was
continued on enantiomorph B.

TABLE 1

DETERMINATION OF ABSOLUTE CONFIGURATION OF A CRYSTAL
OF Nl(cN)z(P<C6H5)<OC2H5)2)3
Computed structure

Obsd relations— factors? for

——————Indices* — bkl E/é} enantiomorph B
h k i hkl  hkl Fo(hkl) Fo(hkl)
1 1 2 > 52.5 41.3
2 2 5 (”) 14.7 17.6
2 2 2 < 11.7 19.8
3 1 0 > 10.7 6.9
4 2 3 > 27.2 22.3
5 1 3 > 30.5 26.9
7 1 3 ) 17.1 19.5
8 3 2 > 16.2 14.3
10 4 3 (» 12.4 15.2
10 5 3 €3] 16.7 18.7

15 2 4 > 10.3 9.2

@ Only reflections for which Fo(hEl) and F.(hkl) differ by 109,
or more are listed. ? Based on final structure parameters.

Inorganic Chemistry

suming C-H = 1.09 A and H-C-H = 109° 28’. The
structure factor contributions for these H atoms and the
phenyl group H atoms were added as fixed contributions
to the calculated structure factors in subsequent refine-
ments. There was an immediate drop in the values of
R; and R, to 7.2 and 8.39%, and one cycle of least-
squares refinement lowered these values even further to
7.0 and 7.89, respectively.

At this point a careful analysis of the function
Ew(}FO‘ - ]Fc})Q over ranges of ‘Fol and A7 sin 6 indi-
cated that (a) the absolute weights were too large, (b)
the low-order reflections were being overweighted, and
(c¢) the value of 0.04 chosen for p was satisfactory.
The weights were modified so that this function was
constant for all ranges of A~! sin § as well as for ranges
of [FO . One last cycle of least-squares refinement using
this weighting scheme and assigning anisotropic thermal
parameters to the two CN groups (resulting in 180 vari-
ables) gave final values of R; and R, of 6.9 and 8.29,
respectively, and the error of an observation of unit
weight of 1.02. As there was no evidence {or extinction,
no corrections were made.

The final positional, thermal, and group parameters
are presented in Table 11, along with the corresponding
standard deviations in these parameters as estimated
from the inverse matrix. Table III presents the posi-
tional parameters of the group carbon atoms which may

TaBLE 11
FinaL AtoMIc AND GROUP PARAMETERS FOR Ni(CN)o(P(CeH;)(0CoH;)2)s
Atom x kY z Bu® B2 B3 G12 Bis B
Ni 0.24799 (10)  t/4 0.19001 (18) 0.00345 (6) 0.01069 (22) 0.01094 (21) 0.00027 (13) 0.00066 (9) 0.00035 (25)
P 0.2879 (2) 0.3951 (5) 0.0326 (4) 0.0032 (1) 0.0120 (6) 0.0128 (5) —0.0007 (2) 0.0005 (2) 0.0008 (5)
P 0.3202 (2) 0.0833 (5) 0.2504 (4) 0.0036 (2) 0.0122 (6) 0.0142 (6) 0.0009 (3) 0.0010 (2) 0.0003 (5)
Ps 0.1465 (2) 0.3053 (5) 0.2485 (4) 0.0037 (2) 0.0143 (6) 0.0130 (5) 0.0011 (2) 0.0004 (2) —0.0009 (5)
C1 0.2021 (10) 0.1409 (21) 0.0512 (20) 0,0041 (6) 0.0148 (25) 0.0170 (26) 0.0003 (11) 0.0038 (11) 0.0005 (23)
Ce 0.2861 (9) 0.3453 (20) 0.8505 (20)  0.0037 (6)  0.0154 (26)  0.0165 (26) 0.0024 (10) 0.0006 (10) 0.0033 (22)
N:  0.1759 (9) 0.0744 (21)  —0.0370 (17)  0.0057 (7)  0.0209 (27)  0.0198 (24) 0.0003 (12)  —0.0003 (10)  —0.0086 (24)
Ny 0.3110 (9) 0.4050 (18) 0.4458 (16)  0.0073 (8)  0.0174(23)  0.0144 (18)  —0.0005 (11)  —0.0038 (10)  —0.0009 (20)
Atom x ¥ 2 B, Az Atom % ¥ 2 B, Az
O1 0.3181 (6) 0.3145 (13) -0.0837 (11) 6.2 (3) Cs 0. 4455 (20) 0.5642 (43) 0.2260 (39) 15.1(11)
O2 0.3466 (7) 0.5047 (15) 0.0861 (15) 7.5 (3) Cr 0.4519 (13) 0.0619 (28) 0.3614 (25) 9.6 (6)
Os 0.3932 (6) 0.1463 (13) 0.2958 (12) 6.7 (3) Cs 0.5143 (19) 0.1363 (42) 0.3747 (35) 14.3 (10)
O4 0.3324 (6) —0.0332 (12) 0.1421 (12) 5.9 (3) Cs 0.3533 (12) 0.0066 (25) 0.0048 (24) 8.5 (6)
Os 0.1369 (7) 0.4468 (14) 0.3265 (13) 7.2(3) Cio 0.3928 (12) —0.1112 (26) —0.0437 (23) 9.1 (86)
Os 0.0928 (8) 0.3074 (15) 0.1161 (14) 8.5(3) Cu 0.1620 (11) 0.53694 (26) 0.2790 (22) 8.0 (5)
Cs 0.3409 (10) 0.3740 (22) —0.2128 (20) 7.5 (5) Ciz 0.1291 (15) 0.6804 (30) 0.3416 (29) 11.0(8)
Cs 0.3996 (11) 0.2948 (22) —0.2510 (20) 8.2 (5) Cus 0.0244 (17) 0.3560 (36) 0.1110 (32) 12.4(9)
Cs 0.4089 (15) 0.4585 (32) 0.1635 (28) 11.0(7) Cus —0.0086 (21) 0.3434 (42) —0.0210 (42) 14,8 (10)
Group %€ Ve %o 8 € 7 Bt B: Bs By Bs Bs
Ring 1 0.1786 (4) 0.5935 (9) —0.1339 (8) 2.702 (8) 2.645 (7) —0.529(8) 4.6@3) 5.7(4) 8.6(8) 8.6(6) 8.3(5) 6.5(4)
Ring 2 0.2898 (4) —0.1065 (10) 0.5032 (8) —2.757(9) 2.610 (7) 1.199 (9) 5.2(4) 6.1(4) 804 8.2(5 8.6 (5) 6.0 (4)
Ring 3 0.0877 (4) 0.1106 (11) 0.4668 (10) 2.665 (13) 2.344 (8) 1.545 (13) 5.1 (4) 7.4(5) 9.8(6) 8.6(6) 10.5(7) 8.7(5)

@ The form of the anisotropic thermal ellipsoid is exp{—(Buh? + Bk + Bs:l® + 28uhk + 2813k + 28%kl)].

tions of the least significant figures are given in parentheses.

® The standard devia-

¢ The angles 8, ¢, and » (in radians) which bring about alignment (except
for translation) of an internal coordinate system within the ring with a fixed external coordinate system have been described in previous
papers.'” B is the isotropic thermal parameter (in A?) of atom 7 in a given ring.

The C atoms in the phenyl rings next were given
individual thermal parameters, and in one cycle of
refinement the values of R; and R, decreased to 7.7 and
8.99,. A difference Fourier map gave approximate
positions for all of the ethylene H atoms and about half
of the methyl H atoms with at least one H atom being
lIocated for each methyl group. These were idealized
for a staggered conformation of ethyl hydrogens, as-

be derived from the data in Table II. The values of
10| Fo| and 10| F.| (in electrons) are given in Table IV.
The extremely short calculated C-C distance of 1.43
A and the high thermal parameters for the C atoms
(average B = 9.5 A2 for C attached to O; 12.1 A? for
terminal C) are indicative of a degree of disorder, as has
been previously discussed elsewhere.!* The final dif-
ference Fourier map contained no peak higher than 0.58
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TasLE III
DERIVED PARAMETERS FOR GROUP CARBON ATOMS
x v 3

Ring 1
Cs 0,228 0.511 —0.059
C, 0.180 0.455 —-0.161
C; 0.131 0.538 —0.237
Cy 0.130 0.676 —-0.209
Cs 0.178 0.732 -0.107
Ce 0.227 0.649 —0.031

Ring 2
C 0.301 —0.026 0.390
Cs 0.316 —~0.164 0.387
C, 0.304 —0.245 0.501
Cy 0.278 —0.188 0.617
Cs 0.264 —0.049 0.619
Cs 0.275 0.032 0.505

Ring 3
Cy 0.113 0.199 0.372
C. 0.080 0.079 0.325
Cs 0.0565 —0.009 0.420
C, 0.063 0.023 0.562
Cs 0.095 0.142 0.609
Cs 0.120 0.231 0.514

e The rings are numbered cyclically so that C, is attached to
phosphorus. ? Estimated standard deviations as derived from
those of the group parameters are 0.0015 or less. Intra-ring dis-
tances are fixed (C-C = 1.397 A).

e~/A3; however, many of the peaks represented alterna-
tive positions for those atoms with particularly high
temperature factors. These short carbon-carbon dis-
tances obviously should not be taken seriously. The
uncertainty in the C atom parameters should not have a
significant effect on the parameters of the other atoms,
which were essentially uncorrelated with those of the
ligand carbon atoms. For this reason, no attempt was
made to refine the structure using a disordered model.

The root-mean-square amplitudes of vibration of
those atoms which were refined anisotropically vary be-
tween 0.22 and 0.41 A. The orientations of the thermal
ellipsoids can be seen in Figure 1. The anisotropy is
small and is most noticeable for the terminal N atoms
as would be expected.

Description of the Structure

The crystal structure is made up of discrete mono-
meric units, the closest Ni-Ni distance being 9.65 A.
All intermolecular contacts appear to be normal, with
the closest approaches between hydrogen atoms of two
adjacent molecules being 2.25 and 2.28 A, respectively.
A stereoscopic view of the molecular structure is given
in Figure 2. Interatomic distances and angles and their
standard deviations as computed from the final param-
eters and the correlation matrix are presented in Table
V. The inner coordination about nickel is intermediate
between a trigonal-bipyramidal and a tetragonal-pyra-
midal geometry, as is shown in Figure 1; Figure 1 also
presents selected bond distances.

The Ni-P bond lengths of 2.205 and 2.189 A are well
within the range of values reported for similar com-
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Figure 1.—A perspective drawing of the inner coordination
sphere of Ni(CN)(P(CeH3){OC:Hs):)s.

pounds, such as 2.22 A in Ni(P(CeHs)s)s(C=CCsHs;)s,!*
2.18 A in Ni(HP(CsHj))sl5,2 2.21 A in [Ni(TAP)CN]-
C104 (TAP = P(CHzCHgCHgAS(CHg)z);g),ZI and 2.19
(equatorial P) and 2.15 A (axial P) in the trigonal-
bipyramidal Ni(P(OCH);(CH,)s)s2t ion.2? The Ni-P
bond of 2.289 A is rather long, as would be expected for
the apical bond of a tetragonal pyramid. The average
distances of 1.88 A for Ni~C and 1.15 A for C-N agree
with those found for the Ni(CN);3~ ion,® average Ni-C
= 1.90 A (excluding the long apical Ni-C bond) and
average C-N = 1.15 A, and for the Ni(TAP)CN + ion, 2!
Ni-C = 1.87 A and C-N = 1.12 A. However, the
average axial Ni-C distance in the Ni(CN):*~ ion of
corresponding geometry is only 1.84 A; one might ex-
pect the Ni-C bond lengths to be the same in these two
structures, in view of their great similarity (see below).
This discrepancy can readily be explained on the basis
of C-P vs. C-C nonbonded interactions. The shortest
nonbonded C-P distance is 2.81 A, while the shortest
C-C distance in the Ni(CN);*~ ion is 2.55 A; the dif-
ference between these values is approximately the saine
as that between the van der Waals radii of P and C
atoms. The Ni-C-N linkages are linear within experi-
mental error.

The average P-O and O-C distances in the P(CeH;)-
(OCyHs), ligands are 1.58 and 1.45 A, respectively.
These distances are close to those tabulated by Cor-
bridge in a recent review,?® in which the average P-O
and O-C bond lengths for several organic orthophos-
phate esters are given as 1.59 + 0.05 and 1.44 =% 0.04
A. The P-C distances and O-P-C and C-P-C angles
are within the range usually reported for phosphine
complexes of transition metals.

(19) W. A. Spofford, III, P. P. Carfagna, and E. L. Amma, Tnorg. Chem.,
6, 1553 (1967).

(20) J. A. Bertrand and D. L. Plymale, ibid., 5, 879 (1966).

(21) D. L. Stevenson and L. F. Dahl, J. Am. Chem. Soc., 89, 3424 (1967),

(22) E. F. Riedel, J. G. Verkade, and R. A, Jacobson, to be submitted for
publication, See Abstracts, American Crystallographic Association Meet-
ing, Minneapolis, Minn., 1967, No. P-10.

(23) D. E. C. Corbridge, ““Topics in Phosphorus Chemistry,” Vol. 3,
Interscience Publishers, New Vork, N. V., 1966, Table I11.5,
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TaBLE IV

OBSERVED AND CALCULATED STRUCTURE AMPLITUDES (X 10) (IN BLECTRONS) FOR Ni{CNJ(P(CoH ) (OCH, )y

X L FO fC K L F F K L FO PC K L P PC K L F® FC K L FO PC K L fO FC K L FO FC ok L FO K¢ kL FO FC
eauad B oo g SReE 1 ml [] 2«1 e WY s 10 2 . 12 17 1%
ERRS L T 0 2 0 3% 312 s 228 2 . 13 97 77
[ Tas4 3 254 2as o 2 1 eaT 82 5 158 2 Lo 125 140
6 1 373 97 A 11 132 ° 2 2 se 128 5 61 2z rasen 15 1 96
¢ 2 298 3&7 ) 8 130 [ 2 3 21 22 5 180 2 2 -6 91 103
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Figure 2.—Stereoscopic view of Ni(CN):(P(CeHs)(OCaHs)a)s.

TABLE V
SELECTED DIsTANCES (A) AND ANGLES (DEG)

Atoms Distance Atoms Angle
Ni-P, 2.289 (5) P-Ni-P; 113.0(2)
Ni-P, 2.205 (6) P—Ni-Py 113.5(2)
Ni-P; 2.189 (6) Py-Ni-P; 133.5(2)
Ni-Cy 1.869 (22) C-Ni-Cs 170.8(8)
Ni-C, 1.893 (22) Ni-C-N; 177 (2)
C—N, 1.150 (22) Ni-Co-N; 178 (2)
CoNe 1.153 (21) Ci-Ni-P, 93.4 (5)
POy 1.546 (12) C—Ni-P; 89.8 (6)
PO, 1.621 (15) C—-Ni-P; 87.4 (5)
P05 1.573 (14) Co-Ni-Py 95.7 (6)
P04 1.593 (13) Co—Ni-P; 88.7 (5)
P;-0; 1.611 (14) Co~-Ni-P; 87.0 (5)
Ps-Os 1.558 (15) P-0,-C; 125 (1)
P-R,G¢ 1.800 (12) P~0s-Cs 118 (2)
PrR:C 1.792 (12) P:-04-Cy 121 (1)
P:-R;C, 1.767 (16) P-04-Cy 118 (1)
0,—Cy 1.491 (22) P0s-Cy 122 (1)
0:-C; 1.428 (29) Pi—0¢Cis 125 (2)
0~ 1.498 (26) 01-C-C4 108 (2)
0:~C 1.483 (25) 0:-Cy-Cs 111 (8)
0:—Cy 1.405 (26) 03~Ci—Cs 111 (2)
O¢Cy; 1.414 (32) 04~Cy—Cyy 106 (2)
Cs—Cs 1.470 (27) O—-Cii—Cis 110 (2)
Ce—Cs 1.368 (42) 06-C3-Cus 110 (3)
Ci—Cs 1.416 (40)

Cy—Cio 1.501 (31)

Cu-Cre 1.440 (32)

Ci—Cu 1.366 (39)

Angles about P
Atoms Angle Atoms Angle

Ni~P:1-O, 110.1(5) O1-P1-02 105.3 (7)
Ni~P;~-Oq 119.4 (6) O-P-R,C, 104.8(6)
Ni-Pi-R:Cy 118.1(4) O—P1-R,C, 97.4(7)
Ni-Py-03 108.0 (6) O3-P2-04 105.8 (7)
Ni~P»-0, 120.5 (5) O3;—P-R:C; 106.7 (7)
Ni-P:-R:C; 118.0 (5) 0,~P:-R:C, 96.5 (6)
Ni~Ps-0s 119.6 (5) 0;~P3—0s 105.6 (8)
Ni-P;—O¢ 109.6 (6) O—P:—R,C, 97.7(7)
Ni~P3~R;3Cy 115.9 (7) 0O¢-P35-R;Cy 107.1(8)

o R,;C, refers to carbon atom 1 on phenyl ring 7. ® The C-C
distances cannot be regarded seriously: see discussion in text.

If the six P-O bond lengths are assumed to be
equivalent, the standard deviation of a single distance
from the mean is 0.030 A; this value does not corre-
spond with the computed standard deviations of 0.012~
0.015 A. Similarly, for the six O~C bonds the standard
deviation of a given bond length is calculated to be
0.042 A, while the standard deviations range from 0.022

to 0.032 A. Thus the standard deviations of these bond
distances may have been underestimated by perhaps a
factor of 2. Again this could be the result of the partial
disordering of the ethoxy groups. Nevertheless, the
distortions of this molecule discussed in the following
paragraph remain highly significant even if the calcu-
lated standard deviations are doubled.

If the structure is considered to be a trigonal bi-
pyramid, then all distortions from this idealized geome-
try are in the direction of a tetragonal-pyramidal con-
figuration: the Ni-P; bond length of 2.289 (5) A is
much longer than the other two Ni-P bonds of 2.205
(6) and 2.189 (8) A, as would be the case for the apical
bond in a tetragonal pyramid, and the angle opposite
this long bond is expanded to 133.5 (2)° from the ex-
pected 120°. The two cyanide groups are bent away
from the Ni-P; bond, with a C-Ni-C angle of 170.8
(8)°. The Ni and three P atoms are coplanar, with no
atom more than 0.001 (5) A out of the best weighted
least-squares plane, as would be expected for either of
the idealized five-coordinate configurations. The inner
coordination geometry found here is remarkably similar
to the distorted trigonal-bipyramidal geometry reported
for one of the Ni(CN);*~ ions in [Cr(NH.CH;CH,-
NH,);][Ni(CN);]-1.56H,0O; the angular distortions of
NI(CN)z(P(CﬁHa) (OC2H5)2)3 and the NI(CN)sa_' ion
from the two idealized five-coordinate geometries are
summarized in Table VI. In most cases, the bond
angles for these two complexes lie about halfway be-
tween the angles for the two idealized configurations.

Whereas one might be tempted to invoke steric effects
in the present structure and hydrogen bonding in the
Ni(CN);*~ structure as primary causes of the distortion,
the structures are too similar to make this probable.
It might be argued that the configuration of Ni(CN),-
(P(CeH;5)(OCeHz)y)s is determined by the steric inter-
actions of the bulky phosphine groups. Admittedly,
many five-coordinate transition metal complexes with
at least three large or complex ligands exhibit distor-
tions which may be sterically controlled, for example,
RU(P(CsHs)s);;Clz,“ Ni(HP(CeH5)2)3Ig,20 and CO(HP-
(CeHs)2)sBre.®® However; the corresponding complex
with P(OC¢H;);, probably a more sterically hindered
ligand, in place of P(C¢Hs) (OCyHjs): has been reported,?

(24) 8. . La Placa and J. A. Ibers, Inorg. Chem., 4, 778 (1965). _
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TABLE VI

ANGULAR Di1sTORTIONS OF Ni(CN)(P(CeH;)(OCyH;):)s AND
Ni(CN)s2~ FroM IDEALIZED FIvE-COORDINATE GEOMETRIES

Angles, deg
Ni(CN)z-
Trigonal (P(CeHs)~ Tetragonal®
Atoms bipyramid (OC2Hs)2)2 Ni(CN)s3~ pyramid
P—-Ni-Py? 120 113.0° 107 .4 100
P1-Ni-P; 120 113.5 111.5 100
P-Ni-P; 120 133.5 141.2 160
C-Ni-C, 180 170.8 172.8 180
P—-Ni-C, 90 93.4 92.3 100
P—Ni-C, 90 95.7 94.4 100
P—-Ni-C, 90 89.8 89.3 88
P;-Ni-C, 90 88.7 91.3 88
P3-Ni-C, 90 87.4 89.5 88
P-Ni-C, 90 87.0 85.6 88

@ These angles represent the average values for the tetragonal
pyramid formed by Ni(CN)2~, in which the Ni atom lies 0.34 A
above the plane of the four C atoms and 0.55 A above the plane
of the four N atoms.® These values appear to be normal for
tetragonal pyramids involving first-row transition metals, in
which the metal atom has been found to lie 0.3-0.6 A above the
tetragonal plane; see, for example, B. F. Hoskins, R. L. Martin,
and A. H. White, Nature, 211, 627 (1966). A purely electrostatic
model with five equivalent ligands gives an L(apical)-M-L
(basal) angle of 104°: J. Zemann, Z. Anorg. Aligem. Chem., 324,
241 (1963). ? Or the corresponding C-Ni~C angle for the Ni-
(CN)?~ ion. ¢ The standard deviations of these angles range
from 0.2 to 0.8°.

and the indirect evidence again indicates a trigonal-
bipyramidal structure with axial cyanide groups. We
feel that this fact, coupled with the close similarities be-

Inorganic Chemistry

tween this compound and the Ni(CN);3~ ion, tend to
preclude such an argument hased on steric grounds
alone.

It is of interest to view this intermediate structure in
relation to the infrared evidence and other similar
structures. Although the symmetry of the inner co-
ordination sphere in this case is halfway between the
Dy, of a trigonal bipyramid and C,, of a tetragonal
pyramid, the infrared spectrum of the crystalline solid
still exhibits a single C-N stretching frequency. This
is, of course, one of the many examples of the ineffec-
tiveness of band counting in the determination of im-
portant deviations from idealized symmetries. More-
over, it is just these small differences, inaccessible by
nondiffraction means, that often present the clues to
changes in chemical bonding on change of ligands.
Clearly it is necessary to examine other Ni{CN),(PR;);
structures in an attempt to understand possible causes
for the distortion from idealized geometry observed here.
The following paper discusses the structure of Ni{CN),-
(P(CeH;)(CHj)s)s.
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In the preceding paper! the structure of Ni(CN),-
(P(CsHj3)(OCyHs)2)s was described.
the geometry about the Ni atom is a highly distorted
trigonal bipyramid, with a distortion remarkably simi-
lar to that found for one of the Ni(CN);*~ ions in

(1) J. X. Stalick and J. A, ITbers, Inorg. Chem., 8, 1084 (1969),

The crystal and molecular structure of dicyanotris(phenyldimethylphosphine)nickel(IT), Ni(CN}(P(CsHs)(CHz)y)s, has
been determined from three-dimensional X-ray data collected by counter methods. The structure has been refined by
least-squares techniques to a final R factor on F of 4.99,. The material crystallizes in space group C;!-P1 of the triclinic
system, with two molecules in a cell of dimensions ¢ = 8,907 (8), b = 16.292 (15), ¢ = 9.876 (9 A, « = 97° 58 g =
102° 40 (1), and v = 86° 40 (1)’. (Reduced cell: a = 8.907, b = 16.292, ¢ = 17.842 A, & = 146° 46/, 8 = 93° 55, and
v = 93°20’.) The observed and calculated densities are 1.26 &= 0.01 and 1.260 g/cm?, respectively. The inner coordina-
tion about the Ni is trigonal bipyramidal with the two cyanides at the apices and the three phosphines in the basal plane,
There is a slight but significant distortion toward a tetragonal-pyramidal geometry, which is discussed in relation to the
far more distorted structure of Ni(CN):(P(CsH:)(OC:oHs)z)s. The Ni-P bond lengths are 2.261 (3), 2.223 (3), and 2.223 (3)
A, and the Ni~C distances are 1.84 (1) and 1.86 (1) A.

Introduction [CI‘(NH2CI‘12CH2NH2)3] [NI(CN)5] -1.6H,0.2 This pa-
per describes the structure of Ni(CN)(P(C;H:) (CHz)s)s.
Both P(CsH;) (OC:Hs), and P(C¢H;) (CHj), should have
similar steric requirements, but the latter phosphine is
more basic and hence capable of transferring more elec-
trons to the Ni(CN); system. Thus any differences be-

(2) K. N. Raymond, P. W. R. Corfileld, and J. A. Ibers, fbid., 7, 1362
(1968).

It was found that





