1268 M. ELpER AND D. HaLL

The Crystal and Molecular Structure of

Inorganic Chemaistry

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY,
UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA

u-Chloro-(dichloromethyltin)-2,2’-bipyridyltricarbonylmolybdenum,

(CyHgN;)(CO);CIMoSnCH,CL,

By M. ELDER anp D. HALL

Received November 25, 1968

The crystal structure determination of bipy(CO);Cl1MoSnCH;ClL, (bipy = 2,2'-bipyridyl) by single-crystal X-ray techniques
is described, The discrepancy index for 1924 unique observations is R, = 5.69,. Data were collected with a PAILRED
fully automated diffractometer. The compound crystallizes in the monoclinic space group Cu®-P2;/c with ¢ = 6.73 %=
0.01A, b =11.144 0014, ¢c=2446 = 0.034,and 8 = 90.5 & 0.2°. The monomeric molecule contains a molybdenum-
tin bond of length 2.753 &= 0.003 A, bridged by a chlorine atom. Thus the molybdenum atom is heptacoordinate and the

tin is pentacoordinate.

above an octahedral face formed by the bridging chlorine atom and two carbonyl groups.

small but significant deviation from planarity.

Introduction

This crystal structure determination of u-chloro-
(dichloromethyltin) - 2,2'-bipyridyltricarbonylmolybde-
num, bipy(CO);C1MoSnCH;Cly, is the first of a se-
ries of structural investigations of organometallic com-
pounds with metal-metal bonds. A number of
related compounds have been prepared by reaction of
molybdenum- and tungsten-substituted carbonyls
with germanium and tin tetrahalides or organometallic
halides.?

The unknown coordination geometry of these com-
pounds together with present interest in the nature of
seven-coordination®? make them interesting problems
for X-ray structure analysis. Further, it was hoped
that structural knowledge would help elucidate the na-
ture of the geometric isomers invoked by Kummer and
Graham to account for infrared spectral evidence. The
compound bipy(CO);C1MoSnCH;Cl; was chosen be-
cause of the ready availability of crystals and their
stability. It is a suitable choice, for, in addition to the
above points, there is the interest provided by the
molybdenum-tin bond length and by the coordination
of the 2,2’-bipyridyl ligand for which there is little struc-
tural information.

Experimental Section

Crystals of bipy(CO);sCiMoSnCH;Cl, were prepared following
the method described by Kummer and Graham.® They took
the form of small orange needles with the needle axis correspond-
ing to the short crystallographic axis. Preliminary Weissenberg
photographs taken with Cu Ka radiation (0kl-2kl) and preces-
sion photographs taken with Mo Ke radiation (20, hk0) indi-
cated a monoclinic space group. The systematic absences were
consistent with space group Con®-P2;/c. The reciprocal cell
parameters b* and ¢* were obtained from the diffractometer and
refined by least squares.? Molybdenum Kea radiation (A 0.71069
A) was used. The parameters a* and 8* were taken from a Mo

(1) R. Kummer and W. A, G. Graham, Inorg, Chem., T, 1208 (1968).

(2) E, L. Muetterties and C. M, Wright, Quar?. Rey. (London), 21, 109
(1967).

(3) M. Elder and D. Hall, Tnorg. Chem., 8, 1273 (1969).

The stereochemistry around the molybdenum is that of a capped octahedron with the tin atom lying

The bipyridyl group exhibits a

Ka precession pliotograph of the (k0!) reciprocal lattice level.
Tinal values were ¢ = 6.73 &= 0.01 &, b = 11.14 = 0.01 4, ¢ =
24.26 + 0.03 j&, and 8 = 90.5 == 0.2°. The calculated density
for four molecules per unit cell is 2.09 g cm=%. An experimental
density of 2.0 g cm™? was measured using a pycnometer with
water as the displacing liquid. The linear absorption coefficient
is 28 ecm ™! for Mo Kea radiation. The crystal used for data col-
lection was a needle of length 0.8 mm and an average cross-sec-
tional radius 0.058 mm. It was mounted on a thin glass fiber
and showed no signs of decomposition during data collection.

Reciprocal lattice levels (Q0k/-6k]) were scanned using a PAIL-
RED fully automated diffractometer. Molybdenum Ka radia-
tion was employed, monochromatized from the [111] face of a
silicon crystal. The pulse-height analyzer was centered on the
Kea peak to include approximately 909 of the transmitted beam.
A counter aperture of 1.5° was used. The equiinclination tech-
nique and a moving-crystal stationary-counter (w-scan) scanning
procedure were employed with a scan speed of 1°/min. Back-
ground counts were determined for 0.4 min immediately before
and after each scan through a reciprocal lattice position, with the
crystal stationary at either side of the scan range. The angular
range of the scan varied from 0.8° for the zero layer to 4.0° for
the sixth.

After each layer, reflections for which the two background
readings differed significantly were repositioned centrally in the
scan range and remeasured. Despite considerable care taken in
crystal alignment, such variations were found to be associated
with a small number of low 6 reflections on each layer. They are
presumed to be symptomatic of residual alignment errors magni
fied in their effect by the rapid change of w with reciprocal lattice
positions at low ¢ angles. A number of zero-layer reflections
were checked after each layer. Their intensities showed no
significant variation throughout the data collection, indicating
both crystal and electronic stability. The criterion of significance
of an observation was the ratio AI/I, where [ is given by T —
t(By + Bs), and Al by (T + #2B)"2, Here ¢ is the ratio of the
time of scan to the total background time, B = B; + B; is the
total background count, and T is the scan count. Rejection of
data for which AI/I > 0.38 gave 1924 unique intensity maxima
in the range sin 8 < 0.51. The data are limited to sin 8 < 0.32
in the o direction; the resolution parallel and perpendicular to
o is thus 1.1 and 0.7 A, respectively. This asymmetry in the
data is discussed later.

Structure Refinement.—Lorentz and polarization corrections
for Weissenberg geometry were applied to all data, but absorption
corrections were not, in view of the size of the crystal (uRay =
0.15) and the small variation in radius of the needle-shaped crys-
tal. The structure was solved by Patterson and TFourier
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methods.*® Positional parameters and individual isotropic
temperature factors for all nonhydrogen atoms, together with an
over-all scale factor, were refined by full-matrix least-squares
methods. After six cycles, refinement converged with the dis-
crepancy factors Ry = Z||Fy| — [Fo||/Z|F.| and R, = [Zw(|F.| —
ch[)z/E'WIFoIz] Y2 of 0.077 and 0.094, respectively. Thefunction
Ew[|F0| - |Fc‘]2 was minimized. The weights determined from
counting statistics were used at first but these were subsequently
discarded in favor of a scheme of the form

w = /(@ + (F| - 0)?)

where ¢ = b = 59 on the absolute scale were chosen to minimize
the variation of Zw(| Fo| — | F.|)? calculated for increasing ranges of
|Fo|. A similar weighting scheme analysis indicated that the
weights based on counting statistics were assigning too much
weight to the more intense reflections. This was also observed
in the reduction of the Ok! reflections for which the PAILRED
produced two observations of each. Using standard error es-
timates based on the values of Al previously defined it was found
that, although there were no major disagreements, the variations
between two measurements of both the very weak and the strong
reflections were greater than those that would be expected if the
error estimates were true standard errors. This same observa-
tion was made during refinement of the topaz structure used in
the initial trials of the PAILRED system.®

Atomic scattering factors for neutral tin and molybdenum,™
chlorine, oxygen, nitrogen, and carbon™ were used with the real
dispersion corrections™ only applied to the scattering factor
curves for tin, molybdenum, and chlorine.

A three-dimensional difference Fourier map computed at this
point revealed some residual electron density around the heavy-
atom positions. The refinement was continued with individual
anisotropic temperature factors for the chlorine and metal atoms.
The methyl carbon atom and the atoms of the three carbonyl
groups were now given anisotropic temperature factors as well.
This step was suggested by the relatively high isotropic tempera-
ture factors of these atoms compared with those of the atoms
of the bipyridyl group. The two resulting cumulative decreases
in both Ry and R; were significant at better than « = 0.01 judged
by Hamilton’s criteria.8* The final agreement factors were R; =
0.056 and R; = 0.072. The final positional parameters and
temperature factors are listed in Table I. The estimated stan-
dard deviations of the parameters are derived from the inverse
least-squares matrix. The orientations of the vibrational el-
lipsoids, indicated in Figure 1, confirm a physically reasonable
pattern of vibration amplitudes. The observed and calculated
structure factors are given in Table II. No correction for ex-
tinction was applied since the data of this table provide no indi-
cation that one is necessary.

The effect of the asymmetry in the data, caused by the limited
data in the a direction, can be seen in the standard errors of the
positional parameters. The estimated standard error of the «
coordinates (in dngstroms) tends to be about 109, greater than
the corresponding errors in ¥ and 2. The associated effect upon
the errors in the bond lengths is small enough to be unimpor-
tant: the Cu—Q; bond has a considerably greater component in
the @ direction than the other two C-O bonds; it has an uncer-
tainty of 0.019 A compared with 0.016 and 0.018 &. Thereis a
similar effect associated with the standard errors in the aniso-
tropic thermal parameters. The asymmetry must clearly in-
crease the uncertainties associated with the thermal ellipsoids
but there is no indication of any effect systematic in one direction.

(4) Programs for an IBM 360/67 by F. R. Ahmed, ef ol., Division of Pure
Physics, National Research Council, Ottawa, were used in this work.

(5) 1n addition to various local programs, a modification of the Busing
and Levy ORFLS least-squares program was used, together with orFFPE and
Johnson'’s oRTEP thermal ellipsoid plotting program,

(6) J. Ladell, Norelco Repir., 12, 34 (1965).

(7) ‘‘International Tables for X-Ray Crystallography,” Vol III, The
Kynoch Press, Birmingham, England, 1962: (a) p 211; (b) p 202; (¢) p
216,

(8) W. C. Hamilton, **Statistics in Physical Science,”” Ronald Press, New
York, N. Y., 1962: (a) p 160; (b) p 174.

STRUCTURE OF (CioHsN3) (CO);CIMoSnCH;Cl; 1269
TaBLE I
PoSITIONAL AND THERMAL PARAMETERS FOR
bipy(CO);CIMoSnCl;CH;

Atom x ¥ z B, A
Sn 0.0320 (2)° 0.18243 (8) 0.38842 (4)
Mo 0.0748 (2) 0.41013 (10) 0.34643 (5)
Cly —0.1244 (6) 0.3922 (3) 0.4346 (2)
Clz 0.1961 (8) 0.0289 (4) 0.3344 (2)
Cls 0.2203 (8) 0.1498 (5) 0.4688 (2)
N 0.214 (2) 0.557 (1) 0.3956 (5) 2.5 (2)
N -0.117 (2) 0.572 (1) 0.3373 (4) 2.3 (2)
C1 0.380 (3) 0.547 (2) 0.4232 (6) 3.5 (3)
Cy —0.467 (3) 0.639 (2) 0.4543 (7) 4.0 (3)
Cs 0.365 (3) 0.746 (3) 0.4556 (6) 3.6 (3)
Cs 0.197 (3) 0.760 (2) 0.4282 (7) 3.7 (3
Cs 0.118 (2) 0.663 (2) 0.3989 (6) 2.7 (3)
Cs ~0.071 (2) 0.671 (1) 0.3675 (6) 2.6 (2)
Cr —0.190 (3) 0.772 (2) 0.3677 (6) 3.6 (3)
Cs —0.358 (3) 0.773 (2) 0.3359 (7) 3.9 (3)
Co —0.401 (3) 0.674 (2) 0.3043 (6) 3.5 (3
Cuo —0.276 (3) 0.574 (1) 0.3064 (6) 3.4 (3)
Cu 0.330 (2) 0.327 (1) 0.3461 (6)
(o 0.487 (2) 0.289 (1) 0.3439 (6)
Ciz 0.203 (2) 0.458 (1) 0.2758 (6)
02 0.219 (2) 0.485 (1) 0.2366 (5)
Cu ~0.075 (2) 0.311 (1) 0.2922 (6)
05 —0.153 (2) 0.263 (1) 0.2577 (4)
Cu —0.239 (3) 0.094 (2) 0.4068 (8)

Atom  1048:° 10482 104833 104812 104813 104Bss
Sn 167 (3) 39.6 (7) 10,8 (2) 2 (1) 1.1 (5) 1.9 (3)
Mo 124 (3) 35.7 (9) 9.0 (2) 0 (1) 0.7 (5) 0.1(3)
Cl: 237 (11) 58 (3) 12.7 (6) 2 (5) 22 (2) —2 ()
Cl 339 (15) 56 (3) 21.3 (9) 34 (6) 21 (3) -7 (1)
Cls 250 (13) 127 (5) 16.3 (8) 15 (6) —24(3) 10 (2)
Cu 127 (43) 53 (11) 16 (3) —10(19) —9 (D —1(5)
O 135 (34) 86 (12) 30 (3) 5(18) —6(7) —2 (5)
Ciz 202 (41) 41 (10) 10 (2) —5 (18) 18 (8) -9 (4)
O: 276 (37) 89 (12) 15 (2)  —47 (17) 23 (7) 2 (4)
Ciz 152 (39) 56 (12) 16 (3) —4 (19) 6 (8) 1(5)
Oz 308 (38) 82 (11) 14 (2) —48 (17) —20(7) —10 (4)
Cue 136 (42) 62 (14) 28 (4) —21 (20) 6 (9) —7(6)

¢ Parenthetical numbers, here and in following tables, are
estimated standard deviations in the least significant figures.
® The anisotropic ellipsoid has the form: exp[— (Buh® + B2k +
Baal? + 2Bk + 2Bishl + 282k1)].

Discussion

The structure consists of isolated molecular units of
bipy (CO);CIMoSnCH;Cl; lying on a set of four gen-
eral positions per unit cell. The molecular structure is
shown in the stereopair of Figure 1. Molecular packing
is indicated in Figure 2. There are no intermolecular
contacts less than the sum of appropriate van der Waals
radii. Intramolecular distances and angles are given
in Tables III and IV.

The tin atom is five-coordinate and the molybdenum
is seven-coordinate, with one chlorine atom occupying a
bridging position between the two metal atoms. The
molybdenum-tin bond is short at 2.753 = 0.003 A; the
sum of the covalent radii for the two atoms gives 3.0
A.9=12 An Mo-Sn distance of 2.891 = 0.005 A has been
observed previously.!® While it is probably unreason-
able to put too much faith in a figure based upon a co-
valent radius estimate of a transition metal in a low ox-
idation state, the magnitude of the decrease and the
comparison with O’Connor and Corey’s value does sug-
gest a bond order greater than single for this bond. In

(9) M. J. Bennett and R. Mason, Proc. Chem. Soc., 273 (1963).

(10) R.J. Doedensand L. F. Dahl, J. Am. Chem. Soc., 8%, 2576 (1965).

(11) F. C. Wilson and D. P. Shoemaker, J. Chem. Phys., 27, 809 (1957),
suggest 1.61 A for molybdenum.

(12) D, H. Olson and R. E. Rundle, Inorg, Chem., 2, 1310 (1963), give 1.39

& for tin.
(13) J.E. O’Connor and E. R, Corey, J. Am. Chem. Soc., 89, 3930 (1967).
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so, then it is at

least theoretically possible that it would cause a length-

ening of the molybdenum to carbonyl bonds.*®

In fact,

the experimental evidence for such bond lengthening is

(16) See, for example, a similar discussion of Co(8iCl)(CO)s:

w. T.

Robinson and J. A. lbers, Inorg. Chem., 6, 1208 (1967).
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Figure 1.—Stereogram of a molecule of u-chloro-(dichloromethyltin)-2,2’-bipyridyltricarbonylmolybdenum.

STRUCTURE OF (C1oHgN3)(CO)sCIMoSnCH,Cl, 1271

scaled to enclose 50%, probability.

Thermal ellipsoids are

Figure 2.—Packing diagram for p-chloro-(dichloromethyltin)-2,2'-bipyridyltricarbonylmolybdenum. 7The unit cell is

Sn-Mo
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the direction of view is along the reciprocal a* axis.
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The carbonyls are in all respects normal
(C-Oay = 1.14 A, M0o-C~0,, = 174.7°) and the molyb-
denum-carbon distances which average 1.98 A lie at the
end of the range of previously determined values:
A in (C;H;)sMo.H [P(CH;):](CO)41 to 1.99 A in Mo-
(CsHs) (CO)sC1Y7 with a number of values in between,

TaBLE III
SELECTED DISTANCES (A)

Intramolecular Bonded Distances

Cu-O1 1.15 (2)
Ci-0, 1.14 (2)
Cu—0; 1.13 (2)
Mo-N; 2.23 (1)
Mo-N; 2.23 (1)
Ni-C 1.31 (2)
Ci-Ce 1.40 (2)
Ce—Cs 1.38 (2)
Cy—Cy 1.82 (2)
Intramolecular Nonbonded Distances
CL,-Cyy . 3.83(2)
ClL~Ci 13.62(2)
Cu~Cpe 2.40 (2)
C11~Cys 3.02 (2)
Ci1o~Cys 2.52 (2)
N,~-Cl 3.08 (1)
N.-Cl, 3.11 (1)

(17) S. Chaiwasie and R. H. Fenn, Acta Cryst,, B24, 525 (1968),

1.93

The ¢ axis is horizontal.

CeCs
C-Ny
Ce—Ce
N—Ce
Ce—Cs
Cr—Cs
Cs—Cs
CoCoo
Ci—Ne

Ni-Cu
Ni1~Cie
No—Cye
N—Cis
N1-N;

O e e

R N W

outlined and

.40 (2)
.34 (2)
.48 (2)
.36 (2)
.38 (2)
.37 (2)
.87 (2)
.40 (2)
.81 (2)

.04 (2)
.13 (2)
.93 (2)
.12 (2)
.64 (2)

Thus any lengthening of the bonds under discussion is
of doubtful significance and would in any case be diffi-
cult to dissociate from effects arising from the differ-
ences in the coordination geometry of the molybdenum

atoms in the various structures.

The tin to bridging chlorine distance is 2.805 + 0.004
A, considerably shorter than the sum of the van der
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TABLE IV
SELECTED ANGLES (DEG)
Mo-Sn~Cl; 113.8 (1) Ce-N1-Cy 117.0(1.3)
Mo-Sn-Cis 126.8 (5) N-Ci~C; 124.7 (1.6)
Cl~Sn—Cis 102.0 (6)  Ci—Ce-Cs 116.1(1.6)
Cli-Sn~Mo 54.8(1) Co-Cs-Cy 121.0 (1.6)
ClL~Sn—-Cls 89.6 (2) Cs—Ci—Cs 119.1 (1.6)
Cli~Sn—-Cyy 88.6 (5) Ci—Cs—N; 122.1 (1 . 4)
Cl-Sn-Mo 113.83 (2) Ci-Cs-Cs 122.2 (1.8)
C12~Sn~C13 g95.8 (2) Clo“Nz“Ce 118.7 (1 . 2)
Cle-Sn—Cis 100.5 (5) N2—C5—C7 122.2 (1 . 3)
ClLi~Sn—Cl, 168.1 (1) Nop-Ce-Cs 122.9 (1.3)
Mo-ClL—Sn 61.6 (1) Ce—Cr—Cs 118.4 (1.5)
Sn-Mo-Cl 63.6 (1) Ci—Cs—Cs 119.8 (1.6)
Sn~-Mo-Cp 70.2 (4) Cs—Co-Cyo 119.4 (1.5)
SH—MO—CH; 716 (4) Cg‘Cm—Nz 1220 (16)
Cl-Mo-Cyy 115.8 (5) Mo-N1-C; 118.4 (1.0)
Cli-Mo-Ciy; 104.6 (5) Mo-N,—Cs 118.1 (0.9)
Cu—MO—Cla 100.2 (6) NI—C.a*Ce 115.7 (1 . 3)
Nl—MO*Cm 95.2 (5) NZ“CG—C5 114.9 (1 2)
Ni-Mo-N; 72.6 (4) Mo-Ni-C 124.6 (1.0)

No-Mo—C 87.3(5) Mo-N,-Cy 123.2 (1.1)

Waals radii, which is 4.0 A if 2.2 A is assumed for the
tin atom.?® There can be no doubt that the chlorine
atom is coordinated at least weakly to the tin atom and
thus bridges the metal-metal bond. Comparison with
the other tin-chlorine distances, however, indicates
that this bond is weaker than a tin—chlorine single
bond. The situation is perhaps comparable with the
Sn- - - Br contact in the substituted butadienyldimethyl-
tin bromide!s although there the tin to bromine distance
is only 0.4 A less than the sum of the van der Waals
radii. The angle of 61.6° subtended at the chlorine by
the molybdenum-tin bond agrees with the values for
bridging chlorines in, for example, the trinuclear rhe-
nium halide series (Re-Cl,~Re = 62°).1* The molyb-
denum-chlorine length, 2.557 + 0.006 A, i1s close to
the molybdenum to bridging chlorine distance of 2.52 A
in Mo,Clyp. 20

The tin coordination can be described as distorted trig-
onal bipyramidal, although such descriptions for low-
coordination polyhedra are of doubtful significance.
The atoms Cl;, Sn, and Cl, form the axis of the bipyra-
mid (the angle Cl,—Sn-Cl; is 168°) with the molyb-
denum, methyl carbon, and the third chlorine forming
the equatorial plane. The major distortion is the dis-
placement of the molybdenum from this plane toward
the bridging chlorine such that the Mo-Cl; bond sub-
tends 54.8° instead of 90° at the tin atom. There is a
significant difference in the tin—chlorine distances for
the two singly coordinated chlorine atoms, the differ-
ence between 2.433 and 2.358 A being of the order of 14
times the estimated standard deviation in a tin-chlorine
bond. Neither figure is unusual for Sn—Cl lengths.21—24

(18) F. P. Boer, J. J. Flyun, H. H. Freedman, $. V., McKinley, and V. R.
Sandel, J. Am. Chem. Soc., 89, 5068 (1967).

(19) J. A. Bertrand, F. A. Cotton, and W. A. Dollase, ibid., 85, 1349
(1963). :

(20) D. E. Sandsand A, Zalkin, Acte Cryst., 12, 723 (1959).
. (21) For exarmple: 2.31-2.34 A in the SnClion(CHs), series?2:28 and 2,43
A in [(r-CsHs)Fe(CO):2[:SnCl?¢ where the bond is postulated to contain
greater p character than an sp8 hybrid.

(22) H. A. Skinner and L. E. Sutton, Trans. Faraday Soc., 40, 164 (1944),

(23) R. L. Livingston and C. N. R. Rao, J. Chem. Phys., 80, 339 (1959).
(24) J. E. O’Connor and E. R, Corey, Inorg. Chem., 6, 968 (1967).

Inorganic Chemistry

Perhaps the difference can be explained by the different
geometries of the two chlorine atoms in terms of trig-
onal-bipyramidal coordination. The longer tin—
chlorine bond is one of the two axial bonds using a tin p
orbital, while the short bond is in an equatorial position,
utilizing an sp? hybrid.

The molybdenum atom exhibits a capped octahedral
structure with the tin atom occupying the seventh posi-
tion above an octahedral face defined by the bridging
chlorine and two carbonyl groups. The angles sub-
tended at the molybdenum atom by the three atoms
determining the capped face are in the range 100-115°;
between the atoms of the opposite face the angles are
72-95°. Thus there is distortion of octahedral sym-
metry in order to accommodate the tin atom. The
Mo—Sn bond makes angles in the range 64-72° with the
three nearest bonds. The form of the molybdenum
atom coordination is thus very similar to the capped
octahedral stereochemistry observed for Y(BZA);-
HQO.25

The Bipyridyl Group.—The mean C-N distance is
1.33 A, C-C is 1.38 A, and there are no significant
deviations from these figures for any individual bond.
The C-C bond joining the two rings is 1.48 A, all
bond angles are within 5° of 120°, the value for regular
sp? hybridization. These figures are in close agreement
with those found in 2,2’-bipyridyl itself* and in two
other complexes containing 2,2’-bipyridyl groups.* %

The major differences appear to lie in the planarity of
the ligand and the angle it subtends at the metal atom.
There is a correlation between the nitrogen—metal-ni-
trogen angle and the metal-nitrogen distance. In the
present compound the molybdenum-nitrogen distance
is 2.23 A and the subtended angle is 72.6°, in (CHg)s-
bipy [C(COCHS3); ]Pt? the values are 2.15 A and 77°, and
in Cu(bipy),I* ¥ they are 2.02 A and 82°. Best least-
squares planes have been calculated with a program
from the source given in ref 4, which uses the method
described by Blow.2® Table V lists the relevant results.
For the atoms of the two pyridine rings considered sep-
arately, there are no deviations from the planes greater
than one esd in the corresponding atom. The x? values
confirm that there are no significant deviations from
planarity.®® This is clearly not the case for the plane
calculated for all 12 atoms, for which the x? value indi-
cates that the deviations are highly significant. The
angle between the two pyridine rings is 4.7° which may
be compared with 2 and 10° for the copper bis(bipyri-
dyl) complex. The deviations from coplanarity of the
two rings reveal a twisting about the C;—Cs bond such
that atoms C,, C;, and C, of one ring and N, Cp, and Cyo
of the other are on the same side of the plane through
both rings. The molybdenum atom lies on the plane
through both rings. The molybdenum atom lies on the
plane through ring 2 but is 0.16 A from the other plane.

(25) F. A, Cotton and P, Legzdins, ¢bid., T, 1777 (1968).

(26) L. L. Merritt and E. D. Schroeder, Acta Cryst., 9, 801 (1956).

(27) A. G. Swallow and M. R. Truter, Proc. Roy. Soc. (London), A266,
527 (1962).

(28) G. A. Barclay, B. F. Hoskins, and C. H. L. Kennard, J. Chem. Soc.,
5691 (1963).

(29) D. M. Blow, Acta Cryst., 18, 168 (1960).
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TABLE V
LEAST-SQUARES PLANES FOR THE 2,2/-BipvrRIDYL GROUP®
Planed Atoms Equation x? values
1 N1 CCCaCeCs 0.5071X + 0.3126Y — 0.8032Z + 5.1542 = 0 x? = 2.2
) [X23,0.5o = 2-4]
2 N CeCrCsCyCro 0.5359X + 0.3749Y — 0.7565Z + 4.3055 = 0 x?=2.1
3 NG Co G CulCs 0.5151X + 0.3434Y — 0.7858Z + 4.7524 = 0 x? = 03.8
N2C6C7CBC9C10 X29,0,01 = 21-7
Deviation from Plane 3
Atom Dev, A RBsd, A Atom Dev, A BEsd, &
Ny —0.031 0.011 N, 0.008 0.010
Cy —0.025 0.016 Cs —0.038 0.014
Cp 0.026 0.017 Cq -0.069 0.016
Cs 0.056 0.016 Cs —0.036 0.017
Cy 0.046 0.017 C 0.051 0.016
Cs —0.021 0.014 Cu 0.064 0.016
Mo —0.120 0.002 (Not included in plane calculation)

¢ The equations are given in dngstrém units.
@ axis, Y along b, and Z along ¢*.

We believe that the angle between the two rings is
significant in view of the physically feasible nature of
the distortions from coplanarity.

This structural determination reveals the coordina-
tion geometry of “‘isomer II" in the series of compounds,
discussed by Kummer and Graham.! The unexpected
stereochemistry of the tin atom suggests that the dif-
ference between the two structural isomers may be re-
lated to the tin coordination number. However, we

The coordinate system used refers to three orthogonal axes such that X lies along the
b Interplanar angle is 4.7° for planes 1 and 2.

leave further discussion of this point until the results of
related structures are available.
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The crystal structure determination of DTH(CO)CIWSnCH;Cl; (DTH = CH;SCH.CH,SCH;, 2,5-dithiahexane) is re-

ported. The compound crystallizes in space group Can®-P2;/c with four molecules per unit cell of dimensions ¢ = 7.458 =
0.003 A, b = 15,044 == 0.009 A, ¢ = 16.228 & 0.012 A, and 8 = 110.75 =% 0.02°. The observed and calculated densities
are, respectively, 2.4 and 2.46 g cm~3. The structure was refined by a full-matrix least-squares method to a conventional
R factor of 7.79, using 1743 observations above background collected on a PAILRED diffractometer. The dithiahexane
ligand occupies two of seven coordination positions around the tungsten atom which has capped octahedral symmetry.
The tungsten—tin distance is 2.7569 == 0.003 A. The tin atom is effectively five-coordinate since there is a long Sn-Cl bond

of 2.958 == 0.010 A between the tin atom and the chlorine atom which is attached to the tungsten.

Introduction

The crystal structure determination of u-chloro-
(dichloromethyltin)dithiahexanetricarbonyltungsten,
SCH;, 2,5-dithiahexane) has been undertaken as
part of a group of crystallographic studies of molyb-
denum- and tungsten-substituted carbonyls with
germanium and tin tetrahalides and alkyl halides. The
structure of a closely related compound, bipy(CO)sCl-

MoSnCH;Cl,, has been recently reported! (bipy = 2,2’-
bipyridyl). That structure revealed seven- and five-
coordinate molybdenum and tin, respectively, with a
chlorine atom bridging the short molybdenum-tin bond.
The present compound was undertaken in order to de-
termine the effect of replacing the molybdenum with the
third-row element tungsten. It was expected that any
differences resulting from this replacement would be

(1) M. Elder and D. Hall, Inorg. Chem., 8, 1268 (1960).



