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The crystal and molecular structure of iodocarbonylnitrosylbis(triphenylphosphine)iridium tetrafluoroborate~benzene,
[IrI(CO)(NO)(P(CsHs)s)2] IBF.] - CeHs, has been determined from three-dimensional X-ray data collected by counter meth-
ods. The material crystallizes in space group D:,%-Pbea of the orthorhombic system with eight molecules in a cell of dimen-
sions ¢ = 21.397 (7), 5 = 21.086 (7), and ¢ = 18.524 (6) A, The observed and calculated densities are 1.71 (1) and 1.704
g cm 3, respectively. Least-squares refinement of the structure has led to a final value of the conventional R factor (on
F) of 0.059 for the 1162 independent reflections having F? > 2¢(F?). The crystal structure consists of well-separated
monomeric units. The coordination geometry around the Ir is that of a distorted tetragonal pyramid, with CO, 1, and
trans-P atoms in the basal plane and the N of the nitrosyl group at the apex; the Ir lies slightly above the basal plane. The
Ir~C bond length of 1.70 (5) Alis short, but the Ir-N bond length of 1.89 (3) A is long. The Ir-N-O angle is 125 (3)°.
The geometry of the cation is very similar to that of the chloro analog, IrC1(CO)(NO)(P(CsHs)s), T, and lends support to

the hypothesis that NO* is actirig as a ¢ acceptor in these systems.

Introduction

Structural and theoretical investigations of metal
nitrosyls have established that the nitrosyl ligand usu-
ally acts as a ¢ donor (Lewis base), giving rise to linear
M-N-0 linkages with short M—N bonds. We have re-
cently reported the preparation of [IrCl(CO)(NO)-
(P(CsHs)s)21[BF4],! however, and have shown that this
complex contains a distinctly bent M-N-O linkage and
a long M-N bond."? We ascribed this difference in
bonding to the amphoteric nature of NO T and suggested
that in this complex the NOT acts as a o-acceptor
(Lewis acid) ligand. We also suggested that a similar
explanation may account for the bent Co-N-O bond in
Co(NO)(S;CN(CHjs)2)2?* and that the tetrahedral geom-
etry around sulfur in IrClI(CO) (SO} (P(CsHs)s)s* is the
result of SO; acting as a o acceptor.

If this explanation were correct, the Ir-N and Ir-8
bonds in these systems would be largely o in character,
there being very little = back-bonding from the metal
to the ligand. If, however, the bent linkage were the
result of some =-type interaction between the metal and
the ligand, the Ir-N and Ir-S bonds would have con-
siderable m character. In w-bonded complexes the bond-
ing changes markedly with chemical substitution if the
electron density at the central metal atom is changed.
Thus, in the molecular oxygen complexes of the type
IrX (CO)(0s) (P(CsHs)s): the O-O bond length is 1.30 A
when X = ClBand 1.51 A when X = 1.6 This change is
ascribed to the greater electron density at the metal in
the iodo complex; the more strongly the O, group is
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bound to the metal, the longer is the O-O bond.® If the
NO+ ligand were involved in = bonding to the Ir in the
complexes IrX(CO)(NO)(P(CsHs)s):T, one would ex-
pect that there would be a large change in the Ir~N-O
angle as well as in the N~O bond length on replacing Cl
by I. If our explanation were correct, however, and the
NO™ ligand is ¢ bonded in these complexes, then little
or no change in the Ir-N-O angle would be anticipated.

In order to test our hypothesis and also to further our
studies of closely related five-coordinate transition
metal complexes, we have undertaken the prepara-
tion and structure determination of IrI(CO)(NO)-
(P(CeHs)s)o ™

Collection and Reduction of the X-Ray Data

Violet, well-formed crystals of [IrI(CO)(NO)-
(P(CsHs)s)2 ] [BF, ] CeH; were prepared by the reaction
of IrI(CO) (P(C¢H;)s). with NOBFy in the manner pre-
viously described.! The infrared spectrum of the com-
plex (Nujol mull) shows strong, sharp bands at 1720
and 2070 em™! which we ascribe to N-O and C-O
stretches, respectively ; these values compare with bands
at 1680 and 2050 cm~! found in the chloro complex.?
Anal. Calcd for [II‘I(CO) (NO) (P(CeHQa)z][BFd'CsHN
C, 48.42; H, 3.40; N, 1.31. Found: C, 48.65; H, 3.36;
N, 1.31.

On the basis of optical goniometry and precession
photography of the #%0, A0l and Okl zones using Mo
K radiation, we established that these crystals belong
to the orthorhombic system. The observed extinctions
are 0k! for k odd, %0 for ! odd, and %k0 for % odd, which
strongly suggests that the space group is Dgn'5-Pbca.
The lattice constants, obtained by the least-squares
procedure described below, are ¢ = 21.397 (7), b =
21.086 (7), and ¢ = 18.524 (6) A. The observations
were made at 23° with the wavelength assumed as
MMo Kay) 0.70930 A. A density of 1.704 g em—3, cal-
culated for eight molecules in the unit cell, agrees with
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that of 1.71 (1) g cm~2 measured by flotation in diiodo-
methane-bromoethane solution. Hence, no crystallo-
graphic symmetry need be imposed on the complex.

Diffraction data were collected from a rhombic
dipyramidal crystal approximately 0.14 mm on edge.
The separation of the (111) and (I11) faces was 0.111
mm, that of the (111) and (111) 0.149 mm, that of the
(111) and (111) 0.152 mm, and that of the (171) and
(117) 0.143 mm. The estimated errors in these measure-
ments, namely, £0.003 mm, result in errors in the
absorption corrections which are small compared with
those resulting from the numerical approximations in-
volved. The crystal was mounted on a glass fiber nor-
mal to the (111) face, and in this orientation intensity
data were collected at room temperature on a Picker
automatic four-circle diffractometer using Mo Ko radi-
ation. The mosaicity of the crystal was examined by
means of the narrow-source, open-counter w-scan tech-
nique. The width at half-height for a typical strong
reflection was found to be approximately 0.06°, which
is acceptably low.” Eighteen reflections from the crys-
tal were accurately centered through a narrow vertical
slit at a takeoff angle of 0.5°. These observations
formed the basis for the least-squares refinement of cell
parameters and orientation; the refinement was effected
in our program PICK, as previously described.8

Intensity data were collected at a takeoff angle of
1.2°; at this angle the peak intensity of a typically
strong reflection as a function of takeoff angle is ap-
proximately 809, of the maximum value. The receiving
aperture size was approximately 4.0 mm X 4.0 mm,
and the aperture was placed 29 cm from the crystal.
The data were collected by the #—26 scan technique at a
scan rate of 1.0°/min. The scan range for all reflections
was 1.5°, from —0.7 to +0.8° from the calculated 26
value. Stationary-counter, stationary-crystal back-
ground counts of 10 sec were taken at each end of the
scan. The Mo Ko beam was filtered through 3.0-mil
Nb foil after diffraction from the crystal. Attenuators
were inserted automatically when the intensity of the
diffracted beam exceeded about 7000 counts/sec during
the scan; the attenuators used were Cu foils, their thick-
nesses being chosen to give attenuator factors of ap-
proximately 2.3. These attenuator factors were de-
termined as previously described.® The pulse height
analyzer was set for approximately a 909, window,
centered on the Mo Ka peak.

A unique data set having 24 < 80° was gathered; a
total of 1703 independent intensities was recorded.
The intensities of three standard reflections, measured
after every 200 reflections, remained essentially con-
stant throughout the run, showing only the deviations
from the mean predicted from counting statistics. Be-
cause the crystal was rather small, there were very few
reflections above background at values of 26 > 30°. A
more accurate structure determination would have been
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possible if a larger crystal had been available, but we
were unable to grow crystals larger than the one used.
Data of somewhat higher quality could have been ob-
tained by using a lower scan rate and longer background
counting times, but the signal-to-noise ratio increases
rather slowly with time spent on each reflection.

All data processing was carried out as previously de-
scribed.!  The value of ¢ in the expression for ¢(I) was
selected as 0.04. The values of I and o(]) were cor-
rected for Lorentz-polarization effects and for absorp-
tion. The absorption coefficient p for this compound
for Mo Ka radiation is 42.9 em~!, and for the sample
chosen transmission coefficients were found to range
from 0.55 to 0.64. Of the 1703 independent intensi-
ties, 377 were less than their estimated standard devi-
ations, 541 were less than twice their estimated standard
deviations, and 659 were less than three times their esti-
mated standard deviations.

Solution and Refinement

The position of the Ir atom was determined from a
three-dimensional Patterson function, and one cycle of
least-squares refinement of this position was run. All
least-squares refinements in this analysis were carried
out on F, the function minimized being Zw(IFo\ -
IFO|)2; the weights w were taken as 4F,2/a%(F,?). In
all calculations of F., the atomic scattering factors for
Ir and I were taken from Cromer and Waber,!! and
those for hydrogen were taken from Stewart, Davidson,
and Simpson;!? scattering factors for all other atoms
were from the tabulation of Ibers.!* The effects of
anomalous dispersion were included in calculations of
Fe,1* the values of Af" and Af"” being taken from the
tabulation of Cromer.’® In the early stages of the re-
finement only the 1044 intensities greater than three
times their estimated standard deviations were used.

A difference Fourier synthesis based on this first
least-squares cycle revealed an approximately square-
planar array around the iridium position. The highest
peak was cis to two peaks which showed evidence of
being bonded to other atoms and was frans to a peak
which showed a tendency to split into two peaks. This
highest peak was assigned to the I atom, the two cis
peaks were assigned to P atoms, and the trans peak was
assigned to the CO group. Positions for separate C and
O atoms could not be deduced from this map but were
calculated from a knowledge of the approximate Ir-C
and C-O bond lengths. A least-squares refinement of
the positions and isotropic thermal parameters of the
six atoms was effected; the values of the agreement
factors Ry = EHFOI — |F, /EIFOI and Ry (or weighted
R factor) = (Ew(IFO| — !1170‘)2/22'LUF02)’/2 were 0.211 and
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program, Busing and Levy’s ORFFE function and error program, Zalkin’s
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TaBLE 1
PosIiTioNaL, THERMAL, AND GROUP PARAMETERS FOR [IrI(CO)(NO)(P(CeH;)s)s) [BF.] - CeHs

Atom x LY z Bu® or B, Ar B2 B3 B2 Bz Bz
Ir 0.12730(8) 0.36466 (8) 0.01464(7) 0.00145(5) 0.00151(5) 0.00218 (7) —0.00024 (6) 0.00001 (6) —0.00007 (6)
I 0.0503 (1) 0.4429(1) 0.0845(2) 0.0021(1) 0.0028 (1) 0.0042 (1) 0.0000 (1) 0.0003 (1) —0.0004 (1)
Py 0.0482(5) 0.2886(5) 0.0228(5) 0.0021(4) 0.0016(4) 0.0011 (4) 0.0002 (3) —0.0003 (4) —~0.0005 (3)
P, 0.2044 (5) 0.4426(5) 0.0326(5) 0.0017(4) 0.0016(4) 0.0018(5) 0.0003 (3) —0.0001 (4) 0.0002 (4)
C 0.182(2) 0.307 (2) 0.004 (2) 6.1(1.3)
O, 0.223(1) 0.268 (1) 0.000 (1) 5.5(8)
N 0.109(2) 0.385 (2) 0.917 (2) 7.0(1.1)
0, 0.132(1) 0.361 (1) 0.867 (2) 7.9(8)
Group xd Ve Ze 8 € 7 B, Ar af
R,¢ 0.0860 (5) 0.1479 (8) 0.9683 (8) 2.67(3) —2.03 (2) —-2.22(3) 3.5(4)
R, 0.9236 (7) 0.3094 (8) 0.9274(7) 2.87(2) —2.98 (2) —0.60 (1) 3.9 (5)
R 0.0095 (8) 0.2646 (6) 0.1839 (9) —1.58(2) —-2.98 (2) 1.41 (1) 4.6 (5)
Rs 0.3412 (8) 0.4087 (6) 0.9724 (9) 2.17 (3) 2.09 (2) —2.29 (3) 4.6 (5)
Rs 0.1889 (8) 0.5749 (8) 0.9511 (7) 1.85(2) 2.80(1) ~0.585 (1) 3.9 (5)
R 0.2197 (8) 0.4657 (8) 0.2016 (9) 0.07 (2) 3.00 (2) 1.49 (1) 3.7(5)
R 0.0419 (10) 0.0091 (10) 0.2208 (7) —3.17 (4) 3.14 (2) 3.15(2) 9.2(7)
BFR(1)  0.240 (1) 0.230 (1) 0.255 (1) —2.74(8) —2.25(3) 1.20 (5) 9.3(1.7)  0.49 (5)
BF.(2) 0.246 (2) 0.229 (1) 0.259 (2) 2,04 (4) —3.00 (4) 2.95(3) 12.5(1.8) 0.51 (5)

« The form of the anisotropic thermal ellipsoid is exp[— (Buh? + Buk? + Bl? + 281kk + 28uhl + 28:k1)].
The angles §, ¢, and 5 (in radians) have been defined previously.451
plicity of the two disordered BF,~ groups, <.¢., we have here a 499,-517 disorder.
Ring Ry is the benzene molecule.

fractional coordinates of the group centers.
rings Ry, R;, and Rs are attached to Pe.

0.275, respectively. A difference Fourier map com-
puted at this stage showed five phenyl rings and pro-
vided evidence for the NO and BF; locations. The
parameters obtained for these rings were refined by least
squares, along with the parameters of the five known
atoms. The phenyl rings were treated as rigid groups
and restricted to their known geometry (Dg, symmetry,
C-C = 1.390 A). The variable parameters for a ring
included an over-all isotropic temperature factor, the
coordinates of the ring center, and three orientation
angles which have been defined previously.**16 This
refinement yielded values of R; 0.141 and R,
0.202. A further difference Fourier synthesis showed
the sixth phenyl ring, the BF,~ group, and the NO
group. The probable location of the solvent molecule
was also evident, but only three distinct peaks were
present. A least-squares calculation including all non-
hydrogen atoms except the solvent molecule, with aniso-
tropic thermal parameters assigned to Ir and I, con-
verged to values of Ry = 0.091 and R, = 0.129. A dif-
ference Fourier map at this stage clearly revealed the
solvent molecule and also indicated that there was dis-
order in the region of the BF;~ group. A least-squares
calculation which included hydrogen atoms in the posi-
tions calculated for Dey symmetry with a C-H distance
of 1.08 A on all seven rings yielded values of R; = 0.058
and R, 0.065. In this last calculation the BF~
group also was included as a rigid group restricted to its
known geometry (T4 symmetry, B-F = 1.43 A7-19),
A difference Fourier synthesis at this stage showed evi-
dence of disorder in the region of the BF,~ group, and
another cycle of least squares was run with two BFy™
groups given multiplicities of o and (I — «), the
parameter « being varied with the appropriate con-
straints among the derivatives being taken into account.

(168) R. Eisenberg and J. A, Ibers, Inorg. Chem., 4, 773 (1965).

(17) J. L. Hoard and V. Blair, J. Am. Chem. Soc., 5T, 1985 (1935).

(18) D. Pendred and R. E. Richards, Trans. Faraday Soc., 51, 468 (1955).
(19) D, M. Chackraburtty, Acta Cryst., 10, 199 (1957).

b %o, Yo, and z, are the
¢ o is the multi-
4 Phenyl rings Ry, Rz, and Rj are attached to Py;

This least-squares calculation yielded values of R, =
0.052 and R, = 0.057 and a value of « = 0.51 (4). At
this stage we attempted to refine the structure with
anisotropic thermal parameters assigned to all the non-
group atoms, which gave a total of 137 variable param-
eters; because of this increase in the number of variables
we decided to increase the number of observations by
including the 118 reflections which had 2c¢(F,2) <
Fo? < 30(F,?) in the refinement. Unfortunately, the
parameters for the carbonyl C atom obtained from this
refinement were nonpositive definite by an insignificant
amount. Itmay be that the number and quality of data
available is insufficient for the refinement of these 137
parameters. Two final cycles were run, therefore, with
the atoms of the carbonyl and nitrosyl groups refined iso-
tropically and the Ir, I, and P atoms refined aniso-
tropically, using the data greater than twice their esti-
mated standard deviations, This yielded final values
of Ry = 0.059 and R, = 0.059 and a value of « = 0.49
(5); i.e., we have approximately a 3509, disorder in
the BF,~ group. In this final cycle no parameter
exhibited a shift of more than (1.2 times its estimated
standard deviation. The estimated error in an observa-
tion of unit weight is 1.50.

The value of R, obtained from the final cycle of least-
squares refinement shows no dependence on \Fo or sin
#, which indicates that our choice of p = 0.04 is essen-
tially correct. Comparison of the final values of }Fo\
and 4Fci suggests to us that no correction for secondary
extinction is necessary. A final difference map shows
no peak higher than 0.9 e A=3 the average C atom
having an electron density of approximately 4 e A~3;
o(Ap) for this synthesis is 0.16 e A-3. Most of the 11
peaks greater than 0.5 e A~% are in the regions of the
rings and the BFy~ groups and are presumably due to
anisotropy of thermal motion of these groups.

The positional, thermal, and group parameters derived
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from the final cycle of least-squares refinement are pre-
sented in Table I, along with the associated standard
deviations of these parameters as estimated from the
inverse matrix. The positional parameters of the ring
carbon atoms and of the disordered boron and fluorine
atoms which may be derived from the data in Table I
are presented in Table II. The final values of 1O|F0

TasLE 11
DERIVED PARAMETERS FOR GROUP ATOMS?®

Atom x y z

R, G 0.072 (3) 0.208 (1) -0.005 (1)
R,C: 0.090 (2) 0.200(1) —0.077 (1)
R,C; 0.104 (1) 0.140 (1) —0.103 (1)
R;C, 0.100 (3) 0.088 (1) —0.058 (1)
R:Cs 0.082 (2) 0.095 (1) 0.013 (1)
R;Ce 0.068 (1) 0.155 (1) 0.040 (1)
R.Cy 0.977 (1) 0.300 (1) 0.969 (1)
R:C, 0.965 (1) 0.359 (1) 0.938(1)
R,C; 0.912 (1) 0.368 (1) 0.896 (1)
R,Cy 0.870 (1) 0.318(1) 0.886 (1)
R.C; 0.882 (1) 0.260 (1) 0.917 (1)
R,Cs 0.935 (1) 0.251 (1) 0.959 (1)
R;C, 0.023 (2) 0.275 (1) 0.113 (1)
R,Cy —0.039 (1) 0.270 (1) 0.136 (1)
R;C, —0.052 (1) 0.260 (1) 0.209 (2)
R;Cy —0.004 (2) 0.254 (1) 0.258 (1)
R;GCs 0.058 (1) 0.259 (1) 0.236 (1)
R;Cs 0.071 (1) 0.270 (1) 0.163 (2)
R4Cy 0.282 (1) 0.420 (3) 0.001 (1)
R:Cy 0.335(1) 0.431 (1) 0.043 (1)
R4C; 0.394 (1) 0.419 (2) 0.015 (1)
R,C, 0.400 (1) 0.397 (3) -0.056 (1)
R.C; 0.348 (1) 0.387 (1) —0.098 (1)
R,Ce 0.288 (1) 0.398 (2) —0.070 (1)
R;Cy 0.193 (1) 0.518 (1) 0.988 (1)
R;C, 0.242 (1) 0.561 (1) 0.991 (1)
R;Cs 0.238 (1) 0.618 (1) 0.955 (1)
R:C, 0.185 (1) 0.632 (1) 0.914 (1)
R;Cs 0.136 (1) 0.589 (1) 0.911 (1)
R:Cs 0.140 (1) 0.531 (1) 0.948 (1)
R¢Cy 0.215 (1) 0.456 (1) 0.128 (1)
ReCy 0.222 (1) 0.405 (1) 0.174 (2)
ReCs 0.226 (1) 0.414 (1) 0.248 (1)
ReCy 0.224 (1) 0.475(1) 0.276 (1)
RCs 0.218 (1) 0.527 (1) 0.230(2)
R:Cs 0.213 (1) 0.517 (1) 0.156 (1)
R;Cy —0.023 (1) 0.011 (3) 0.222 (2)
R;C 0.011 (2) 0.067 (2) 0.222 (1)
R:Cs 0.076 (2) 0.065 (2) 0.221 (1)
R;Cs 0.107 (1) 0.007 (3) 0.220 (2)
R,C; 0.073 (2) —0.049 (1) 0.220 (1)
R:Cq 0.008 (2) —0.047 (1) 0.221 (1)
B(1) 0.240 (1) 0.230 (1) 0.255 (1)
Fi(1) 0.199 (3) 0.266 (4) 0.300 (2)
F.(1) 0.238 (2) 0.255 (2) 0.183 (2)
F3(1) 0.220 (5) 0.165 (2) 0.254 (2)
Fu(1) 0.302 (2) 0.234 (4) 0.283 (2)
B(2) 0.246 (2) 0.229 (1) 0.259 (2)
Fi(2) 0.278(3) 0.171 (2) 0.274 (2)
F.(2) 0.291 (2) 0.278 (2) 0.244 (3)
F:(2) 0.210 (3) 0.247 (3) 0.321 (2)
Fy(2) 0.206 (2) 0.222 (3) 0.198 (2)

e C,; is attached to P; other C atoms are numbered in succession
so that Cy is para to C;.
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and 10| F,| (in electrons) are given in Table III; only
the 1162 reflections which were used in the refinement
are included in Table III. The reflections for which
Fo? < 20(F,?) all have |F.| < 30(F,).

Description of the Structure
The structure consists of discrete, monomeric ions
well separated from the solvent molecule and from each
other. The inner coordination geometry is shown in
Figure 1, and the whole cation is shown in Figure 2.

Figure 1.—Inner coordination sphere around Ir in the
IrI(CO)(NO)(P(CeH5)3)2+ cation.

Figure 2.—View of the IrI(CO)(NO)(P(CeHs)s)T cation.
Phenyl hydrogen atoms are not shown. Phenyl carbon atoms are
shown with B = 2.5 Az,

The coordination polyhedron about the Ir is a distorted
tetragonal pyramid, with frans P, I, and CO in the base
and the N of NO at the apex. The Ir atom lies above
the basal plane, the N-Ir-I, N-Ir-P;, N-Ir-P;, and
N-Ir-C angles being 101 (1), 94 (1), 97 (1), and 101
(2)°, respectively. If the best weighted least-squares
plane is determined using the coordinates of I, Py, Py,
and C, then I, P;, and P, do not deviate significantly
from this plane, C lies 0.28 (4) A below the plane, and
Ir is 0.23 A above the plane. The BF,~ group occupies
roughly the sixth coordination site, the closest Ir-B
approach being 5.72 A while the shortest Ir-F separa-
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TasLe III
OBSERVED AND CALCULATED STRUCTURE AMPLITUDES (X 10) IN ELECTRONS FOR [IrI(COYNO) P(CeHs)s)e] [BF4] - CeHs

" K FO EC WOk FO FC w x fo FC HOK Fo fC K K FO O FC
aeese L ox 0 ewnes 53 2470 2587 5 8 1969 207l 5 3 1aB4 1511 w4
5 & 3476 3683 510 lsle ls7e 54 T eal & 5
0« 21il 197s 5 s 3328 2121 & o 112 71l 5 5 1833 1807 4 ¢
0 6 3170 5252 5 6 6635 6801 6 1 2600 2619 5 6 3431 3495 4 B
o 8 27.2 2911 5 7 3730 3872 5 3 2308 227s 5 7 3889 3386 4 10
G 16 5597 5343 5 8 1909 181G & 5 6665 8170 5 @ 1906 1787 4 11
G 1z 3871 35el 5 it 2745 2135 & 5 .37 1371 5 5 867 alo & 12
o 1a 3537 adi 5 11 2028 211 5 1 3058 3les 5 41 196. ig0s 4 13
20 108z 13us 6 i 3i5s 3291 6 9 3896 3501 5 12 lsal 1595 & 4
21 6933 6ed? 6 3 2457 2475 b 13 Lusd 1371 5 la 1576 1507 5 C
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tion is 4.58 A. The closest approach between the BF,
group and the cation is an O,-F separation of 3.27 A.
The molecule of benzene solvent is packed so as to be as
far as possible from the phosphine groups on the neigh-
boring cations, its location in the unit cell being closest
to the NO group and the I atomy. The shortest H---H
separation between the benzene molecule and the phos-
phine groups is 2.535 A. The closest approaches of the
benzene molecule to the inner coordination sphere of
the cation are an O,—H separation of 2.95 A and an I-H
distance of 3.71 A. All of these interactions are normal.

The By—~B, separation is 0.15 A, and so the two orien-
tations of the BF,~ group do not have a common
center. The polyhedron formed by the eight I atoms
from the two orientations of the BF,™~ group is irregular.
One can generate approximately the second orientation
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of the BF;~ group by rotating the first group 60°
around one of the B-F vectors.

A selection of intramolecular distances and angles in
the cation is given in Table IV. These distances are all
within one standard deviation of the values obtained
after the attempt to refine the atoms of the carbonyl
and nitrosyl groups anisotropically. The root-mean-
square amplitudes of vibration of the atoms which were
refined anisotropically range from 0.12 to 0.28 A. The
directions of the principal axes of the ellipsoids are dis-
played, at least in part, in the figures.

The geometry of the cation is very similar to that
found in the chloro analog,? and a comparison of the
bond lengths and angles found in the two cations is also
given in Table IV. The difference of 0.323 A betwceen
the Ir-1 and Ir—Cl distances is approximately equal to
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TABLE IV

SELECTED INTRAMOLECULAR DISTANCES AND ANGLES
IN IrX(COYNO)P(CsHs)s )t

~——1Intramolecular dist, A—— —Angle, deg: —
X =1 X = C1# X =1 X = Ci°

Ir-N 1.89 (3) 1.97 (1) N-Ir-P1 94 (1) 90.1 (3)

Ir-P: 2.37 (1) 2,408 (3) N-Ir-P: 97 (1) 91.3 (3)

Ir—P2 2.35 (1) 2.407 (3) N-Ir-X 101 (1) 101.3 (3)

Ir-X 2.666 (3) 2.343 (3) N-Ir-C 101 (2) 97.4 (5)

Ir-C 1.70 (8) 1.86 (1) P1-1Ir-P» 168.2 (3) 175.7 (1)

Ir-O1 2.89 (3) 3.02 (1) Pi-Ir-X 87.6 (3) 88.9 (1)

Ir-O2 2.74 (3) 2.79 (1) Pi-Ir-C 90 (1) 91.2(3)

N-O:z 1.17 (4) 1.16 (1) Po-Ir-X 86.1(3) 86.8 (1)

C-0: 1.20 (4) 1.16 (1) Pr-Ir-C 91 (1) 92.7 (3)

N-P: 3.13 (4 3.11 (1) X-1r-C 158 (1) 161.3 (3)

N-P2 3.20(3) 3.15 (1) Ir—-C-01 176 (4) 178.1(9)

N-X 3.56 (3) 3.35 (1) Ir-N-02 125 (3) 124.1(9)

N-C 2.78 (6) 2.88(2) ClP-P-CiP  104.5 105.9

Pi—P2 4.70 2) 4.811 (4) (av of 6)

Pr-X 3.49 (1) 3.328 (4)

Pi—C 2.92 (5) 3.07 (1)

Pe-X 3.44 (1) 3.265 (4)

P-C 2.04 (5)  3.11(1)

X-C 4.28 (3) 4.15 (1)

pP-C¢ 1.81 1.81

(av of 8)

e Reference 2. ? Phenyl C atom.

the value of 0.34 A calculated for the difference between
the single-bond covalent radii of I and CL.*® The Ir-P
lengths of 2.35 (1) and 2.37 (1) A found in the iodo com-
plex are normal, being similar to the values of 2.33 (1)
and 2.36 (1) A in the SO, complex¢ and the values of
2.36 (1) and 2.38 (1) A in the chloro-oxygen complex;®
the lengths of 2.407 (3) and 2.408 (3) A found in the
chloro complex? are slightly longer than normal. The
Ir-C and Ir-N lengths show a significant shortening on
substitution of I for Cl, the Ir-N being shortened by
0.08 (3) A and the Ir-C by 0.16 (5) A; this is because in
both bonds the metal donates electrons to the ligand,
and the increased electron density at the metal in the
iodo complex makes it a better donor. On this basis we
might have expected the Ir-P distances to be longer in
the iodo complex; yet they appear to be slightly, but
significantly, shorter. The high standard deviations on
the Ir-C and Ir-N bond lengths preclude any quantita-
tive discussion of this bond shortening. The M-C bond
lengths which have been determined for the 14 second-
and third-row transition metal carbonyls which could
be found in the literature fall in the range 1.81-2.08 A&
it is apparent that the Ir-C length of 1.86 (1) A in the
chloronitrosyl complex is normal but that of 1.70 (5) A
in the iodo complex is short,

The increase in the N-Ir-P angles in the iodo com-
plex is presumably the result of the shortening of the
Ir-N bond. If the N-Ir-P; angle were 90° in the iodo
complex (as it is in the chloro complex), the N-P separa-
tion would be only 3.06 A as compared with 3.11 A in
the chloro complex. It has been shown?' that in a

(20) L. Pauling, “The Nature of the Chemical Bond,” 3td ed, Cornell
University Press, Ithaca, N. VY., 1960, p 225,
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" is remarkably constant,
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series of closely related complexes of Re and Os con-
taining M—P and M~-N bonds, the N - -P interaction
Accordingly, it is not sur-
prising that the N - - . P interactions should be constant
in the present two compounds, and that N-Ir-P angles
should be different.

The Ir-N bond length in the iodo complex is sig-
nificantly longer than the Ir-C bond length, the dif-
ference being 0.19 (6) A; this difference is probably not
significantly different from the value of 0.11 (2) A
found in the chloro complex. This lack of any signifi-
cant difference is a good indication that the mode of
attachment of the NO group is the same in both com-
plexes. It is important to note that this difference in
bond lengths is not a steric factor; the van der Waals
radius of nitrogen is about 0.04 A less than the van der
Waals radius of carbon, and so on steric grounds one
would expect the Ir-C bond to be slightly longer than
the Ir-N bond. The shortness of the Ir-C bond relative
to the Ir~N bond is taken as evidence for much less =
contribution in the Ir-N bond than in the Ir-C bond,
the metal being a 7 donor to the carbonyl group and a
o donor to the nitrosyl group.

There is further evidence for this belief that the ni-
trosyl group is acting as a Lewis acid ligand in these
systems. Large changes in the bonding at the nitrogen
would have been expected if the NO moiety were in-
volved in 7 bonding with the metal, as is found in the
molecular oxygen complexes IrX(CO)(O,) (P(CsHs)s)s,% 8
where the O-O length changes from 1.30 to 1.51 A on
substitution of Cl for I. In the nitrosyl case, however,
the N-O bond length in unchanged, and, more signifi-
cantly, the Ir-N-O angle of 125 (3)° found in the iodo
complex is essentially the same as the value of 124 (1)°
found in the chloro analog.? This lack of any real
change in the bonding at the nitrogen, plus the con-
tinued shortness of the Ir-C bond as compared with the
Ir-N bond, is excellent support for our hypothesis that
in these systems the NO * ligand is acting as a ¢ acceptor
(Lewis acid) and is involved in ¢ bonding to the Ir, the
hybridization at the N being sp?. This is in agreement
with the finding®? that IrCI(CO)(P(CsHj;)s)s will serve
as a Lewis base toward boron-containing Lewis acids.
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