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A three-dimensional X-ray structure determination of Ni(DSP)I, (DSP = bis(s-methylthiophenyl)phenylphosphine) is
reported. The compound crystallizes in the space group Dyp5-Pbca with eight formula units in a cell of dimensions ¢ =
13.95 (2), b = 17.97 (2), and ¢ = 18.12 (2) A. The calculated density (1.95 g/cm3) is in excellent agreement with the ob-
served density of 1.95 & 0.01 g/cm3. Data were collected by the equiinclination Weissenberg technique and intensities were
estimated visually. The structure has been refined by full-matrix least-squares methods to a final conventional R factor of
8.39, for 1100 observed reflections. The structure has discrete square-pyramidal Ni(DSP)I, molecules in which the phos-
phorus, one sulfur, and two iodine atoms form the basal plane and the other sulfur atom is the apex. This structure is unique
among square-pyramidal complexes of the first transition series in that the central metal lies only slightly (0.09 A) above the
basal plane. The specific arrangement of donor atoms and the long Ni—S apical bond are interpreted in terms of maximum
metal to ligand w-back-bonding and the prolate nature of the 8d-electron density along the z axis in a d® low-spin, square-

pyramidal complex.

Introduction

As recently as 1964 only a few five-coordinate Ni(IT)
complexes were known,! and they all contained poly-
dentate ligands with only arsenic or phosphorus donor
atoms, which supposedly are capable of extensive =
bonding. Since thioethers and selenoethers are gen-
erally thought to involve less 7 bonding than the cor-
responding phosphines and arsines, Meek and co-
workers?—® prepared and investigated several series of
tetradentate, tridentate, and bidentate ligands with
~SCH; or ~SeCHj; groups to determine if these donor
atoms could promote formation of low-spin, five-coor-
dinate complexes.

" These studies showed that the tetradentate ligands
P(O-C6H4SCH3)3 (TSP, I)Z and P(O-C6H4SECH3)3
(TSeP)3 form crystalline five-coordinate nickel(II) com-
plexes of the types Ni(Lig)X+ (X = I, Br, Cl, and NCS)
and Ni(Lig)L**+ (L = thiourea, ethylenethiourea, and
triphenylphosphine). Both series of diamagnetic com-
plexes were assigned trigonal-bipyramidal structures on
the basis of the electronic spectral similarity with the
known trigonal-bipyramidal nickel(IT) complex, [Ni-
The trigonal-bipyramidal structure of [Ni(TSP)Cl]-
ClO; has recently been confirmed by X-ray crystallog-
raphy.®
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Workman, et al.,’ found that the similar tridentate
ligand bis(e-methylthiophenyl)phenylphosphine (DSP,
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1I) forms monomeric, five-coordinate Ni(DSP)X; com-
plexes and that the electronic absorption spectra of the
latter series are significantly different from those of the
trigonal-bipyramidal Ni(TSP)X+ series.? The other
limiting five-coordinate geometry to consider is the
square pyramid; however, the electronic spectra did not
agree well with a simple one-electron, d-orbital energy
diagram for a C4, arrangement of donor atoms around
nickel.®* Especially since there was no known regular
square-pyramidal nickel(II) complex with which one
could compare the spectral assignment, we undertook an
X-ray study on Ni(DSP)I, to verify the coordination
number and to determine the stereochemistry around
nickel. This paper reports the results of this study and
confirms that Ni(DSP)I, exists as discrete square-py-
ramidal molecules in the crystal.

Determination of the Unit Cell and Collection of
Intensity Data

The complex Ni(DSP)I; was prepared and recrystal-
lized from dichloromethane as described previously.?
The analyses (performed by Galbraith Laboratories,
Knoxville, Tenn.) were consistent with this formula-
tion, and the molecular weight data (caled, 667 ; found
665) showed that the compound is monomeric in chloro-
form solutions. Opaque rods with the principal faces
being {010}, {o11}, {012}, and {110} were
grown from dichloromethane. Preliminary precession
photographs taken with Cu Ka radiation showed mmm
symmetry with systematic absences: 0kl k # 2n; b,
I 7 2n; hkO, h % 2n. These absences are consistent
with the space group Dsn!%-Pbca.

The unit cell dimensions, obtained with Cu K& (A
1.5418 A) and Mo K« (A 0.7107 A) radiation at 22°, are
a=13.95(2),b = 17.97 (2), and ¢ = 18.12 (2) A, where
the errors are estimates from repeated measurements.
The observed density, 1.95 = 0.01 g/cm? (obtained by
flotation in a methyl iodide~Freon 113 mixture), is in
excellent agreement with the density of 1.95 g/cm? cal-
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culated for a formula weight of 667, Z = §, and a unit
cell volume of 4542 A3,

A crystal of approximate dimensions of 0.32 X 0.15 X
0.21 mm was chosen for intensity measurements and
was mounted on a glass fiber with the column length
and the ¢ axis parallel to the spindle axis of the instru-
ment. The data (layers of 0k/-12k/ inclusive) were col-
lected on a Nonius integrating Weissenberg camera
using Mo Kea, Zr-filtered radiation and the equiinclina-
tion technique. The intensities of 1597 independent,
nonzero reflections were estimated visually and cor-
rected for Lorentz and polarization effects. The linear
apsorption coefficient for Mo Ko radiation is 38.52
cm ™}, so a further correction was made for absorption.®
L'he transmission coefficients were found to vary from
0.40 to 0.60.

Solution and Refinement of the Structure

With eight molecules per unit cell and no molecular
symmetry imposed by the crystallographic symmetry,
all atoms occupy general positions. The nickel and
both iodine atoms were located from the three-dimen-
sional map of the Patterson function. A subsequent
least-squares refinement of these atomic positions fol-
lowed by a difference Fourier synthesis disclosed the
location of the other three donor atoms. At this stage
the phosphorus atom could not be differentiated from
the sulfur atoms. The positional parameters of all six
heavy atoms were refined, and after a difference Fourier
synthesis, most of the carbon atoms in the phenyl rings
were located. From the nature of the ligand, the phos-
phorus atom could then be assigned.

The structure was then solved by conventional least-
squares and Fourier calculations. The function min-
imized was Ew(I Fol — ‘Fc )2, where ‘Fo’ and
(Fc| are the observed and calculated structure am-
plitudes, respectively. The atomic scattering factors
used were those tabulated by Ibers!® for S, P, and C,
those of Cromer and Waber!! for Ni and I, and those of
Stewart, ef al.,'? for H. The effects of anomalous dis-
persion were included in the calculated structure fac-
tors.l® The values of Af’ and Af’’ for Ni, I, S, and P
were those reported by Cromer, !

Five cycles of full-matrix, least-squares refinement of
the atomic positions and individual isotropic thermal
parameters for the 6 heavy atoms plus 17 of 18 phenyl
carbon atoms converged to values of R; and R, of 17.0
and 19.6%, where Ry = ZHFof — ch /Z[Fol
and R, (or weighted R factor) = (Ew([ Fo< -
fF.;[)Z/E'LUI”O?)l/2 with unit weights on all reflections.
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Separate scale factors, determined by least-squares
analysis, were applied to the 13 layers of data.

After the intensity data were corrected for absorption,
additional refinements were carried out in which the
three phenyl rings were treated as rigid groups. Only
the most reliable reflections (1103 in number), ¢.¢., those
with observed intensity (/,) values larger than three
times the minimum readable [, values (5), were used in
the final refinements along with the weighting scheme:
V1w = 4.0F,/I, for 15 < I, < 40; V/w = 0.1F, for I, >
40. The 1597 observed intensity values ranged from 5
to 960. A difference Fourier map revealed the posi-
tions of the two methyl carbon atoms and gave evidence
of anisotropic thermal motion in the regions of the
nickel and iodine atoms. Thus all atoms in the struc-
ture except the hydrogens were located. A least-
squares refinement still involving individual isotropic
thermal parameters led to values of 15.4 and 18.6%, for
Ry and R,, respectively. A subsequent refinement in
which anisotropic thermal paranieters were assigned to
the nickel and iodine atoms showed marked improve-
ment with R; and R; values of 10.3 and 12.89,. At
this point an examination of the calculated and ob-
served structure amplitudes for intense reflections indi-
cated that extinction effects were important. One ad-
ditional cycle of least-squares refinement with a var-
iable extinction coefficient led to values of 8.8 and
11.09, for Ry and R,. The positions of the 13 phenyl
hydrogen atoms were then calculated (C-H = 1.084
A)15 and their contributions to F. were included in sub-
sequent calculations. One least-squares cycle led to
values of 8.5 and 10.69, for R, and R,, respectively.
Three reflections, which were obvious indexing errors,
were removed and a final full-matrix least-squares re-
finement with 1100 observed reflections, 82 wvariables,
anisotropic thermal parameters for the nickel and iodine
atoms, and a variable extinction coefficient produced
values of 8.3 and 10.29 for R and R,. The value of the
extinction coefficient on an absolute scale is (6.0 =+
0.6) X 10-% The shifts of the variable parameters in
the final cycle were all less than one-sixth of their re-
spective standard deviations. A final difference
Fourier map revealed no spurious detail to which any
chemical significance could be ascribed; the maximum
residual was 0.85 e~ A—3.  On the same scale a carbon
atom had a height of ~3.7 e~ A3,

The final values of F, and F, (in electrons) are given
in Table I; only the 1100 reflections that were used in
the last refinement are listed. The final positional,
thermal, and group parameters, along with the asso-
ciated standard deviations in these parameters, are pre-
sented in Table II. The positional parameters of the
phenyl carbon atoms, which may be derived from the
data in Table II, are presented in Table I1T.

Description of the Structure

The interatomic distances and angles of Ni(DSP)I,
are given in Table IV, and the geometries of the inner
(15) ““Tables of Interatomic Distances and Configuration in Molecules and

Tons,” Special Publication No. 18, The Chemical Society, London, 1965,
p Sl8s.
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TasLE 11
FINAL Atomic, THERMAL, AND GROUP PARAMETERS FOR Ni(DSP)L
» ]
Atom?® % y z 10481 or B 104822 1048 104812 104813 104893
I 0.34515 (18) 0.21113 (13) 0.07498 (13) 53 (4P 36 (1) 20 (1) —15 (1) =3 7(D
Iz 0.11774 (19) 0.16544 (17) —0.02403 (14) 44 (4)® 70 (D) 24 (1) —11(1) —11(1) 20(1)
Ni 0.21947 (28) 0.11105 (21) 0.08097 (23) 32 (1P 29 (2) 11 (1) ~3 (2) -2 (2) —1(1)
S1 0.14040 (60) 0.16026 (48) 0.21362 (50) 3.30 (22)°
Sa 0.12094 (60) 0.01627 (42) 0.08228 (48) 2,85 (20)°
P 0.30411 (56) 0.05690 (44) 0.18193 (47) 2.03 (20)°
Ci 0.1121 (40) 0.2605 (24) 0.2054 (27) 7.2 (12)¢
Ce 0.1579 (33) —0.0459 (22) 0.0031 (22) 5.3 (9)°
Group? EX Yo %o 8 e 7 Group B¢
Phy 0.3288 (10) 0.1504 (8) 0.3126 (7) ~1,999 (13) —2.975(11) 2.100 (12) 2.49 (30)
Phe 0.3208 (11) 0.4197 (8) 0.2213 (8) —1,318 (18} 2,290 (13) 0.472 (20) 3.55 (33)
Phs 0.5021 (13) —0.0142 (8) 0.1037 (8) ~0.519 (13) —2.932(13) —0.422 (16) 3.80 (35)

2 x, v, and z are the fractional coordinates. The form of the thermal ellipsoid is exp|— (Buh? + Bxk? + Bal® + 281phk + 281kl +
28y3kl)]. The standard deviations of the least significant digits reported are given in parentheses. ® The 10%3;; values for the three
atoms that were refined with anisotropic thermal parameters. The root-mean-square amplitudes of vibration along the principal ther-
mal ellipsoid axes 1, 2, and 3, respectively, are: I, 0.1696 (47), 0.1966 (69), 0.2769 (43); I,, 0.1531 (56), 0.2094 (78), 0.3623 (38); Ni,
0.1306 (87), 0.177 (12), 0.2202 (66). © Isotropic temperature factor in Az with the corresponding standard deviations in parentheses.
4 %o, ¥o, and z, are the fractional coordinates of the center of the group. The angles 8, ¢, and » (in radians) which bring about alignment
(except for translation) of an internal coordinate system within the group with a fixed external coordinate system are those described previ-
ously: R.Eisenbergand J.A.Ibers, Inorg. Chem., 4,773 (1965). ¢ Group B is the isotropic thermal parameter for the entire phenyl group.

coordination sphere and of the complete molecule are  iodine atoms form the basal plane and the second sulfur
illustrated in Figures 1 and 2, respectively. Two sig- donor is the apex atom. Second, the apical nickel-
nificant points are readily apparent. First, the struc- sulfur bond is significantly longer (0.60 (1) A) than the
ture consists of discrete square-pyramidal Ni(DSP)I, one in the basal plane,

molecules in which the phosphorus, one sulfur, and two The nickel atom is displaced 0.09 A toward the apex
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TasLE IT1
DrRIVED PARAMETERS FOR GROUP CARBON ATOMS??
x y z

Ph,
Cy 0.3208 (15) 0.1101 (10) 0.2469 (9)
Ce 0.2470 (11) 0.1579 (11) 0.2686 (10)
Cs 0.2550 (13) 0.1982 (10) 0.3343 (11)
(o 0.3367 (16) 0.1908 (10) 0.3782(9)
Cs 0.4105 (12) 0.1430(11) 0.3565 (10)
Cs 0.4026 (13) 0.1027 (11) 0.2909 (11)

Phye
G 0.2347 (21) -0.0199 (14) 0.1982 (13)
C; 0.2622 (14) —0.0812 (15) 0.2600 (12)
Cs 0.2067 (19) —0.1216 (10) 0.2831 (10)
Cy 0.1237 (21) —0.1407 (14) 0.2444 (12)
Cs 0.0961 (15) —0.0994 (15) 0.1826 (12)
Cs 0.1516 (19) —0.0390 (10) 0.1595 (10)

Phs
C 0.4185 (14) 0.0152 (13) 0.1347 (14)
Ce 0.4183 (15) —0.0567 (12) 0.1053 (13)
Cs 0.5018 (18) —0.0861 (9) 0.0744 (13)
Cy 0.5856 (15) —0.0436 (13) 0.0728 (14)
Cs 0.5859 (14) 0.0283 (12) 0.1022 (14)
Cs 0.5024 (17) 0.0577 (9) 0.1331 (13)

a See Figure 2 for the numbering scheme of the atoms. ¢ The
estimated standard deviations are derived from those of the group
parameters. Intra-ring C-C distance is 1.397 A. ¢The pa-
rameters for the C atoms of Phy given here are related to those
which may be derived from the data of Table II by the transfor-
mation 1/, — %, 1/ + ¥, 2.

Inorganic Chemistry

correction for the effects of independent thermal mo-
tion is applied, the difference between the Ni-I; and
Ni-I, bond lengths remains essentially the same as
given in Table ITT,

The possibility that an o-hydrogen atom of the ligand
may occupy the sixth coordination site of the complex
must be examined. Such an effect has been demon-
strated in the cases of Ru(P(CsHj)s);Cle® and polymeric
PA(PC¢H;(CHs)s)21:. In the case of Ni(DSP)I,, no
phenyl or methyl hydrogen atoms are closer to nickel
than 3.5 A so a hydrogen atom does not block the sixth
coordination position.

Discussion

Insofar as we are aware, Ni(DSP)I, is the only square-
pyramidal complex of the first transition series that has
the metal atom so close to the basal plane. Generally
the central metal atom is 0.2-0.4 A above the basal
plane,'® even in those complexes where conjugation
within the ligand imposes a square-pyramidal structure
on the metal ion. Even in the simple Ni(CN)s3~ ion,
for example, the nickel atom is 0.34 A above the plane
of the four carbon atoms.’®* In Ni(DSP)I,, we believe
that ligand-field stabilization energy® favors the square-
pyramidal geometry over a trigonal-bipyramidal one
and that = back-bonding is an important contribution
for the metal being located only slightly above the basal
plane of donor atoms.

TaBLE IV
Bonp LENGTHS AND ANGLES IN Ni(DSP)I,

Atoms Length, & Atoms Angle, deg Atoms Angle, deg
Ni~-I; 2,514 (5) I,~Ni-I, 94.7 (2) Ni-8;-R;C, 98.3 (8)
Ni-I; 2.567 (5) I,—Ni-P 88.3 (3) Ni-8-R,Cs 107.1(8)
Ni-S; 2.789 (10) L—-Ni-§; 94.9 (2) Ci-S-R,Ce 104.2 (18)
Ni-S; 2.189 (9) 1;—Ni-8,; 174.3 (3) Co—5:-ReCs 101.7 (18)
Ni-P 2,120 (9) I,-Ni-$; 107.4 (2) Ni-P-R.Cy 107.7 (8)
-Gy 1.85(5) I,-Ni-S, 87.6(3) Ni-P-R,.Cy 114.5(8)
Si-R:1Ce 1.79 (4) I,-Ni-P 174.7 (3) Ni-P-R;Cy; 119.1(8)
Si-Cy 1.89 (4) Si—-Ni-S; 89.4 (3) R,Ci-P-R;C, 109.3 (12)
S;-R2Ce 1.77 (4) $-Ni-P 76.7 (3) RoCi-P-R;Cy 104.6 (12)
P-R,C; @ 1.83 (4) S;-Ni-P 89.1(3) R.Ci~P-R,C, 99.3 (12)
P-R,Cy 1.81(4) Ni-5:-C 108.9 (15)

P-R,C 1.83 (4) Ni-S:-Cs 106.3 (14)

a Ry is ring 1; Ph; in Figure 2.

sulfur atom from the best least-squares plane through
the other four donor atoms. The equation for the basal
plane through I, In, S, and P is 7.28x —8.92y —12.572
= —0.31 (orthorhombic coordinates) and the deviations
of these four atoms from the plane are 0.001 (2), —0.002
(3),0.016 (8), and —0.015 (8) A, respectively.

The apical sulfur atom is distorted somewhat from its
idealized square-pyramidal apex position, owing to the
short bridging distance of the o-phenylene linkage.
The I,-Ni-S; and the $-Ni-P angles of 107.4 (3) and
76.7 (3)°, respectively, show that the S; atom is pulled
toward the phosphorus position, as compared with an
apex position perpendicular to the basal plane.

The orientations of the thermal ellipsoids for the
nickel and iodine atoms are illustrated in Figure 1, and
the root-mean-square amplitudes of vibration along the
principal axes are given in Table II, footnote . If a

A square pyramid with the central metal in the basal
plane represents the best geometry for efficient = back-
bonding from the metal d orbitals in five-coordinate com-
plexes.?! That is, the three orbitals (d,,, d.., and d,.)
are fully available for = bonding in the plane and out of
the plane, just as they are in a square-planar complex.
A distorted pyramid (with the central atom above the
plane) is less efficient because the d,, and d,, orbitals

(16) S.J. La Placa and J. A. Ibers, Inorg. Chem., 4, 778 (1965).

(17) N. A. Bailey, J. M. Jenkins, R, Mason, and B. L. Shaw, Chem.
Commun., 237 (1965); N. A. Bailey and R. Mason, J. Chem. Soc., 4, 2594
(1968).

(18) E. L. Muetterties and R. A. Schunn, Quart. Rev. (London), 20, 245
(1966).

(19) K. N. Raymond, P. W. R. Corfield, and J. A. Iberg, Inorg. Chem.,
T, 1362 (1968).

(20) This idea was originally published by F. Basolo and R. G. Pearson,
‘“Mechanisms of Inorganic Reactions,” John Wiley & Sons, Inc., New York,
N. Y., 1058,

(21) C. Furlani, Coord. Chem. Rev., 8, 141 (1968).
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Figure 1.—The arrangement of atoms in the inner coordination
sphere of Ni{(DSP)I,.

Figure 2.—The geometry of the complete five-coordinate
Ni(DSP)I; molecule.

become partially o*, so the number of filled orbitals avail-
able for 7 bonding isless than 3. Although all five donor
atoms of Ni(DSP)I, potentially may function as =
acceptors, only the Ni-P bond distance is significantly
shorter than the sum of the appropriate covalent radii.
The present structure, in which the metal atom is located
close to the basal plane of the square pyramid, may bera-
tionalized on the basis of maximum nickel to phosphorus
7 back-bonding.

The phosphorus-nickel bond length (2.120 (9) A) is
considerably shorter than the sum of the covalent radii
(2.26 (1) A).22=% The P-Ni values of 2.26 A in Ni(P-

(22) The value of 2.26 A is calculated from the covalent radius of Ni(II) in
square-planar complexes (1.16 A)2s and the single-bond radius of P (1.10
A).24 Using Pauling’s octahedral value for Ni(II) (1.39 A)ﬂ the bond
length would be 2,49 A. Although the value of about 2.49 A appears reason-
able for high-spin, six-coordinate complexes, the Ni—P distance in low-spin,
four-coordinate complexes according to Pauling should be 2.30 A and is
found to bein the range 2.1-2.3 &, ¢.g., 2.26 A in Ni(P(CsHs)s)eBra.%

(23) B. T. Kilbourn and H. M. Powell are quoted as giving 1.18 A as the
correct Ni{II) radius in square-planar complexes: see G. R, Davies, R. H. B.
Mais, and P. G. Owston, J. Ckem. Soc., A, 1750 (1967).

(24) L. Pauling, “The Nature of the Chemical Bond,” 3rd ed, Cornell
University Press, Ithaca, N. V., 1960, Chapter 7.

(25) V. Scatturin and A. Turco, J, Inorg. Nucl. Chem., 8, 447 (1958).
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(CyHy)s)eBro? and 2,179 (3)% and 2.175 (4) A¥ in Ni(P-
(C:H;)5)2(C=CC4H:;)s have been reported. Thus, the
nickel-phosphorus bond length in Ni(DSP)I; is signifi-
cantly shorter than in any of these examples, and we
take it as evidence for considerable 7= bonding between
nickel and the phosphorus atom of DSP. Additional
support for strong Ni~P 7 bonding may be deduced from
the Ni-I bond length of the iodide that is ¢rans to phos-
phorus. The Ni-T, distance is 0.053 (7) A longer than
for the iodide that is trans to the thioether group. The
Ni-I; and Ni—-S; bond lengths are comparable with the
single-bond values.” 2 All bond lengths (e.g., P-C
and S-C) angles in the tridentate ligand appear normal
(Table IV).

The relative importance of = bonding by thioether
groups is difficult to assess directly because of the pau-
city of data on INi--SR; (R = aryl or alkyl) bond lengths.
If one makes the reasonable assumption that the bonds
in the basal plane of Ni(DSP)I; approximate those in
a similar square-planar complex, then the observed Ni-
S, bond length (2.189 (9) A) is only slightly shorter than
the sum of the covalent radii (2.20 (1) A).222¢ The value
of 2.189 (9) A also is longer than the distances of 2.101
(2), 2.146 (1), and 2.165 (5) A found in the square-
planar 1,2-dithiolato complexes of Ni(Sy;Co(CeHs)z)s,*
Ni(SzCz(CN)z)z—,m and Ni(SQCZ(CN)2)22_,32 respec-
tively, where the sulfur atoms formally are mercaptide
donors and where extensive w-bonding interactions be-
tween nickel and sulfur are thought to exist. Very re-
cently, Haugen and Eisenberg found that the three
equatorial Ni~S distances in the trigonal-bipyramidal
[Ni(TSP)C1]CIO, complex averaged 2.267 (7) A8 This
value is 0.078 (12) A longer than we observed for the Ni~
S, bond of Ni(DSP)I, but these two distances are totally
consistent when one recalls that the bonding radius of
low-spin, trigonal-bipyramidal nickel(II) in the xy plane
(i.e., equatorial bonds) is 0.08 A larger than it is along
the basal plane (xy plane) of a square pyramid.}* We
conclude, therefore, that the = bonding between nickel
and the thioether groups in Ni(DSP)I, is insignificant
compared with the phosphorus~nickel = interactions.2?

The long apical bond (2.789 (10) A) (along the z axis)
and the difference (0.60 (1) A) between it and the Ni-
S; bond in the basal plane are similar to the distances
observed with the few other square-pyramidal, strong-
field d® complexes. The bond distances in Table

(26) W. A, Spofford, 111, P. D. Carfagna, and E. L. Amma, Inorg. Chem.,
6, 1553 (1987); the original P-Ni distance was corrected: ¢bid., 7, 2677
(1968).

(27) G. R. Davies, R. H. B. Mais, and P. G. Owston, J. Chem. Soc., A,
1750 (1987).

(28) The nickel-iodine distances are even slightly longer than the equa-
torial Ni—I distance of 2.49 (2) Ain Ni(P{CsHs)2H)3I2: J. A. Bertrand and
D. L. Plymale, I'norg. Chem., 8, 879 (1968). Using the covalent radius value
of 1.16 A for Ni(II)28 and the value of 1.33 A for I,2¢ the calculated Ni-I
distanceis 2.49 A.

(29) If = bonding to a thiocether donor were important, one would expect
it to be even more significant in a palladium(I1) complex, However, the
Pd—S bond length in [PA(S(CHs)2) Bra2lz is 2.30 = 0.02 A, which is only
slightly shorter than the sum of the covalent radii (2.36 A): D. L. Sales,
J. Stokes, and P. Woodward, J. Chem. Soc., A, 1852 (1968).

(30) D. Sartain and M. R, Truter, Chem. Commun., 382 (1966).

(31) C. J. Fritchie, Acta Cryst., 20, 107 (1966).

(32) R. Eisenberg and J. A. Ibers, Inorg. Chem., 4, 805 (1965),
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TaBLE V
CoMPARISON OF APICAL AND BAsAL METAL-LIGAND BOND DISTANCES IN SQUARE-PYRAMIDAL COMPLEXES
Complex M-Lpasal Dist, A M-Lapical Dist, A A, A Ref
Ni(DSP)I, Ni-S 2,189 Ni-8 2.789 0.60 This work
Ni(CN)s2— Ni-C 1.86 Ni-C 2.17 0.31 19
Ni(tas)Br,® Ni-Br 2.37 Ni-Br 2.69 0.32 33
Ni(x-CH,C(CH3)CH,)(diphos)Br? Ni-Br 2.67 0.37° 34
N‘l(clangNq)Brz‘HZOd e - Ni-Br 2.79 0.49¢ 35
Ni(PNP)Bry® Ni~Br 2.33 Ni-Br 2.70 0.37 36
[Ni(diars)(triars)] (ClO4)/ Ni-As 2.29 Ni-As 2.39 0.10 37
Pd{CiyHisP s Bry Pd-Br 2.52 Pd-Br 2.93 0.41 38
Pd(TPAS)CI+* Pd-As ~2, 367 Pd-As 2.86 0.50 39
[PA(PCeHs(CH;s)s)ola]n Pd-1 2,63 Pd-I 3.28 0.65 17

4 tas = bis(3-dimethylarsinopropyl)methylarsine; the structure may be viewed as intermediate between a regular square pyramid and

a trigonal bipyramid. °? diphos =

Br radius = 1.14 A).%8

2,11,13,15-pentaene; only one of the bromides is coordinated to nickel.
o-phenylenebis(dimethylarsine); triars = bis(o-dimethylarsinophenyl)methylarsine.
R TPAS = the tetraarsine ligand o-phenylenebis(o-dimethylarsinophenyl)methylarsine.

ars =

values.3?

V17.19,33-83 {]lystrate the long apical bond generally ob-
served in such complexes. The 3d-electron density dis-
tribution is a prolate spheroid along the z axis for a dia-
magnetic, square-pyramidal d® complex, since the d,.
orbital will contain two electrons and the d,.—,. orbital
(in the basal plane) will be empty. The filled d,.
orbital is pointed at the apical ligand and electron—elec-
tron repulsion between the filled d,. orbital and the elec-
tron pair of the donor will lead to a much longer metal~
ligand distance than for an analogous bond in the basal
plane.

The specific arrangement of the ligand in Ni(DSP)I,
may also be a consequence of the long apical bond. If
phosphorus had been the apex atom and if we still allow
for a long apical bond, the necessarily equal Ni~S bond
lengths and the short o-phenylene linkages would have
pulled the phosphorus atom strongly over to one side of
a square pyramid. Consequently, the ¢-bonding con-
tribution of an apical phosphorus atom would have been

(33) G. A. Mair, H. M. Powell, and D. E. Henn, Proc. Chem. Soc., 415
(1962).

(34) M. R, Churchill and T. A. O’Brien, Chem. Commun., 246 (1968).

(35) E. B. Fleischer and S. W. Hawkinson, Inorg. Chem., T, 2312 (1968).

(36) P. L. Orioli and L. Sacconi, Chem. Commun., 1310 (1968).

(37) B. Bosnich, R. S. Nyholm, P. J. Pauling, and M. L. Tobe, J. Am.
Chem. Soc., 90, 4741 (1968).

(38) J. W. Collier, F. G. Mann, D. G. Watson, and H. R. Watson, J.
Chem. Soc., 1803 (1964).

(39) T. L. Blundell and H. M, Powell, ¢bid., 4, 1850 (1967).

(CeHs )2 PCHCH,P(CsHs ), and #-CHyC(CH;)CHj, is the »-bonded methallyl group.
is only one Ni-Br bond in this complex, A was determined from a calculated Ni~Brpass1 distance of 2.30 A (Ni radius =

¢ Since there
1.16 A and

¢ CsHuNy is the tetradentate macrocycle 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),-

¢ PNP is the tridentate ligand HN[CH,CH,P(CesH; )]s, 7 di-
¢ CiuHi3P = 2-phenylisophosphindoline.
i The Pd-As distance is the average of three

minimized. One additional factor may also influence
the stereochemistry of the tridentate ligand in Ni(DSP)-
1. The benzene ring of the ligand can accept d-elec-
tron density into its vacant r* orbitals effectively only
if the ring lies in the basal plane. Thus, the observed
structure, in which one phenyl ring, four donor atoms,
and the central metal all lie nearly in the basal plane of
a square pyramid, facilitates maximum = bonding be-
tween nickel and the ligand.

This structure determination emphasizes the impor-
tance of ligand-field stabilization energy for the d® elec-
tron configuration, where it is greater for a square pyr-
amid than for a trigonal bipyramid. Also, the more
subtle effects of the planar o-phenylene conmnecting
linkage and = back-bonding to donor atoms in the basal
plane are illustrated by the unusual situation that the
metal is located nearly in the base of the square pyr-
amid.
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