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those found in high- and low-spin nickel(II) complexes
with four planar nitrogen donors.’ This effect may be
explained by the absence of electrons in the d orbitals
which are antibonding with respect to the Ni-N
interaction in the case of the diamagnetic nickel(II)
complex as compared to their presence in the antibond-
ing orbitals in the paramagnetic complexes. These
antibonding electrons produce the lengthening of the
Ni-N bond in the tetragonal (and octahedral) com-
plexes which are paramagnetic as proposed by Cotton
and Wise."

All intermolecular contacts in the structure of Ni-
(TAAB)I;-H,O appear to be quite normal with the
closest carbon-carbon approaches of 3.4 A, However,
in the Ni(TAAB)(BF,.), structure there is one contact
which deserves special mention. This is the Ni-F(1)
distance of 2.70 A which seems to be rather short,
although not so short as to be bonding. The next
shortest nickel-fluorine distance is Ni-F(7) at 4.0 A on

(16) F. Madaule-Aubry and G. M. Brown, Acte Cryst., B24, 745, 754
(1968), and references contained therein.
(17) F. A, Cotton and J. J. Wise, Inorg. Chem., 8, 1200 (1966).

Inorganic Chemislry

the other side of the ligand plane. The fluorine ligand
contacts are greater than 3.1 A and seem to be normal,
with the exception of DC(26)-F(5) at 2.9 A which is
probably due to the badly positioned atom DC(26).1#
The carbon—carbon contacts in Ni(TAAB)(BF,), are all
greater than 3.4 A.  The BF,~ anions are normal within
the errors of the determination of Ni(TAAB)(BF,)..
The average B-TF distance is 1.33 = 0.04 A and the
average F-B-F angle is 109 + 4°, where the errors are
the rms deviations from the mean. The B-F distance
seems short as compared to reported values of 1.40 and
1.43 A, but some of this discrepancy may be due to the
large thermal motion of the BF,~ anions; the data do
not permit the analysis required for this correction.
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(18) See the section on structure determination.

(19) “Tables of Interatomic Distances and Configurations in Molecules
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The crystal and molecular structures of zinc O,0-diisopropylphosphorodithioate and isomorphous cadmium O,0-diisopropyl-
phosphorodithioate have been solved by single-crystal X-ray diffraction techiniques. Three-dimensional scintillation counter
data werc used to refine the structures by full-matrix least-squares procedures to final conventional R factors of 0.088 and
0.083, respectively (based on F). The crystals are monoclinic, space group C2/c (no. 13), with ¢ = 10.934 = 0.008 A, b =
17.008 & 0.006 &, ¢ = 25.587 == 0.012 A, 8 = 99.23 == 0.04°, dopeq = 1.37 == 0.02 g/em?, and doareq = 1.384 == 0.002 g/cm?
for the zinc complex and ¢ = 10.964 =+ 0.006 A, b = 16.906 == 0.008 A, ¢ = 26.490 == 0.008 A, 8 = 99.91 + 0.02° dopea =
1.46 & 0.02 g/cm3, and dealea = 1.480 =% 0.002 g/em? for the cadmium complex. Both complexes are binuclear. These
dimers, four per unit cell of formula Ms[(s-CsH70),PS:]4, where M = Zn or Cd, lie on the twofold axes of the unit cell. Each
metal atom is coordinated with four sulfur atoms in a distorted tetrahedral environment. The metal-sulfur bonds range in
length from 2.302 (6) to 2.409 (5) A in the zinc complex and from 2.486 (7) to 2.590 (8) A in the cadmiuni complex. The
metal- - -metal approach within each dimer is 4.108 (5) and 4.059 (4) A, respectively. Associated with each metal atom are
two (¢-C3H;0),PS: groups, one which functions as an inirachelating group bound wholly to one metal atom and the other
which functions as a bridging, or interchelating, group linking two monomeric molecules together to form the dimer; the
result is a molecule consisting of two four-membered rings joined to a central eight-membered ring through the metal atoms.
The inter- and intrachelating groups deviate only slightly from planarity with the metal atoms and the central eight-mem-
bered ring possesses the “‘cradle’” configuration. The phosphorus-sulfur bonds average 1.970 (11) and 1.965 (8) A in length
in the zinc and cadmium structures, respectively; the phosphorus—oxygen bonds average 1.58 (2) A in length. The mole-
cules pack in the crystals to form layers or sheets and, like the molecules within these sheets, are held together by van der
Waals forces.

Introduction
Metal derivatives of 0,0-dialkylphosphorodithioic
acid* are important lubricating oil additives and, de-
pending upon the metal atom and alkyl group, have
good antioxidant and antiwear properties. One of these,

the zine derivative, is widely used as a lubricant additive
to reduce wear under boundary or thin-film lubrication
conditions; it is also known to be an oxidation and
corrosion inhibitor.

Our present understanding of the metal O,0-di-
alkylphosphorodithioates has been advanced through
a number of investigations, such as association studies,
thermal decomposition studies, and infrared analyses.

(1) The following names have been used interchangeably in the literature
for the -(RO):PS: group: O,0-dialkylphosphorodithioate, O,0O-dialkyldi-
thiophosphato, and dialkyldithiophosphate.
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Association studies® have shown, for example, that in
benzene molecules of the zing, mhercury, and lead di-
isopropyl derivatives are monomers in equilibrium
with dimers whereas the cadmium diisopropyl deriva-
tive is strictly dimeric in concentrations above 0.005
g/ml. Details regarding bonding and bond orders
within these molecules have been obtained from their
infrared spectra,® and, in accordance with stretching
frequencies reported in the literature, these spectra
have indicated the presence of both single and double
phosphorus-sulfur bonds. Studies of thermal stability*
have recently been reported to show a dependence of
thermal decomposition on both the structure of the
alkyl groups and the size of the metal cation. Results
of these and related studies® have in turn been used to
correlate the relation of antiwear activity, #iz., in the
protection of rubbing metal surfaces, to thermal sta-
bility and structure.

Unfortunately, the actual molecular structures of
these metal derivatives have not been known and in-
terpretations of some of the results of these and other
investigations have been based only on postulated
models. A single-crystal X-ray structure determination
of the zinc and cadmium chelates of O,0-diisopropyl-
phosphorodithioic acid, having the empirical formula

H,C:—0 S S 0—C;H-
N NSNS

P M P

s \S/ '\S/ AN

H;Cs—0O O0—CsHy

where M = Zn or Cd, was therefote carried out. Re-
sults of these two determinations are reported here.

Experimental Section
Preparation.—Zinc O,0-diisopropylphosphorodithioate, Zn,-
(dtp)s, and cadmium O,O-diisopropylphesphorodithioate, Cda-
(dtp)s, where dtp = (4-C;H;0):PS;, were each prepared* and
generously supplied by J. J. Dickert. Soft, colorless, tabular
crystals for use in the X-ray investigation were obtained by
recrystallization of the compounds from warm absolute ethanol,
Crystal Data.—Zinc O,0-diisopropylphosphorodithioate: Zn-
[(4-C3H10),PS:];; formula weight 491.93; monoclinic, space
group C2/c (Cy8); lattice parameters at 24°, ¢ = 10.934 =+ 0.008
A, b =17.008 £ 0.006 A, ¢ = 25.587 = 0.012 &, 8 = 99.23 =
0.04°, V = 4721 = 8 A% dopea = 1.37 = 0.02 g/cm? (by flota-
tion), dealea = 1.384 == 0.002 g/cm?® using Z = 8 monomeric
molecules/unit cell; crystal habit, thick tabular (001); linear
absorption coefficient for M o Ka radiatién, 18.8 cm~!. Cadmium
0,0-diisopropylphosphorodithioate: Cd[(¢-CsH,0):PS;]s;  for-
mula weight 538.96; monoclinic, space group C2/c (Ca?); lat-
tice parameters at 24°, ¢ = 10.964 == 0.006 A, b = 16.906 =%
0.008 A; ¢ = 26.490 = 0.008 4, 8 = 99.91 = 0.02°, V = 4837 =
6 A3; dopsa = 1.46 == 0.02 g/cm? (by flotation), deatea = 1.480 ==
0.002 g/cm?® using Z = 8 monomeric molecules/unit cell; crystal
habit, tabular (001); linear abserption coefficient for Mo Ka
radiation = 17.2 cm L.

(2) 1. J. Heilweil, Am. Chem. Soc., Div. Petroleum Chem., Preprints, 10, 19
(1965).

(3) (@) L. J. Bellamy, ‘“The Infrared Spectra of Complex Molecules,”’
2nd ed, John Wiley & Sons, Inc.,, New Vork, N. V., 1858, p 311; (b) J.
Rockett, Appl. Spectry., 16, 30 (1962); (c) E. M. Popov, M. 1. Kabachnik,
and L. S. Mayants, Russ. Chem. Rev., 80, 362 (1861); (d) J. J. Dickert,
private communication, Mobil Research and Development Corp., Central
Research Division Laboratory, Princeton, N, J., 1967,

(4) J. J. Dickert and C. N. Rowe, J. Org. Chem., 82, 647 (1967).

(5) C. N. Rowe and J. J. Dickert, ASLE Trans., 10, 85 (1967); see also
references cited within ref 2 and 4.
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The crystal symmetry was determined from Weissenberg
photographs which yielded systematic extinctions (k%! with & +
k = 2n + 1 and k0! with / = 2xn + 1) consistent with the space
groups Cc and C2/c. The centrosymmetric choice, C2/c, was
initially indicated on the basis of intensity statistics® and subse-
quently confirmed for both complexes by the successful refine-
ment of the derived structures. The centrosymmetric space
group was also later indicated on the basis of an optical analysis
involving second harmonic generation.”® The lattice parameters
were determined by a least-squares fit® of 150 independent high-
angle Ko reflections measured from zero-level Weissenberg zones
taken with Cu Ke radiation (A 1.5418 A) using crystals mounted
in three different orientations; each film was calibrated with
superimposed aluminum powder lines (a2, = 4.03296 A at 24°).
The Nelson—Riley extrapolation function was employed in the
refinement. The indicated errors in the cell parameters are 20,
The observed lattice parameters were checked with the computer
program TRACERY to verify that no symmetry higher than C-
centered monoclinic was present.

Collection and Treatment of X-Ray Intensity Data.—Com-
plete three-dimensional X-ray diffraction intensity data were
taken at room temperature with zirconium-filtered molybdenum
radiation from a crystal of dimensions 0.20 X 0.20 X 0.27 mm
for Zny(dtp)s and 0.20 X 0.20 X 0.12 mm for Cdz(dtp)s; the
plate thickness in each case is the third dimension indicated.
Each crystal was mounted in a 0.3-mm Lindemann glass capil-
lary with ¢* (the normal to the plate face) coincident with the ¢
axis of the diffractometer. A General Electric quarter-circle
Eulerian cradle mounted on a Siemens diffractometer equipped
with a Siemens air-cooled scintillation counter and a Siemens
counter-scaler assembly was used with the moving-crystal,
moving-counter measurement technique (8-26 coupling) and a
3.0° takeoff angle [3.5° for Zn,(dtp):]. The distance from the
focal spot of the X-ray tube to the crystal center was 17 cm and
from the crystal center to the center of the sodium iodide crystal
was 18.5 cm. The receiving aperture size selected to minimize
extraneous background was 4.2 mm wide by 2.5 mm high. The
counter angle, 26, was scanned over 2° at a speed of 1°/min for
Zny(dtp)s and 2°/min for Cd,(dtp)s. Background counts of
24 sec for Zny(dtp), and 12 sec for Cdy(dtp)s were taken at each
end of the 26 scan. All scans were recorded on a chart recorder
to provide visual evidence for the existence of observed reflec-
tions, proper peak shape, reflection centering in 26, and non-
overlap of adjacent reflections. Owing to the rather large ther-
mal motion of the molecules, reflections having 26 greater than
45° were virtually unobservable and so collection of the data was
restricted to the region 26 < 45°. Equivalent reflections were
not measured. A total of 3083 independent reflections was
measured for Zny(dtp)s and 3161 were measured for Cdq(dtp)s.
Typical background counts at 10, 20, 30, and 40° 26 were 79.3,
30.9, 16.8, and 10.8 counts/sec, respectively, for the zinc crystal
and 81.5, 32.5, 18.1, and 12.3 counts/sec, respectively, for the
cadmium crystal. Three standard reflections were measured
periodically as a check on crystal decomposition. In the case
of Cda(dtp)s no apparent decomposition was observed but in the
case of Znp(dtp)s, whose total irradiation period was twice that

(6) (a) H. Lipson and W, Cochran, “The Determination of Crystal
Structures,” G. Bell and Sons, London, 1957, pp 32-41; (b) L. Guggenberger,
‘‘wsTAT, a Fortran Program for Statistical Analyses,” Experimental Station,
E. I. du Pont de Nemours and Co., Wilmington, Del., 1967.

(7)y 8. K. Kurtz and T. T. Perry, J, Appl. Phys., 89, 3798 (1968).

(8) A ctystalline powder sample of the zinc complex, Zn:[(3-CsH70)2PSz2]4,
was measured by S. K. Kurtz of Bell Telephone Laboratories, Murray Hill,
N. J., utilizing the optical phenomenon of second harmonic generation de-
scribed in ref 7; private communication, 1968.

(9) D. E. Williams, ‘“LcrR-2, a Fortran Lattice Constant Refinement Pro-
gram,’”’ IS-1052, Ames Laboratory, Iowa State University, Ames, lowa, 1964.

(10) S. L. Lawton, ‘‘TRACER lI, a Fortran Lattice Transformation-Cell
Reduction Program,’”’ Research Department, Paulsboro Laboratory, Mobil
Research and Development Corp., Paulsboro, N. J., 1988. This program is
an updated and expanded version of TRACER 1 originally published by S. L.
Lawton and R. A. Jacobson in “The Reduced Cell and Its Crystallographic

Applications,” Report IS-1141, Ames Laboratory, Iowa State University,
Ames, Iowa, 1365.
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for Cda(dtp)s, a 79, decrease in intensities was observed. The
alignment of both crystals was checked on a daily basis for ¢
independence at x = 90° and adjusted when necessary.

The mosaicity of each crystal was examined by means of a
narrow-source (takeoff angle 0.5°) 26-scan technique at 26 <
13°. In this region the 2@-scan and w-scan techniques yield
comparable results.!* The width at half-maximum for three
typical strong noncoplanar reflections was found to range from
0.10 to 0.21° 8 for Zny(dtp), and from 0.05 to 0.07° 8 for Cd,-
(dtp)s. Those for Cdy(dtp): are acceptably low; those for Zn,-
(dtp)s are slightly higher than desired indicating the presence of
unusually high thermal motion of the atoms or perhaps some
disorder. The largest observed mosaicities for the zinc crystal
occurred for the 0&0 reflections and were about twice as large as
for the 200 and 00! reflections.

The raw intensity of each reflection was corrected for back-
ground, crystal decomposition [for Zny{dtp):], Lorentz, and
polarization effects. Absorption was not a major problem in
either crystal, by virtue of the small linear absorption coefficients
and the nearly spherical crystal morphology; therefore no ab-
sorption corrections were made. Effects of secondary extinction
also proved not to be a major problem and so no such corrections
were applied.

The estimated error in each intensity measurement was calcu-
lated by the expression'? ¢(I) = [Cr + 0.25(4c/t5)%(B1 4+ B:) +
(pI)?]'/2, where Cr is the total integrated peak count obtained
in a scan time 4, By and B, are the background counts each ob-
tained in time ¢y, and I = Cr — 0.5(¢./f,)(B1 + B:). The value
of p was selected as 0.05. Each ¢(I) was then corrected for
crystal decomposition and Lorentz and polarization effects.
The estimated standard deviation in each F, was calculated by
the expression o(Fo) = [(I 4 o(I)]"* — ‘Foi, a function based on
the finite-difference method. These standard deviations were
used during the least-squares refinements to weight the observed
structure factors where w, the individual weighting factor, was
defined as 1/0%(F,). For the zinc crystal a total of 1749 reflec-
tions were observed above the background level of which 1428 had
Fo > 3a(F,); for the cadmium crystal a total of 1787 reflections
were observed above background level of which 1098 had F, >
30(F,). Those with F, < 30(F,) were considered as unobserved
and thus omitted from the refinements.

Structure Determination of Cd.(dtp)s.—The unit cell crystal
data derived from the X-ray photographs of Zny(dtp)s and Cds-
(dtp)s indicated that the two complexes were isomorphous in the
crystalline state. The structure of Cdz(dtp)s was solved first to
make use of cadmium as a heavy atom for interpreting the Patter-
son function. Using all observed reflections an unsharpened
three-dimensional Patterson function was calculated from which
the cadmium and sulfur atoms were readily located. A series of
three-dimensional electron density functions (F, and F, — F;)
and isotropic least-squares refinements in the space group C2/c
led to the location of all remaining nonhydrogen atoms in the
structure.

The best fully weighted isotropic refinement of all 23 atoms
plus the scale factor resulted in R = | F, — |F/l/Z|F| = 0.124
and wR = [Zuw| F| — FJ2/Sw|F,[2]"/* = 0.114 for the reflec-
tions above 3¢(F,). Further refinement, with ellipsoidal ther-
mal factors introduced for the seven heavy atoms, reduced R
and wR to 0.086 and 0.078, respectively.

These refinements produced rather large thermal parameters
for the atoms. The average isotropic B values, defined by
— Bi(sin? 8)/A?, ranged from 7.4 A? for cadmium to an average
23.2 A? for the terminal carbon atoms, thie values generally in-
creasing as the distance from cadmium along the bonded direc-
tions increased. A three-dimensional difference map at this
stage showed evidence for anisotropic motion of the carbon atoms
with no evidence for static disorder resulting from possible alter-

(11) T. C. Furnas, “Single Crystal Orienter Instruction Manual,” General
Electric Co., Milwaukee, Wis., 1966.

(12) P. W. R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 6, 197
(1987).
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nate orientations of the isopropyl groups. Extending anisotropic
refinement to the oxygen and carbon atoms, however, resulted
i1 convergence difficulties with thermal quadratic forms of several
carbon atoms becoming nonpositive definite. Moreover, the
O-C and C-C bond lengths assumed less meaningful values.
Since attempts to refine the structure further with anisotropic
thermal parameters for the light atoms did not result in an appre-
ciably better description of those parts of the molecule of chemi-
cal interest, namely, the inner parts (Cd, S, and P shifts were
less than 0.5¢), this phase of the refinement was discontinued.

At this stage of the refinement the existence of the molecule
as a dimer with C, symmetry (imposed from space group con-
siderations) appeared well established. However, owing to the
large thermal parameters, there existed the possibility that the
correct space group was Cc, rather than C2/c, in which the
dimer would not. be restricted to C; symmetry. Several itera-
tions of least-squares refinement in the space group Cc were
carried out, but no improvement in the parameters or R factors
was observed. From this lack of improvement, together with
the negative results obtained from the highly sensitive optical
analysis utilizing second harmonic generation performed on the
zinc analog,® the space group was subsequently assumed to be
CQ/C.

Examination of the reflections F, < 3¢(F,) within the limit of
I, > o(l,) revealed 35 reflections which satisfled the condition
F, > 3¢(F,). Additional cycles with these included resulted in
minor changes in both the positional parameters and the R factors,
The reasonableness of the weighting function was also examined.
For a proper function the mean value of [AF/a(F,)]? for the re-
fined structure should be independent of both YFO\ and (sin 6)/
A% Examination of a smoothed plot of the average values of
[AF/o(F,)]? for various ranges of |F,| and of (sin 8)/A showed that
the condition [AF/¢(F,)]? equal to a constant was essentially ful-
filled. Therefore no modification was made.

Convergence was reached with R = 0.083 and wR = 0.073 for
the 1133 observed reflections. The corresponding values for all
1787 reflections were R = 0.141 and wR = 0.090. The final
standard deviation for an observation of unit weight (7.e., the
“‘error of fit’”’ was 1.28, where the ‘“‘error of fit’’ is defined by
[217,0(‘1?0‘2 — |F,22/(n — m)]*/* with » being the number of obser-
vations (1133) and s the number of variables (128). On the
final cycle the shift in each positional parameter averaged 0.03
times its own . A final difference map calculated on an absolute
scale showed no peaks greater than 0.2 e~/A? in the vicinity of
the Cd, S, and P atoms, consistent with good refinement; peaks
in the regions of oxygen and carbon ranged from —0.4 to 4+0.4
e—/A%, or at most 119 of an oxygen atom, 249 of a center car-
bon atom, and 389, of a terminal carbon atom, and are pre-
sumably due to the anisotropy of thermal motion of the isopropyl
groups.

Structure Determination of Zn,(dtp);.—The final positional
parameters determined for Cds(dtp)s were used to initiate the
least-squares refinement of Zna(dtp);. The refinement was pur-
suied in the same manner as described for the cadmium complex.
No change in the orientations of the four isopropyl groups was
detected from difference-Fourier syntheses. The best fully
weighted isotropic refinement of all 23 atoms plus the scale factor
resulted in R = 0.129 and wR = 0.134 for the reflections above
30(F,). Further refinement, with ellipsoidal thermal factors
introduced for Zn, S, and P reduced R and wR to 0.091 and 0.097,
respectively.

As with Cda(dtp)s rather large thermal parameters for the
atoms were observed., A three-dimensional difference map
showed anisotropic vibrational patterns for three of the four
isopropyl groups which seemed physically reasonable, except
those involving C(21) thirough C(23); no static disorder was
found for these three groups. For the isopropyl group consisting
of atoms C(21) through C(23) the peaks were indicative of a cer-

(13) D. W. J. Cruickshank and D. E. Pilling, “Computing Methods and
the Phase Problem in X-Ray Crystal Analysis,”” R. Pepinsky, J. M. Roberts,
and J. C. Speakman, Ed., Pergamon Press Inc., New York, N. V., 1961,
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TABLE I
FINAT. POSITIONAL AND ISOTROPIC THERMAL PARAMETERS FOR My [ (i-ChH;0),PS;]4%

, ~ ——~Zinc 0,0-diisopropylphosphorodithioate, Zn[({-CaH70):PS2]4

Atom x y P B, A2?
Zn(1) 0.53294 (18) 0.63383 (11) 0.17319(8)

S(2) 0.4366 (5) 0.7445 (3) 0.1302 (2)

S(3) 0.6353 (5) 0.6218 (3) 0.0969 (2)

S(4) 0.4052 (5) 0.5266 (3) 0.1737 (2)

S(5) 0.3252 (4) 0.6667 (3) 0.2536 (2)

P(6) 0.5231 (5) 0.7088 (3) 0.0720 (2)

P(7) 0.2860 (4)  0.5664(3)  0.2166(2) ...
0(8) 0.4333 (12) 0.6873 (8) 0.0202 (5) 10.5(3)
0(9) 0.5884 (12) 0.7769 (8) 0.0462 (5) 11.0(4)
010) 0.2644 (12) 0.5055 (9) 0.2616 (5) 11.2(4)
0O(11) 0.1545(15) 0.5748(10) 0.1810(7) 14.5(5)
C(12) 0.370 (3) 0.613 (2) 0.012(1) 15.2(8)
C(13) 0.242 (3) 0.628 (2) 0.013(1) 19.6(11)
C(14) 0.385 (4) 0.590 (3) —0.038(2) 27.9(18)
C(15) 0.659 (2) 0.831 (1) 0.077 (1) 11.6(6)
C(186) 0.795 (3) 0.819 (2) 0.076 (1) 18.9(10)
can) 0.632 (3) 0.905 (2) 0.044 (2) 24,7 (15)
C(18) 0.295 (3) 0.411 (2) 0.256 (1) 18.8(11)
C@19) 0.182 (5) 0.397 (3) 0.238 (2) 26.7(17)
C(20) 0.284 (4) 0.403 (2) 0.315(2) 25.6(12)
C(1) 0.076 (7) 0.639 (4) 0.1403) 36.9(9)
C(2) —0.0354) 0.543 (3) 0.143 (2) 27.3(12)
C@3)  0.035(4)  0.672(3) 0.169 (2) 24.4 (12)

a All atoms are in the general symmetry position (8f).
deviations occurring in the last digit of the parameter.
11.

tain amount of free rotation of the isopropyl group about the
carbon—oxygen bond and to a lesser extent about the phosphorus—
oxygen bond. Ellipsoids on the Fourier map were therefore not
considered to represent in this case vibrational patterns of individ-
ual atoms but rather an extensive librational motion of the
isopropyl group with the refined positional parameters repre-
senting only the ‘‘average’’ atomic positions in the structure.
Static disorder resulting from possible alternate orientations of
the group may also explain the peaks if these orientations occur
close enough together such that the edges of the thermal ellip-
soids overlap to give only the three observed broad peaks. No
“‘ghost’’ peaks indicative of widely differing orientations of this
group were found. It is noteworthy that this particular iso-
propyl group is directly associated with packing of the molecules
along the b direction in the unit cell, the direction in which the
largest mosaic spreads were observed (viz., the 0O reflections).
Anisotropic refinement was extended to these light atoms and
resulted in convergence difficulties in the same manner as oc-
curred for the cadmium complex with only minor effects on the
Zn, S, and P positional parameters. The fully anisotropic re-
finement was therefore discontinued.

Examination of the reflections F, < 3¢(F,) within the limit
I, > o(l,) revealed 28 reflections which satisfied the condition
F. > 3q(F,). Additional cycles with these included resulted in
small changes in the positional parameters and the R factors.
The weighting scheme was also examined as functions of |F,
and of (sin 8)/A and found to be reasonably constant; no modifi-
cation was made.

Convergence was reached with R = 0.088 and wR = 0.084 for
the 1448 observed reflections. The corresponding values for all
1749 reflections were 0.105 and 0.087, respectively. The final
“‘error of fit’”’ was 1.73. On the final cycle the shift in each posi-
tional parameter averaged 0.06 times its own ¢. A final differ-
ence map calculated on an absolute scale showed no peaks greater
than 0.2 e~/A% in the vicinity of the Zn, S, and P atoms, con-
sistent with good refinement. Peaks in the regions of the oxygen
and carbon atoms [excluding O(11) and C(21) through C(23)]
ranged from —0.2 to +0.3 e“/As, or at most 7%, of an oxygen
atom, 139, of a center carbon atom, and 229, of a terminal
carbon atom; peaks in the region of O(11), C(21), C(22), and

Cadmium O,0-diisopropylphosphorodithioate, Cda[(7-CyH70)1PSo g - .

Atom x kY z B, Azb
Cd@1) 0.52606 (19) 0.62578 (12) 0.17599 (8)

S(2) 0.4361(8)  0.7461 (5) 0.1244 (3)

S(3) 0.6386 (8) 0.6171(6) 0.0978 (3)

S(4) 0.3867 (8) 0.5091 (4) 0.1718 (3)

S¢5) 0.3198 (7) 0.6565 (4) 0.2454 (3)

P6) 0.5276(8) 0.7053 (5) 0.0719 (3)

P(7) 0.2781 (7) 0.5509 (4) 0.2168 (3) .
0O(8) 0.4342(21) 0.6826 (15) 0.0212 (9) 13.4 (7)
0(9) 0.5975(21) 0.7709 (15) 0.0459 (9) 13.3 (7)
0(10) 0.2715(16) 0.4934 (11) 0.2639 (7) 9.3(5)
o(11) 0.1394 (22) 0.5500 (13) 0.1915(9) 13.6(7)
C(12) 0.386 (5) 0.605 (3) 0.008 (2) 19.0 (15)
C(13) 0.256 (4) 0.622 (3) 0.013 (2) 20.2 (15)
C(14) 0.377 (5) 0.626 (4) —0.049 (2) 28.9 (24)
C(15) 0.649 (4) 0.832 (3) 0.074 (2) 16.4 (14)
C(16) 0.783 (4) 0.820 (2) 0.075 (2) 17.9 (14)
C(17) 0.665 (4) 0.892 (3) 0.035 (2) 21.6 (17)
Cc@18) 0.301 (4) 0.400 (2) 0.260 (2) 16.6 (13)
C(19) 0.172 (5) 0.390 (3) 0.249 (2) 24 .3 (20)
C(20) 0.306 (4) 0.388(3) 0.317 (2) 18.4 (9)
C(21) 0.097 (5) 0.589 (3) 0.142 (2) 22.4 (8)
C(22) —0.021(6) 0.529 (4) 0.135(2) 28.3 (7)
C(23) 0.023 (5) 0.636 (3) 0.166 (2) 23.5(8)

Numbers in parentheses in all tables and in the text are estimated standard
b The final anisotropic thermal parameters for Zn, Cd, S, and P are given in Table

C(23) ranged from —0.2 to +0.6 e~/A% The maximum re-
siduals may reflect the inadequacy of describing the thermal mo-
tion of the isopropyl groups by an isotropic model.

Computations.—Computations were performed on IBM 7040
and CDC 1604 computers. The least-squares refinement was
carried out with a locally modified version of orrLs.!* Refine-
ment was based on [Fo[. The atomic scattering factors for neu-
tral atoms were those tabulated by Hanson, ef al.’® Effects of
anomalous scattering were included in the structure factor calcu-
lations;* the values of Af’ and Af’’ for Zn, Cd, S, and P were
those given in ref 17, All electron density summations were
performed by the Fortran program FoUR.$

Final Results.—The final positional and thermal parameters
derived from the last cycle of least-squares refinement are pre-
sented in Tables I and II, along with the associated standard
deviations in these parameters as estimated from the inverse
matrix. The root-mean-square amplitudes of vibration of the
atoms in the inner coordination sphere are given in Table III.
Table IV lists the observed and calculated structure factors, ex-
cluding contributions due to hydrogen. The 002 reflection,
occurring at 3.22° in 26 for Zns(dtp) and 3.12° for Cda(dtp).,
was too close to the direct beam to be measured and so only its
calculated structure factor is indicated.

Description of the Structure

Molecules of zinc and cadmium diisopropylphos-
phorodithioates in the crystalline state exist as dimers
with C; symmetry and may be represented by the for-

(14) W. R. Busing, K. O. Martin, and H. A, Levy, “oORrFLS, a Fortran
Crystallographic Least-Squares Program,” Report ORNL-TM-305, Oak
Ridge National Laboratory, Oak Ridge, Tenn., 1962.

(15) H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 17,
1040 (1964).

(16) J. A. Ibers and W. C. Hamilton, ibid., 1T, 781 (1964).

(17) “Isternational Tables for X.ray Crystallography,” Vol. III, The
Kyunoch Press, Birmingham, England, 1962, pp 215, 216.

(18) L. Guggenberger, “FOUR, an Electron Density Summation Program
for the Triclinic Monoclinic, and Orthorhombic Crystal Systems,” Experi-
mental Station, E. I. du Pont de Nemours and Co., Wilmington, Del., 1967.
(Written entirely in Fortran IV; a modified version of the summation pro-
gram written by Dr. C. Fritchie.)
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TaBLE 11

FINAL ANISOTROPIC THERMAL PARAMETERS FOR M;[(7-C;H,0),PS,] 4@
Atom B B2 Bas Bie Bz B B, Arb

A.  Zinc O,0-Diisopropylphosphorodithioate, Zn,[(i-CsH.0),PS:]4
Zn(1l) 161.1(2.5) 49.2(0.9) 27.8(0.5) —-3.7(1.4) 3.0(0.8) 4.4 (0.6) 6.9
S(2) 207 (7) 57 (2) 35 (1) 22 (3) 13 (2) 9(1) 8.4
S(@3) 217 (7) 82 (3) 30 (1) 33 (4) 21 (2) 5 (2) 9.0
S4) 210 (7) 52 (2) 32 (1) —21(3) 11 (2) —5(1) 8.0
S(5) 167 (6) 58 (2) 37 (1) 17 (3) —6(2) —1(1) 8.2
P(6) 206 (7) 61 (3) 31 (1) —10 (4) 9(3) 6(2) 8.2
P(7) 141 (6) 57 (2) 36 (1) —3(3) —14 (2) 7(1) 7.8

B. Cadmium O,0-Diisopropylphosphorodithioate, Cd,[(3-C3H70)%LPS,]s

Cd(1) 192.2 (2.8) 51.4(1.0) 24.8(0.4) -1.6({1.9) 5.3(0.8) 6.7(0.7) 7.7
S(2) 270 (14) 78 (3) 34 (2) 56 (7) 18 (4) 17 (3) 10.2
S(3) 250 (12) 111 (6) 35 (2) 50 (8) 39 (4) 7(3) 11.0
S(4) 262 (13) 51 (4) 35 (2) —24 (6) 18 (4) —15(2) 9.2
S(5) 173 (10) 51 (4) 32 (2) 16 (5) 4 (3) —5(2) 7.7
P{6) 222 (13) 85 (5) 30 (2) —13 (7) 11 (5) 11 (3) 9.5
P(7) 156 (11) 52 (4) 31 (2) —7(6) -10 (4) —2(2) 7.5

¢ The anisotropic thermal parameters and their estimated standard deviations have been multiplied by 10%.
tropic thermal ellipsoid is exp[—{(B11h% + Buk? + Basl? + 281hk + 281kl + 28k0)].

The form of the aniso-
b Calculated from the anjsotropic thermal pa-

rameters by the equation B = (4/3)(8na? + Bub? + Bsc? + 2B1ab cos v + 2Bi3ac cos B + 2895bc cos @), where 8;; are the anisotropic
W. C. Hamilton, Acta Cryst., 12,609 (1959).

thermal parametersand a, b, ¢, , 3, and « are the unit cell parameters:

TasLE 111
FinaL RooT-MEAN-SQUARE THERMAL AMPLITUDES
OF VIBRATION (A) IN M;[(4-CsH;0)PSy] s

Atom Min Med Max
A an{(i-C3H7O)2PS2]4
Zn(l) 0.262(3) 0.291 (2) 0.329 (3)
S(2) 0.264 (6) 0.344 (6) 0.364 (6)
S(3) 0.302 (6) 0.308 (6) 0.396 (6)
S(4) 0.2509 (6) 0.326 (6) 0.362 (6)
S(5) 0.270 (6) 0.300 (6) 0.381 (6)
P(6) 0.282(7) 0.323 (7) 0.360 (7)
P(7) 0.254 (6) 0.286 (6) 0.387 (7)
B. Cds[(7-CsH70):PSe]4
cd(1) 0.268(3) 0.314(3) 0.347 (3)
S5(2) 0.255 (11) 0.355(11) 0.442 (11)
S(3) 0.296 (11) 0.352 (12) 0.455(11)
S(4) 0.236 (11) 0.368 (10) 0.402 (10)
S(5) 0.257 (10) 0.310 (9) 0.360 (9)
P(6) 0.294 (12) 0.350 (12) 0.390 (12)
P(7) 0.257 (12) 0.283(11) 0.373 (11)

@ An indication of the directions of these principal axes of
vibration is given in Figure 4.

mula M, [(7-C;H;0).PS;]:, M = Zn or Cd. The two
species, illustrated!? in Figures 1-4, are isomorphous in
both geometry and molecular packing.

The interatomic distances, angles, and standard de-
viations for the two structures are given in Tables V and
VI. The standard deviations were computed from the
final variance—covariance matrix using the program of
Busing, Martin, and Levy.20-?!  Correction of the metal-
sulfur bond lengths for thermal motion of the atoms
may be estimated using the “riding”’ model of Busing

(19) C. K. Johnson, “orTEP, a Fortran Thermal-Ellipsoid Plot Program
for Crystal Structure Illustrations,” Report ORNL-3794, Oak Ridge Na-
tional Laboratory, Oak Ridge, Tenn., 1965.

(20) W. R, Busing, K. O. Martin, and H. A. Levy, ‘“ORFFE, a Fortran
Crystallographic Function and Error Program,” Report ORNL-TM-306,
Oak Ridge National Laboratory, Oak Ridge, Tenn., 1064,

(21) The computed standard deviations include the standard deviations
of the lattice parameters, which contribute significantly less than those
of the atomic coordinates.

ZINC AND CADM!UM
D1 1SOPROPYLD | TH| OPHOSPHATE

ZINC AND CADMIUM
DI ISOPROPYLD | THI OPHOSPHATE,

ZiNC AND CADMIUM
D1 1SOPROPYLO | TH} OPHOSPHATE

ZINC AND CADMIUM
D! ISOPROPYLD I THI OPHOSPHATE

b

Figure 1.—Stereographic drawings of the zinc and caimium
0O,0-diisopropylphospliorodithioate dimers: (a) view along the C,
symmetry axis of the dimer; (b) view as seen approximately
parallel to the a axis of the unit cell.

and Levy.?? From considerations of the molecular
geometry each sulfur atom may be assumed to “‘ride”
on the metal atom to which it is bonded. For atoms
S(1), S(2), S(3), and S(4) this model gives the follow-
ing corrected distances: in Zne(dtp)s, 2.364 (5), 2.429
(5), 2.315 (5), and 2.313 (8) A, respectively, and in
Cdy(dtp)s, 2.573 (7), 2.618 (8), 2.499 (7), and 2.499
(7) A, respectively. The standard deviations cited
do not take into consideration uncertainties in the
thermal parameters. The simple “riding” model is not

(22) W. R, Busing and H, A, Levy, Acta Cryst., 1T, 142 (1964).
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TaBLE IVB
OBSERVED AND CALCULATED STRUCTURE FACTORS (IN ELECTRONS X 10) FORrR
Canmium 0,0-D1soPROPYLPHOSPHORODITHIOATE, Cda[(1-CiH0)PS, |4
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TABLE V
INTERATOMIC IMSTANCES (Z\) IN M, (4-C311;0),PS; 4
Atoms® Zna(dtp)ed Cda(dtp)s”
M(1)-S(2) 2.351 (5) 2,552 (7)
M(1)-8(3) 2.409 (5) 2.590 (8)
M(1)-5(4) 2,306 (5) 2.486 (7)
M(1)-S(5%) 2.302 (6) 2,499 (7)
M(1)---S(5) 3.347 (6) 3.194 (8)
M(1)- - -M(1) 4.108 (5) 4,059 (4)
S(2)---S(8) 3.232(7) 3.274 (11)
S(4)---S(5) 3.355 (7) 3.323 (10)
S(4).--S(4") 4,118(10) 4.449 (16)
S(5)---S4”) 4.016 (7) 4.352(10)
S(5)-+-S(5%) 3.856 (10) 3.917 (15)
P(6)-S(2) 1.984 (7) 1.974 (12)
P(6)-S(8) 1.968(7) 1.972(12)
P(7)-S(4) 1.957 (7) 1.957(11)
P(7)-S(5) 1.971(7) 1.962(9)
Av 1.970(11) 1.965 (8)
P(6)-0(8) 1.56 (1) 1.59 (2)
P(6)-0(9) 1.57(1) 1.57(2)
P(7)-0(10) 1.60 (1) 1.59(2)
P(7)-0(11) 1.58(2) 1.55(2)
Av 1.58(2) 1.58(2)
O(8)~C(12) 1.44 (3) 1.44 (4)
0(9)-C(15) 1.37(2) 1.34 (4)
0(10)-C(18) 1.66 (3) 1.62 (4)
O(11)-C(21) 1.66(7) 1.46 (5)
Av 1.46(17) 1.47 (11)
C(12)-C(13) 1.43 (3) 1.48(5)
C(12)-C(14) 1.38(5) 1.54 (6)
C(15)-C(16) 1.50(3) 1.48(5)
C(15)-C(17) 1.51(4) 1.48(5)
C(18)-C(19) 1.28(5) 1.40(5)
C(18)-C(20) 1.53 (4) 1.52(5)
C(21)-C(22) 2.04 (7) 1.63 (7)
C(21)-C(23) 1.09(7) 1.48(6)
Av 1,45(10) 1.49 (6)

« Bonds signified by — and nonbonds by ---. Primed atoms
in all tables, in the figures, and in the text are related to those in
Table I by the twofold operation 1 — x, ¥, 1/, — 2. ? Standard
deviations for the individual distances were computed from the
variance—covariance matrix associated with the final atomic co-
ordinates. Average distances and their corresponding root-
mean-square deviations were computed from the expressions

N /2
_ y x5 N _ ’21 (i — 2)°
X = Z 0—1'2 Zl ;_72‘ a(x) = ®

i=1 i= N -1

where x; is an individual observation, o; is the corresponding
standard deviation, and N is the number of observations. ¢ Ow-
ing to excessive thermal motion and possible disorder this aver-
age does not include the two bonds involving atoms C(21),
C(22), and C(23).

entirely applicable for bonds within rings and chains,??
stch as the phosphorus—sulfur bonds in our case. Be-
cause of the anticipated complexity of thermal mo-
tions within the dtp groups, no attempt was made to
correct the lengths of these bonds or those involving
the lighter atoms. Little significance should be at-
tached to bond lengths involving atoms in the outer
coordination sphere, namely, the carbon atoms, be-

(23) G. M. Brown, Acta Cryst., B24, 294 (1968).
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TABLE VI
INTERATOMIC ANGLES (DEG) IN M, [(4-CoITi0)PS, |4
Atoms Znz(dtp)® Cda(dtp)s"
Metal Coordination
S(2)-M(1)-5(3) 85.5(2) 79.1(3)
S(2)-M(1)~-S(4) 114.6 (2) 115.5(3)
S(2)-M(1)-8(5") 112.1(2) 115.1 (3)
S(3)-M(1)-S(4) 107.2 (2) 107.0(3)
S(3)-M(1)-S(5") 109.9 (2) 109.3 (3)
S(4)-M(1)-5(57) 121.3 (2) 121.6 (2)
S(2)-M(1)---S(5) 81.7(2) 86.1(2)
S(3)-M(1)---8(5) 164.0(2) 162.1(2)
S(4)-M(1)---S(5) 70.1(2) 70.3 (2)
S(5)-M(1)---8(5) 83.9(2) 86.0(2)
Sulfur Coordination
M(1)-S(2)-P(6) 82.6(2) 84.4 (4)
M(1)-S(3)-P(6) 81.4(2) 83.4 (4)
M(1)-S(4)-P(7) 100.6 (2) 96.9 (3)
M(1)-S(5’)-P(7') 104.1(2) 102.2 (3)
M(1) - S(5)-P(7) 71.1(2) 76.8 (8)
M(1)---S(5)-M(1") 91.4 (2) 90.1 (2)
Phosphorus Coordination
S(2)-P(6)-8(8) 109.7 (3) 112.2 (5)
S(4)-P(7)-S(5) 117.3(3) 116.0 (5)
O(8)-P(6)-0(9) 94.9(8) 95.2(13)
0O(10)-P(7)-0O(11) 104.4 (8) 99.2(12)
S(2)-P(6)-0O(8) 113.5(6) 110.4 (10)
S(2)-P(6)-0(9) 113.0(6) 114.0 (10)
S(3)-P(6)-0(8) 111.8(6) 112.4 (11)
S(3)-P(6)-0(9) 113.3 (6) 111.6(10)
S(4)-P(7)-0(10) 111.5(6) 111.8(8)
S(4)~P(7)-0(11) 109.5(6) 112.7 (10)
S(5)-P(7)-0(10) 105.5(6) 107.0(8)
S(5)~-P(7)-0(11) 107.8(7) 108.8 (10)
Oxygen Coordination
P(6)~-0(8)-C(12) 123 (2) 125 (3)
P(6)-0(9)-C(15) 121 (1) 119 (3)
P(7)-0(10)-C(18) 121 (2) 120 (2)
P(7)~-0(11)-C(21) 139 (3) 121 (3)
Av 123(9) 121 (3)
Carbon Coordination
O(8)-C(12)-C(13) 107 (3) 96 (4)
O(8)~C(12)-C(14) 105 (3) 89 (4)
0(9)-C(15)-C(18) 112(2) 103 (4)
0(9)-C(15)-C(17) 102 (2) 103 (4)
0(10)-C(18)-C(19) 91 (3) 86 (3)
0(10)-C(18)-C(20) 88(2) 92 (3)
0(11)-C(21)-C(22) 72 (3) 87(4)
0O(11)-C(21)-C(23) 98 (7) 91 (4)
Av 99 (13) 93 (7)
C(13)-C(12)-C(14) 109 (3) 98 (4)
C(16)-C(15)-C(17) 102 (2) 82(3)
C(19)-C(18)-C(20) 97 (3) 93 (4)
C(22)-C(21)-C(23) 95 (6) 88 (4)
Av 102(7) 89 (6)

¢ Standard deviations for the bond angles were computed from
the variance—covariance matrix associated with the final atomic
coordinates. Average angles and their corresponding root-
mean-square deviations were computed from the expressions ap-
pearing in footnote b of Table V.

cause of the excessive thermal motions which these
atoms undergo.

The most interesting feature of these two structures
is perhaps the bimolecular nature of the molecules.
Each zinc (or cadmium) atom has two dtp groups of
which one functions as an sntrachelating group bound
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Figure 2.—Molecular arrangement of the zinc and cadmium O,0-diisopropylphosphorodithioate dimers in the unit cell projected along
the b axis. The b axis is normal to the plane of the paper in a right-handed coordinate system. The numbered atoms define the asym-

metric unit (Table I).

Numbers in parentheses represent the fractional unit cell y coordinate (elevation) of each metal atom pair, where

the plane of the paperisy = 0.0. For clarity the carbon atoms are not shown.

Figure 3.—Selected bond distances and angles in the dimers of

(a) an[(i—C3I{7O)2PSQ14 and (b) Cdz[(i—C3H7O)2PSz]4, For
clarity the carbon atoms are not shown.

wholly to one metal atom and the other func-
tions as a bridging, or interchelating, group linking two
M(dtp), molecules together to form the dimer. The
resulting configuration of sulfur about zinc (and cad-
mium) is a strong distortion from strict tetrahedral
symmetry. As a dimer the two monomeric units may
be related to each other in either of two ways: by a
center of symmetry, C;, or by twofold rotational sym-
metry, C;.  The latter linkage of monomeric units was
found to be the preferred choice in both Zn,(dtp), and
Cdy(dtp)s, thereby making them remarkably similar to
the structure of dimeric zinc dimethyldithiocarbamate, 4
both from the standpoint of molecular geometry and
from packing in the unit cell. The dimeric zinc and
cadmium diethyldithiocarbamate complexes, on the
other hand, are reported to possess the alternate choice
in the crystalline state with C; symmetry.?2® This
indicates that apparently the R group, possibly due to
packing considerations, determines the final choice of
symmetry which the dimer will possess in the crystal-
line state. It is interesting to note that molecules of
the zinc complex in the present study are monomeric
in benzene,? as was similarly found for zinc diethyldi-

(24) H. P. Klug, Acta Cryst., 21, 536 (1966).

(25) M. Bonamico, G. Mazzone, A. Vaciago, and L. Zambonelli, ¢bid., 19,
898 (1965).

(26) E. A. Shugam and V., M. Agre, Kristallografiya, 13, 253 (1968);
Soviet Phys.-Cryst., 18, 197 (1968).
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TaBLE V11
CoMPARISON OF M-S, M+ ++S aAND M- - M DisTANCES 1N DIMERS OF
Zinc aND Capmium DIALKYLDITHIOCARBAMATES AND O,0-DIISOPROPYLPHOSPHORODITHIOATES

Molecular Av M-S dist, Long range M---8 dist, M-+ M dist
Compound symmetry Z, in dimer,* A Z', in dimer, A zZ - Z, A in dimer, A Ref
Dithiocarbamates
Znz[(CH;)CNS:la C, 2.36 (5) 3.036 (6) +0.68 3.973 (6)
Zny[(CoH;),CNSa]a Cy 2.38 (5) 2.815(2) +0.44 3.546 (2) ¢
Cdp[(CoH5 ) CNS2 ] Cy 2.57 (6) 2.770 (4) -+0.20 3.58 d
Phosphorodithioates
Zng| (1-C3H70 )2 PSo] 4 C 2.35(5) 3.347 (6) +1.00 4.108 (5) This study
Cds[ (3-C3H70 )2 PS:]4 C 2.53 (5) 3.194 (8) +0.66 4.059 (4) This study
o Number corresponds to the average value (plus its associated rms deviation) of the four short covalent bonds. ? See ref 24. ¢ See

ref 25.

4 See ref 26.

Figure 4.—A parallel projection of the dimers of (a) Zna[(1-
CaH0)9PSy]4 and (b) Cda[(3-CsHA0).PS:)s, illustrating the root-
mean-square thermal displacements of atoms in the inner coor-

dination sphere.
probability Tevel.

The ellipsoidal houndaries are at the 609,

thiocarbamate in benzene?* and zinc dimethyldithio-
carbamate in chloroform.?! The Cdq(dtp)s compound,
however, is dimeric in benzene.?

In the dimers four ‘““‘normal” covalent metal-sulfur
bonds exist. Their averages, 2.35 (5) A (range 2.302-
2.409 A) in Zny(dtp)s and 2.53 (5) A (range 2.486-2.590
A) in Cd,y(dtp)s, are in excellent agreement with the val-
ues 2.35 A (Zn-S) and 2.52 A (Cd-S) calculated from the
sum of the zinc, cadmium, and sulfur tetrahedral co-
valent radii.?® They also appear to be in accord with
those found in the zinc and cadmium dialkyldithio-
carbamate dimers,?*~% summarized in Table VII.

(27) L. Pauling, ““The Nature of the Chemical Bond,” Cornell University
Press, Ithaca, N, ¥,, 1060: (a) pp 246, 248; (b) p 256; (¢) p 260; (d) p 224.

When a dimer forms from two monomers, an intra-
chelating dtp group of each monomer is converted to a
bridging group. The bonds M(1)-S(5) and M(1/)-
S(5") are lengthened in the process at the expense of
the formation of the new honds M(1)-S(5") and M(1’)-
S(5) (see Figure 3 for location of primed atoms). The
existence of M(1)-:-S(5) as a partial bond in the dimer
is open to question. A comparison of this ‘“long-range”
distance in Zny(dtp)s, Cdo(dtp)s, and the related dial-
kyldithiocarbamates is summarized in Table VII.
For the zinc complexes the amount by which the M-S
bond increases with formation of a dimer does not ap-
pear to be constant. The type of alkyl group and the
choice of symmetry, C, or C;, assumed by the dimer
may be partially responsible for this large variation.
Although the number of compounds of this type is rather
limited for a truly qualitative comparison, the data in
Table VII suggest that a dimer with C; symmetry
tends to contain a shorter M---S distance than is
possible with C; symmetry. From the single-bond
metallic covalent radius of 1.249 A for zinc and 1.413
A for cadmium?®™® and the van der Waals radius of 1.85
A for sulfur with two unshared electron pairs,¥¢ the
lower limit for zero-bond formation between the metal
and sulfur atoms is estimated to be 3.10 A for Zn-S
and 3.26 A for Cd-S. From a comparison of the ob-
served distances in the phosphorodithioates no ap-
preciable M(1) - - - S(5) interaction is evident.

The metal-metal distances in the dimers appear to be
in direct relation with long-range M: - -S distances, as
might have been expected: the shorter the M-..:S
distance the shorter the M- . - M distance (Table VII).
By comparison with the Zn-Zn and Cd-Cd bonds in
metallic zinc and cadmium, 2.665 and 2.979 4, respec-
tively,? it is evident that no metal-metal interaction
exists.

The intrachelating and interchelating (bridging) dtp
groups deviate only slightly from planarity with the
metal atom. Asshown in Table VIII the atoms within
each group do not deviate by more than 0.09 A from
the respective planes.

Finally, the symmetry of sulfur about the metal
atom is of some significance and deserves comment.

(28) L. E. Svtton, ““Tables of Interatomic Distances and Configuration
in Molecules and Ions,” Special Publication No. 11, The Chemical Society,
London, 1958,
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TaBLE VIII
WEIGHTED LEAST-SQUARES PLANES AND DISTANCES OF THE
ATOMS FROM THEIR RESPECTIVE PLANES IN M, [(7-C3H70),PSy 42
Zna(dtp)« Cda(dtp)s
Atom Dist, A Atom Dist, A
(A) Best Plane through M(1), S(2), S(3), P(6)
7.580x 4+ 10.138y + 7.441x + 9.851y +
7.499z — 11.772 = 0 8.571z — 11.590 = 0

Zn(1) —0.007 (2) cd(1) —~0.003 (2)
S(2) 0.068 (5) S(2) 0.071(9)
S(3) 0.075 (6) S(3) 0.079(9)
P(6) —0.081 (5) P(6) —0.100(9)

(B) Best Plane through M(1), S(4), S(5), P(7)

5.330x ~ 7.06ly + 5.133x — 6.866y +
17.429z — 1.389 = 0 18.345z — 1.632 = 0
Zn(l) —0.005 (2) Cd(1) —0.000 (2)
S(4) 0.079 (3) S(4) 0.009(8)
S(5) 0.056 (5) S(5) 0.004 (7)
P(7) —0.088(5) P(7) —0.009 (8)

e Weights were based on the variance~covariance matrix as ob-
tained from the final cycle of least-squares refinement. The
least-squares-plane refinement and standard deviations were ob-
tained with Function 16 of ORFFE, written by W. C. Hamilton,
Brookhaven National Laboratory, Upton, N. Y. ?x, v, and 2
are fractional coordinates of the atoms in the monoclinic cell.

This symmetry deviates considerably from strict tetra-
hedral coordination in which all angles would be ideally
109° 28’. This deviation is due primarily to the pres-
ence of the four-membered

S

VRN

P M

NS
S

ring formed by the dtp group chelating with the metal
atom. In the zinc complex the angle S(2)-M(1)-
S(3) is 85.5° and in cadmium it is 79.1°. Klug?* has
pointed out that in zinc dimethyldithiocarbamate this
sharp decrease of nearly 30° may be responsible for the
existence of the complex as a dimer in the crystalline
state, a suggestion which could be applied equally well
to the present compounds. As a monomer two dtp
groups would be present as four-membered rings by
ring closure, thereby resulting in two angles of ~80°
and four angles of ~126°. As a dimer, one of these
four-membered rings is opened and the new angle
S4)-M(1)-S(5") of ~121° is formed which compensates
for the remaining S(2)-M(1)-S(3) angle; the other
126° angles, as shown in Table VI, are then relaxed to
near-normal tetrahedral angles,

Several different interpretations of this coordination
have been proposed for the related dialkyldithiocarb-
amate compounds. Among these is the five-coordinate
trigonal-bipyramid configuration favored by Bonamico,
et al.,% in describing the zinc diethyldithiocarbamate
complex and the four-coordinate distorted tetrahedral
configuration favored by Klug?* in describing the zinc
dimethyldithiocarbamate complex. In the application
of the trigonal-bipyramid description to Zn:(dtp)s
and Cdy(dtp)s atoms S(2), S(4), and S(5’) would com-
prise the equatorial positions, and S(3) and S(5) the
axial positions. The three S-M-S angles in the equa-

Inorganic Chemistry

torial plane are 112.1, 114.6, and 121.3° for Zny(dtp)s
and 115.1, 115.5, and 121.6° for Cd.(dtp)s. These
angles are greater than 109° 28’ but they do not satisfy
the ideal angle 120°. Moreover, the metal atom is
substantially out of this plane by 0.468 (2) A in Zn,-
(dtp)s and 0.408 (2) A in Cdy(dtp)s,. In considering
the axial bonds it is noted that the M(1)-S(3) bond is
only slightly longer than the three equatorial M-S
bonds, whereas the M(1)- - -S(5) distance is essentially
a ‘“zero” bond. For a molecule to possess trigonal-
bipyramid symmetry, both sulfur atoms in the axial
position must be within the coordination sphere of the
metal atom. In the zinc and cadmium diethyldithio-
carbamates the axial M- - -S distance is 2.815 and 2.770
A, respectively.®? Being less than the upper limit
of 3.10 and 3.26 A, respectively, these values are be-
lieved to represent the presence of partial bond charac-
ter in these cases,® as compared to a ‘“‘zero” bond order
for the same atom pair in Zny(dtp):; and Cdy(dtp)..
Thus, in view of the observed bonding and geometrical
considerations in Zns(dtp). and Cdy(dtp)s, the present
authors favor the distorted tetrahedral description.

These compounds are reported to contain 1 mol of
water per metal atom, as determined by the Karl Fischer
method.?* The final results of the present crystallo-
graphic investigation, based on the final difference
(F, — F.) Fourier syntheses, indicate that no water of
crystallization exists in the crystals. This absence is
supported by the complete absence of OH bands in the
infrared spectrum of the two complexes (recrystallized
from an equal mixture of 959, ethanol and acetone)
when run using the Nujol mull technique.

The Phosphorus Coordination.—Owing to the lack of
structural data, information on the bond orders of phos-
phorus—sulfur bonds in metal O,0-dialkylphosphoro-
dithioates was previously obtained primarily from their
infrared spectra. These spectra have indicated the
presence of both single and double bonds. The P-S
double bond stretching frequency for the ionic potas-
sium salt (run as a KBr pellet) has been reported® to
occur in the region 675-702 cm~! and for the zinc,
cadmium, copper, and nickel derivatives and the free
acid (run as liquid samples) in the region 635-668
cm~!. The P-8 single bond stretching frequency has
been reported3?:3¢ to occur in the region 510-556 cm™.
Samples of Zny(dtp)s and Cdy(dtp)s, run as KBr pellets,
were also found to produce absorption bands in these
same regions of the spectrum, thus indicating the pres-
ence of both single and double P—S bonds in these com-
plexes as well.

The results of the present investigation indicate,
however, that in the solid state all phosphorus—sulfur
bonds are equivalent and that although each sulfur atom
is shared by two atoms, they do, in fact, exhibit con-
siderable double-bond character; further, our results
indicate that the phosphorus—oxygen bonds also
exhibit partial double-bond character. These con-
clusions are cousistent with the following cvidence:
(A) The four independent P-S bonds average 1.97
(1) A in length, compared with the hypothetical lengths
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of a single (2.14 A) and a double (1.94 A) P-S bond.2d
(B) The four independent P-O bonds average 1.58
(2) A in length, compared with the hypothetical lengths
of a single (1.76 A) and double (1.44 A) P-O bond.?®
The following two results are also noteworthy: (C)
Within the coordination sphere of each phosphorus
atom, the S—P-S angle is larger than the O-P-0 angle.
(D) The oxygen valency angle, P~-O-C, is considerably
larger (average 123 (7)°) than a tetrahedral angle.
These four results are fully consistent with the bond
lengths and angles found in the other known molecular
0,0-dialkylphosphorodithioates,  Ni[(C;H;0)yPS;]s,*
Ni[(C2H50>2PS2]2‘2C2H5N,31 and Te[(CH30>2P52]2,32
and may be interpreted variously in terms of spd hy-
bridization,?:3¢ repulsion of wvalence shell electron
pairs,® = bonding due to delocalization of lone-pair
electrons from one atom (e.g., oxygen or sulfur) into
the vacant orbitals of another (eg., phospho-
rus),29:88.85¢,36-3% gand electronegativity effects on atom
hybridization.3®

(29) E. A, Robinson, Can. J. Chem., 41, 3021 (1963).

(30) (a) J. F. McConnell and V. Kastalsky, Acta Cryst., 22, 853 (1967);
(b) Q. Fernando and C. D. Green, J. Inorg. Nucl. Chem., 29, 647 (1967).

(31) S. Ooi and Q. Fernando, Inorg. Chem., 6, 1558 (1967).

(32) S. Husebye, Acta Chem. Scand., 20, 24 (1968).

(33) D. W. J. Cruickshank, J. Chem. Soc., 5486 (1961).

(34) F. A. Cotton, J. Chem. Phys., 36, 228 (1961).

(35) (a) R. J. Gillespie and R. S. Nyholm, Quart. Rev. (L.ondon), 11, 339
(1957); (b) R. J. Gillespie, J. Chom. Jiduc., 40, 295 (1963); (c) R. J. Gillespie,
Can.J. Chem., 88, 818 (1963); (d) R. J. Gillespie, J. Am. Chem. Soc., 83, 5978
(1960).

(36) (a) E. A. Robinson, Can. J. Chem., 89, 247 (1961); (b) E. A. Robin-
son, ibid., 41, 173 (1963); (c) R. J. Gillespie and E. A. Robinson, 1bid., 41,
2074 (1963); (d) E. A. Robinson and M. W. Lister, ¢bid., 41, 2988 (1963);
(e) R. J. Gillespie and E. A. Robinson, ibid., 42, 2496 (1964).

(37) P. Haake, W. B. Miller, and D. A, Yysser, J. 4m. Chem. Soc., 86, 3577
(1964).

(38) U. Blindheim and T. Gramstad, Spectrochim. Acta, 31, 1073 (1963).

(39) (a) H. A. Bent, Can. J. Chem., 38, 1235 (1960); (b) H. A. Bent,
J. Inorg. Nuct. Chem., 19, 43 (1961). )
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Molecular Packing.—The crystals are tabular with
the plate surface having Miller indices (001) (parallel
with the ab plane). The molecules (Figure 2) are
aligned in such a way as to form layers or sheets of
dimeric molecules with the longest dimension of the
dimer approximately normal to these planes. These
sheets intersect the unit cell ¢ axis at the points !/,
and 3/,. The sheets and all molecules within the sheets
are held together by van der Waals forces. All van
der Waals contacts between dimers involve only the
center carbon (and associated hydrogen) atoms, ter-
minal methyl groups, and sulfur atoms. There are
approximately twice as many C- - -S contacts involving
carbon atoms in the isopropyl groups at P(7) as com-
pared with those at P(6) [in crystals of Zn.(dtp)s, six
vs. two such contacts and in Cdy(dtp)s, seven wvs. four,
at distances <4.5 A]. The C---C contacts (<4.5 A)
are about equal in number for each of the four isopropyl
groups, averaging about five such contacts per group.
Thus, forces between the sheets are probably consider-
ably less than those within the sheets, thereby enabling
the sheets to slide over one another and form cleavage
planes. This would explain the greasy-like feel of the
crystals. The spiral-staircase growth effect parallel
to ¢ occasionally exhibited by these crystals is also
similarly explained.
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An X-ray diffraction study of a single crystal of AL(H,0)RuCls-4H,0 showed that it is monoclinic with ¢ = 10.492 (5) A,

b=11415(5) A, c = 7.069 (5) A, 8 = 92.69 (2)°, Z =

2,and Dy = 2.045 g/cm?.

The space group is P2:/n. The ruthe-

nium and aluminum ions are found to lie at the centers of slightly distorted octahedra of chlorines and water molecules, respec-

tively. The hydrogen bond network connecting the octahedra is discussed.

found to be 2.375 (5) and 1.880 (4) A.

Introduction
The aqueous ruthenium species are being studied in
this laboratory by Professor R. E. Connick and others,
and this research has provided a number of interesting
ruthenium salts. We have investigated the structures

(1) Work done under the auspices of the U. S. Atomic Energy Commission,

The average Ru—Cl and Al-O distances are

of several of these compounds to help in the correlation
of the optical spectra of the solutions with the en-
vironment of the ruthenium ion. Structures involving
the aquotetrachloro and aquopentachloro ruthenium
species are reported elsewhere.? In this paper we

(2) T. E. Hopkins, A. Zalkin, D, H., Templeton, and M. G. Adamson,
Inovg, Chem,, B, 1427, 1431 (1966).



