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The crystal structure of orthorhombic tetrakis(thiourea)palladium(II) chloride, Pd[SC(NH;)]4Cl;, has been determined

from 1180 counter-measured intensities at room temperature.

All atoms, including hydrogen, have been located and

refined by full-matrix least squares to a final conventional R of 0.026. Cell constants were found to be: o = 12.909 =
0.003 A, b = 8256 = 0.004 A, and ¢ = 15.175 = 0.004 A. The space group is Pna2;, with four molecules per cell; D, =

198 g em~3% and Dy = 1.96 & 0.02 ecm 2.

The structure is composed of molecular PA[SC(NH;)]42 7 ions and Cl~ ions.

The thiotirea groups are bonded to the metal through sulfur with C-S-Pd angles of approximately 110°, indicating that
sulfur uses an sp? orbital to form the bond with the metal. The Pd and four S atoms are slightly distorted from the usual
square-planar arrangement toward a tetrahedral geometry. Except for this distortion the thiourea groups are arranged
about Pd such that the complex ion has an approximate center of symmetry. The average Pd-S distance is 2.334 =+
0.011 A with individual errors of =0.003 A. The shortest Pd-Cl distance is 3.594 =& 0.003 A. The sulfur-carbon and
carbon-nitrogen distances are not significantly different from those of free thiourea. The thiourea groups are tilted away
from the approximate plane of the metal and four sulfur atoms ~50° and twisted about the S~-C bond ~20°.

Introduction

Thiourea (tu) complexed with transition metal ions
gives rise to some interesting and unusual spectro-
scopic,?® magnetic,* and structural properties.®=? In
Ag(tu),CL7® Cu(tu),Cl,® and Cuy(tu)s(NOs)4!® delo-
calized three-center electron pair bonds have been
found. (For a more complete introduction see ref 8.)
trans-Ni(tu),Cl; has been shown to have the molecular
symmetry C, in which not only are the thiourea mole-
cules arranged about the Ni(II) in an umbrella-like
fashion, but also the metal is displaced out of the plane
defined by the sulfur atoms toward the chlorine at the
handle of the umbrella with an Ni-Cl distance of 2.40
+ 0.02 A. However, the nickel to chlorine distance
at the apex of the umbrella is 2.52 £ 0.02 A. The
geometry defined by the four sulfur and two chlorine
atoms may be described as a distortion toward a tetrag-
onal pyramid configuration. This is a rather unusual
coordination geometry for Ni(II) and has prompted
us to examine the structure of a number of transition
metal-thiourea complexes. In addition, there exists
a report in the literature!! that M(tu),Cl; complexes,
where M = Ni(II), Fe(II), Co(II), Mn(II), or Cd(II),
are all crystallographically isomorphous, and, there-
fore, all of these complexes have exactly the same geom-
etry as Ni(tu)4Cl,, We have recently shown!? that
this report is incorrect and Ni(tu)«Cly is structurally
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unique relative to the other members of the above series-
The remaining compounds of the above series are
isomorphous and the metal is on a crystallographic
center of symmetry with equal metal-chlorine distances.
To gain further understanding of the nature of the
metal-sulfur interaction in transition metal-thiourea
complexes, we decided to examine the structure of
Pd(tu);Cla. This particular complex crystallizes in
two forms, a monoclinic form, the structure of which has
been reported from two-dimensional diffraction data,!?
and the orthorhombic form discussed here. The struc-
ture reported for the monoclinic form gives rise to some
unusual nonbonded intermolecular distances. We
were also interested to see whether these same inter-
molecular distances were a common feature in the mono-
clinic and orthorhombic structures.

Experimental Section

Tetrakis(thiourea)palladium(II) chloride, Pd[{SC(NH).].Cl»
was prepared by previously reported methods!t and single crys*
tals were grown by crystallization from aqueous solution. Two
different crystalline modifications were found: (a) a monoclinic
form which was frequently twinned for which we never obtained
really satisfactory diffraction quality single crystals; (b) an
orthorhombic form, for which we were able to obtain good single
crystals. Preliminary Weissenberg and precession data showed
the orthorhombic crystals to have systematic extinctions: for
Okl, B +1 = 2n + 1; for k0l, b = 2n + 1, indicating the space
groups Pna2;, Pnam, or Pmnb.* A crystal 0.10 X 0.14 X 0.84
mm was mounted with the needle axis (b) vertical on a Picker
automatic diffractometer and aligned by local variations of well-
known methods.’® The cell constants were obtained from a
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TasLE 1
RESULTS OF REFINEMENTS®

AU -z -3 R-/R+
R 0.02566 0.02574 1.003
WR 0.03155 0.03189 1.011
Std error 1.96 1.98
AV +z —3 R-/R+
R 0.02617 0.02670 1.020
WR 0.02908 0.03006 1.033
Std error 2.12 2.21
NA, U +z -z R-/R+
R 0.0257 0.02638 1.015
WR 0.03208 0.03246 1.008
Std error 1.99 2,01
NA,V -z -3 R-/R+
R 0.02653 0.02673 1.007
WR 0.02976 0.0301 1,013
Std error 2.56 2.63

o Abbreviations: A, absorption correction applied to data;
NA, absorption correction not applied; U, all weights constant
at unity; R, conventional reliability index;*® WR, weighed R,;%3
V, variable weighting scheme used. W = 1/0?, a(F) = (k/2LpF)-
[I(scan) + (1.125)%(B: + Bs) + {0.04I(scan)}?]'?, where
k is the scale factor, 1/Lp is the usual Lorentz and polarization
correction, and other quantities are as defined previously.
See also S. W. Peterson and H. A. Levy, Acta Cryst., 10, 70
(1957).
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Figure 1.—A perspective view of the [Pd(tu),]2+[2Cl-] struc-
ture with the most important distances. The standard deviations
(A) in the above distances are: Pd-S, =£0.003; Pd-Cl, =0.003;
S-C, +=0.011; C-N, £0.014. For clarity hydrogens are omitted
with the N-H distances. See Table III. For the same reason
the angles are omitted and are also to be found in Table III.

QL

Figure 2,—~A perspective view of the unit cell of the Pd(tu);Cl; structure down the b axis.
For more details on the hydrogen bonding see Table III,

shown by dotted lines.

The hydrogen-bonding network is
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TaBLE ITA
OBSERVED AND CALCULATED STRUCTURE FACTORS®
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F,/10 is absolute.

¢ First column is /, followed by F, and F,.
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absorption coefficient (u) for Mo K radiation was calculated to
be 19.4 cm~'. The crystal was approximated by a regular
paralielepiped and transmission factors were calculated® and
found to vary from 0.851 to 0.832. Lorentz and polarization
corrections were made and the intensities were reduced to struc-
ture factors.

Structure Determination

The space group was established as Pna2; and the
structure was solved by the location of the crystallo-
graphically independent Pd, four S, and two Cl atoms
from an unsharpened three-dimensional Patterson'®
function. The carbon and nitrogen atoms were located
from the three-dimensional electron density function
with phases based upon the Pd, S, and Cl atomic posi-
tions. The structure was refined by full-matrix® least
squares with scattering factors from a standard source?!
including real and imaginary dispersion corrections for
the Pd, S, and Cl atoms.?? The isotropic refinemient
converged to an R value of 0.08. Refinement with
only the Pd atom anisotropic yielded an R of 0.065.
Several cycles of refinement with all temperature fac-
tors anisotropic converged to a final R of 0.029, weighted
R of 0.033, and standard error of 2.11.22 This pottion
of the structure determination was carried out using
unit weights but not absorption corrections.

A three-dimensional difference map clearly resolved
all the hydrogen atoms of the thiourea groiups. Our
earlier experiences,12:2¢ which demonstrated that hydro-
gen atoms could be located and refined by least squiares,
led us to do likewise in this case. With the inclusion of
hydrogen atom coordinates? and isotropic temperature
factors, eight different refinements were carried out
and the results are summarized in Table I. These
results, coupled with the fact that the parameters of all
of the -z refinemients are not significantly different
from one another, nor are the —z refinement parameters
different from one another (less than one standard
deviation), mean the conclusions are independent of
absorption corrections and weighting scheme. How-
ever; using Hamilton’s?® R factor test the —z refine-
ment can be rejected at least at the 97.59, confidence
level depending upon which refinement is used and
whether R or weighted R is used in the test. Consider-
ing the relatively small changes in R between -2z and

—z it is not surprising that no systematic differences in

(18) Program for absorption corrections is a local modification by W. A.
Spofford, I1I, of GoNo9 written by W. C. Hamilton.

(19) Patterson and electron dex_asity calculations done on an IBM 7040
with ERFR-3 program, a modification of the Sly~Schoemaker-Van den
Hende BrFR-2 program by D. R. Harris.

(20) Least-squares refinement performed with the oxrLs ptogram of
W. Busing, K. O. Martin, and H. Levy (Report ORNL-TM-305, Oak

Ridge National Laboratory, Oak Ridge, Tenn., 1962) with local modifica-
tions.

(21) (8) D. T. Cromer and J. T. Waber, Acta Cryst., 18, 104 (1965);
(b) D. T. Cromer, bid., 18, 17 (1965). ,

(22) Anomalous dispersion corrections made to Fo, as suggested by J. A.
Ibers and W. C. Hamilton, ¢bid., 17, 781 (1964). . .

(23) R = Z||Fo| = |Fo|/Z|Fol, weighted Rl= [Zw(Fo — Fo)2)'/ %/ [ZwFo2]' /%,
and standard error = |Zw(Fo — Fo)?/(No — Nvj|'/%, where No = 1180 and
Ny = 173. Unobserved reflections were not used in the refinement. F; and
Fg are on an absolute scale and the weights are normalized to this scale.

(24) M. 8. Weininger, J. E. O’Connor, and E, L. Amma, Inorg. Chem., 8,
424 (1969). v

(25) H atom scattering factors from R. F. Stewart, E. R. Davidson, and
W. T. Simpson, J. Chem. Phys., 42, 3175 (1985).

(26) W. C. Hamilton, Acta Cryst., 18, 502 (1965).
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TaBLE IIB

UNOBSERVED REFLECTIONS WITH CALCULATED
VALUES GREATER THAN Fuin®

F < |F( < x
min 2 IFCcaLcHl 2.0-F 0y (135)
K= 0 411 170 101L 165 1014 208 13 5326 12 6 322 8
817 168 15 0194 11 12 298 11 12 210 1 73266 12 eius 8 ;1225?
1016 233 15 12 32? 1113 216 11 14190 13 8 226 31210248 K= g
1215 210 15 14 291 11 15179 12 11 171 13 9 234 1212 230 4 5 199
b 1197 1515 248 11 16 1786 1212173 1312 247 ‘K= 7 5 317k
14K17 2164 1K; 239 }g 2 12;; }32 1:4 ‘2% 1314310 7 7230 5 6 290
- ) K= "8 10 180
L1k 174 816 230 12 13 170 13 102850 010174 { 9 ;26 2 g}%
617176 817 266 13 © 256 1313 185 L 9 176 811 264 K= 10
8 17 222 1016 190 13 11 286 1L ‘% 196 1176 9 6183 0 6176
9 16 326 1017 285 13 13 301 1L 10 181 8193 10 8226 1 0185
817 200 12 1k 264 13 }k 270 1415 294 9166 1010260 1 8 202
10 1165 12 16 271 13 15 277 K= § 11 217 K= 8 3 2184
11 14 271 3 1184 1316 230 2 L 169 910 176 3 8 191 3 4182
11 16 300 1412 214 Ke L 8 2165 912169 5 9202 3 8183
1117302 1495 261 5 7 171 913322 1012178 & 9 230 5 2 166
1213 194 K= 3 715267 1110165 11 1166 7 0188 5 7 180
1311323 716300 815 215 1111 166 11 5194 7 L 160 & 8 206
1313233 816173 914178 1113185 11 7 2h2 7 7 22 7 6 204
1315267 916165 10 2188 1114 235 11102001 7 6171 7 & 174
1317 245 10 9 165 1012 194 12 4174 12 5182 8 6 308
2.0xFyy < IFfcaLc)l <« 3.0%F iy (41)
K= 0 11155405 15 11 427 210369 1h 11 440 10 11 42 K=
1017 488 13 12 350 15 13 342 13 10 k43 1413 371 1013 39? 8 8 logl
12 14 350 13 14 380° "k = "2, 13 12 4 Ks "5 12 & B3¢
1413 338 13 16 359 10 14 423 K= 4 7 14 369 K= 7
1415 465 15 6 407 10 15 340 1013 441 o 14 374 7 11 350
Kw 1° 15 8384 1212371 1015443 K= 6 9 8 3hg
717 526 15 9 b1t 14 8 365 14 3 40B 6 13 340 & 9 362
9 15 362 15 10 393 Ke 3 14 9 4bh 10 9393 9 11 342
3.0xFMIN 2 FlcaLc)l (20)
K= 0 8015748 K= 1 0 42850 1413 514 14 5 K =
0 21929 12 16 579 15 7507 617 616 K= 3 14 7 Zgg 812 539
4 03606 14 9 700 = "2 14 ?684 7 0185 K= & K="7
16 522 14 11 616 0 22882 14 11 699 K= 4 "13 6517 910500

. @ First column is &, followed by / and F, on the same scale as
Table IIA. The number of reflections less than Fmin is 250.
Reflections for which the backgrounds could not be reliably
estimated due to 8 radiation or to white radiation were omitted
from the calculations and are included here with the unobserved
reflections. The same procedure was used for reflections which
were obviously in error due to electronic or equipment mal-
function. Unobserved reflections were not included in the
refinement.

intensity were noticed between hkl and hkl reflections.
The hydrogen parameters refined smoothly with a
damping factor of 0.3. Considering the additional
number of parameters involved with the inclusion of
hydrogen atomis the relatively small decrease in R is
disappointing. It is interesting to note that in this case
in contrast to others?-? the bond lengths derived from
the +2z arid —2 refinements do not differ by more than
two standard deviations. The scale factor was also
treated as a variable along with the atomic parameters.
The refinement was terminated when the maximum
parameter shifts were less than /106 for the nonhydro-
gen parameters and !/s¢ for the hydrogen parameters.
The largest peaks in a final difference map were less
than one-fourth the height of the hydrogen peaks in the
earlier difference Fourier functions.

The listing of observed and calculated as well as un-
observed structure factors is found in Table II. Final
atomic coordinate and thermal parameters are enumer-
ated in Table III. Interdtomic distances, angles, and
errors?® are listed in Table IV. Table V contains the
rins displacements and dppropriate least-squares

(27) G. G. Messmer, E. L. Amma, and J. A, Ibers, Inorg. Chem., 8, 725
(lg(g;;'T. Ueki, A. Zalkin, and D. H. Templeton, Acta Cryst., 26, 836 (1966).

(29) Distances, angles, and errors computed with the ORFFE program of

w. Bu;ing, K. O. Martin, and H. Levy with local modifications on the
IBM 7040.
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TasLE 111
FiNaL AtoMic POSITIONAL AND THERMAL PARAMETERS AND ESTIMATED STANDARD DEVIATIONS®

Atom £ y z

Pd 0.12359 (5) ~—0.01084 (8) 0.0000 (=)

S(1) 0.0746 (2) 0.1889 (03) 0.1002 (2)

S(2) —0.0477 (2) —0.0045 (04) —0.05086 (2)

S(3) 0.2953 (2) 0.0048 (04) 0.0499 (2)

S(4) 0.1677 (2) —0.2273 (03) —0.0895 (2)

CI(1) 0.1467 (2) 0.3140 (03) —0.1565 (3)

Cl1(2) 0.1010 (3) —0.3577 (03) 0.1626 (2)

) 0.1338 (8) 0.1534 (12) 0.2015 (7)

N(1) 0.1612 (7) 0.0067 (11) 0.2281 (6)

N(2) 0.1458 (8) 0.2796 (10) 0.2535 (7)

C(2) —0.1309 (9) —0.0480 (12) 0.0355 (7)

N(3) —0.1024 (8) —0.1381 (12) 0.1040 (7)

N(4) —0.2238 (8) 0.0160 (14) 0.0336 (8)

C(3) 0.3785 (9) 0.0429 (11) —0.0367 (7)

N(5) 0.3481 (7) 0.0991 (11) —0.1141 (8)

N(6) 0.4786 (7) 0.0117 (12) —0.0224 (6)

C4) 0.1166 (9) —0.2024 (12) —0.1929 (7)

N(7) 0.0956 (8) —0.0583 (11) —0.2251 (6)

N(8) 0.1055 (8) —0.3324 (10) —0.2437 (7)

H(1) 0.190 (11) —0.007 (18) 0.283 (10)

H(2) 0.151 (11) —~0.073 (17) 0.190 (10)

H(3) 0.126 (11) 0.370 (16) 0.241 (10)

H(4) 0.169 (10) 0.274 (13) 0.318 (09)

H(5) —0.143 (13) —0.179 (19) 0.142 (11)

H(6) —0.032 (12) —0.186 (18) 0.101 (09)

H(7) —0.232 (10) 0.115 (17) —0.014 (10)

H(8) —0.264 (10) -~0.014 (17) 0.076 (09)

H(9) 0.281 (11) 0.143 (16) —0.120 (09)

H(10) 0.396 (10) 0.119 (14) —0.162 (08)

H(1l) 0.525 (09) 0.057 (14) —0.078 (09)

H(12) 0.506 (10) —0.050 (16) 0.034 (09)

H(13) 0.109 (09) 0.031 (14) —0.189 (09)

H(14) 0.082 (09) —0.049 (13) —0.284 (08)

H(15) 0.089 (15) —0.314 (18) —0.301 (13)

H(16) 0.118 (10) —0.434 (15) —0.226 (08)

Anisotropic Temperature Factors in the Form
expl— (Buh? 4+ Bnk® + Bul? + 28nhk + 2Bkl + 285k1)] X 104

Atom Bu B B B Bia B2 Atom B, A2
Pd 18.5 (3) 78.0(9) 17.4 (2) 4.0(6) 0.1(3) —4.8 (7) H(1l) 4 (07)
S(1) 33 (2) 85 (04) 22 (1) 16 (2) -3 (1) —4 (2) H(2) 3 (08)
S(2) 23 (2) 203 (06) 25 (1) 10 (3) —-1(1) —8(3) H(3) 3 (08)
S(@3) 21 (2) 142 (05) 19 (1) 3 (2) -1(1) -2 (2) H(4) 2 (08)
S4) 32 (2) 81 (04) 19 (1) 9 (2) -3 (1) —4(2) H(5) 8 (10)
CI(1) 47 (2) 89 (04) 49 (2) 11 (2) 8 (2) 5(2) H(6) 5 (07)
ClL(2) 63 (2) 99 (04) 36 (1) 7 (3) —3(2) -3 (2) H(7) 5 (07)
C(1) 18 (7) 106 (15) 19 (5) ~3 (8) 0(4) 2(7) H(8) 4 (07)
N(1) 35 (5) 83 (12) 33 (4) 7 (8) —2(4) -5 (7) H(9) 4 (07)
N(2) 46 (7) 94 (14) 32 (5) 12 (8) —14 (5) —14(7) H(10) 3 (06)
C(2) 30 (6) 107 (15) 32 (5) —16 (9) —4 (6) —19 (7) H(11) 3 (06)
N(3) 50 (8) 128 (15) 39 (5) —19 (8) 2 (5) —7(8) H(12) 3 (06)
N(4) 28 (6) 217 (21) 56 (7) 2 (9) 15 (5) —23 (9) H(13) 2 (06)
C(3) 24 (6) 86 (14) 33 (4) —4 (9) 8 (6) —17 (7) H(14) 2 (05)
N(5) 34 (6) 135 (15) 27 (4) 3 (8) 0@4) 9 (7) H(15) 5 (10)
N(6) 21 (5) 159 (15) 31 (6) —6 (8) 04) 17 (8) H(16) 3 (06)
C(4) 30 (7) 97 (15) 21 (5) 1(9) 6 (5) -2 (7)
N(7) 50 (7) 115 (14) 20 (4) 20 (9) —12 (4) 1(7)
N(8) 41 (7) 101 (14) 27 (5) 19 (8) —5 (5) —17 (7)

o The esd of the last figure is in parentheses.

planes.® Although the over-all general agreement is
good with the relatively small agreement index of less
than (.03, the long needle crystal which may not have
been effectively scattering over the entire length in-
troduces some systematic errors and makes our estimates

(30) Least-squares planes calculated on the IBM 1620 with a program by
W. A. Spofford, III.

of error somewhat optimistic. This systematic error
can be seen in the magnitude of By, which is consid-
erably larger than either By or 8.

Description and Discussion of Structure

The crystal structure of Pd(tu).Cl, is made up of
complex ions, Pd(tu),®*, with two essentially ionic
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axial chlorine atoms at distances of 3.594 (3) A (number
in parentheses here and later denotes error in least
significant digit) and 3.791 (3) A. See Figures 1 and 2
and Table IV. The complex ions and the halide
ions are interconnected by N-H: - - Cl hydrogen bonding
to form a sheet structure (Figure 2). These sheets are
then held together by ordinary van der Waals forces.
The Pd and four S atoms are almost coplanar with a
small tetrahedral distortion of approximately 0.1 A.
The arrangement of ligands about Pd is such that the
Pd defines an approximate molecular center of sym-
metry that is not demanded by space group require-
ments. The Pd-S distances vary between 2.316 and
2.346 A, all £0.003 A or less. Our estimates of error
are probably somewhat optimistic due to neglect of
systematic errors. These differences do not appear
to be significant, but they are somewhat shorter than
the 2.36 A expected from the sum of the single-bond
covalent radii.?* In spite of the fact that the S-Pd
bond is a donor-acceptor bond, the bond length is
essentially that of a normal single bond or perhaps very
slightly shorter. On the other hand, the Pd-Cl dis-
tances are at least 1 A longer than a normal single-bond
distance, and the interaction must be viewed as ionic.
The S-C distances, averaging 1.73 (1) A, are probably
not significantly different from one another nor from
the 1.720 (9) A S-C distance found by Truter for free
thiourea.?? The neutron diffraction results of Elcombe
and Taylor3? for free thiourea yield an S-C distance of
1.746 (9) A. Our C-N distances are also not signifi-
cantly different from Truter’s value of 1.340 (6) A
The neutron diffraction value for the C-N distance is
1.350 (4) A. The S-C-N angles on the side toward the
metal always seem to be greater than those S-C-N
distances pointed away from the metal. This fact
has been noted previously,!? but we still lack an explana-
tion for this phenomenon. The N-H distances are
reasonable and the thiourea groups are all planar.

The Pd-S—C angles are all 110° within two standard
deviations (£0.4°). The planar thiourea groups are
displaced from the plane defined by the palladium and
four sulfur atoms by what might be described as two
distortions: (1) a simple rotation (tilt) of the planar
group by 43-64° about the Pd-S bond [see (Pd-S-8)—
(Pd-S-C) dihedral angles]; (2) a rotation or twist of the
thiourea group about the S-C bond by 17-28° [see
(Pd-S-C)-(S—C-N) dihedral angles]. The metal-
sulfur-carbon angle found in transition metal-thiourea

_complexes varies between 106 and 116°6.12.13,24,34—38
and the above falls'into this range. A number of transi-
tion metal-thiourea complexes give a range of rotations
(tilt) about the M-S bond of 30-57° and a range for the
angle of twist of 14-35°.5:12.33 This rotation (tilt)

(31) L. Pauling, ‘“The Nature of the Chemical Bond,” 3rd ed, Cornell
University Press, Ithaca, N. Y., 1960, p 246. :

(32) M. R. Truter, Acta Cryst., 23, 556 (1967).

(33) M. M. Elcombe and J. C. Taylor, ibid., A34, 410 (1968).

(34) G. F. Gasparri, A, Mangia, A. Musatti, and M. Nardelli, ibid., B2B,
203 (1969). '

(35) M. Nardelli, G. F. Gasparri, G. G. Battistini, and P. Domiano,
ibid., 20, 349 (1069). ' U

(36) R. L. Girling and E, L, Amma, to be submitted for publication.
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TABLE IV
Interatomic Distances, Angles, and Esd’s
Not in the Figures®

Atoms Angle, deg Atoms Angle, deg
S(1)-Pd-S(2) 86.7 (1) Pd-S(1)-C(1) 109.7 (4)
S(1)~-Pd-S(3) 90.4 (1) Pd-S(2)-C(2) 109.5 (4)
S(1)-Pd-S4) 174.5 (1) Pd-S(3)-C(3) 110.6 (4)
S(1)-Pd-Cl1(1) 85.8 (1) Pd-S(4)-C(4) 110.5 4)
S(1)-Pd-Cl1(2) 95.1 (1) S(1)-C(1)-N({1) 122.7 (8)
S(2)-Pd-S(3) 175.6 (1) S(1)-C(1)-N(2) 116.6 (8)
S(2)-Pd-S(4) 93.3 (1) N(1)-C(1)-N(2) 120.6 (10)
$(2)-Pd-Cl(1) 81.1 (1) S(2)-C(2)-N(8) 122.4 (9)
S(2)-Pd-Cl1(2) 99.1 (1) 8(2)-C(2)-N{4) 117.9 (9)
S(3)-Pd-S(4) 90.0 (1) N(3)-C(2)-N(4) 119.7 (11)
S(3)-Pd-Cl(1) 95.4 (1) S(3)-C(3)-N(5) 123.8 (9)
S$(3)-Pd-Cl(2) 84.5 (1) S(3)-C(3)-N(6) 116.3 (8)
S(4)-Pd-Cl(1) 99.6 (1) N(5)-C(3)-N(6) 119.9 (10)
S(4)-Pd-C1(2) 79.5 (1) S(4)-C(4)-N(7) 121.9 (8)
Ci(1)-Pd-Cl1(2) 179.2 (1) S(4)-C(4)-N(8) 118.4 (8)

N(7)-C(4)-N(8) 119.5 (11)

Nonbonded distances

(intramolecular) Value, A
S(1)-8(2) 3.207 (4)
S(1)-S8(3) 3.319 (4)
S(2)-S(4) 3.386 (4)
S(3)-5(4) 3.296 (4)

Hydrogen-Bonded Distances, Ab
H bond CI-N Cl-H
CI{(1)—H(9)-N(5) 3.213 (9) 2.30 (10)
CI(1)—H(13)-N(7) 3.312 (10) 2.44 (10)
Cl(1)—H(11)-N(6)° 3.304 (10) 2.24 (11)
CI(1)—H(16)-N(8)° 3.249 (9) 2.37 (10)
Cl(2)—H(2)-N(1) 3.263 (10) 2.47 (10)
C1(2)—H(6)-N(3) 3.311 (11) 2.41 (11)
CI(2)—H(8)-N(4)¢ 3.265 (11) 2.42 (11)
Cl1(2)—H(12)-N(6)° 3.463 (10) 2.42 (11)

Dihedral Angles between Various Planes

Angle of tilt Value, deg
[PA-5(1)-C(1)]-[Pd-S(1)-S(3)] 42.6 (4)
[Pd-8(2)~-C(2)]-[Pd-S(2)-S(1)] 58.2 (4)
[Pd-S(3)-C(3)]-[Pd-S(3)-S(4)] 60.7 (4)
[Pd-S(4)-C(4)]-[Pd-S(4)-S(2)] 42.8 (4)

Angle of twist Value, deg

[PA-8(1)-C(1)]-[S(1)-C(1)-N(1)] 27.4 (10)
[Pd-8(2)-C(2)]-[S(2)-C(2)-N(3)] 27.1 (9)

[Pd-S(3)-C(3)]-[S(3)-C(3)-N(5)] 17.2 (10)
[Pd-8(4)-C(4)]-[8(4)-C(4)-N(7)] 25.9 (11)

¢ All N-H distances are within less than one standard deviation
(£0.13 A) of the average of 099 A. All C-N-H angles are
within less than one standard deviation (%=4°) of the average of
120°. All H-N-H angles are within less than one standard
deviation (#12°) of the average of 120°. ? All the CI-H-N
hydrogen-bonded angles are 180° within 2.5 standard deviations.
(10°). ¢ H bonds between adjacent molecules.

and twist occur regardless of the transition metal;
1.€., it occurs for Pt, Pd, Ni, Co, Fe, and Mn, and is inde-
pendent of the coordination number of the metal
[Ni(tu)eBrg, Pd(tu)4C12, Pt(tu)4C12, CO(tu);;Ch], and is
independent of anion [Ni(tu)eBrs, Ni(tu)s(NOs)e,¥
Ni(tu),Cl;]. Hence, we conclude that hydrogen bond-
ing, van der Waals forces, and packing considerations
do play a role in the precise orientation of the ligand;
but, nevertheless, the rotation and twist are funda-
mental properties of the complex between the transi-
tion metal and thiourea.
(37) E. L. Amma, unpublished results.
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TABLE V
Rms Displacements along Principal Axes, A
Atom Axis 1 ' Axis 2 Axis 3
Pd 0.123 (1) 0.139 (1) 0.169 (1)
S(1) 0.142 (5) 0.158 (5) 0.195 (4)
S(2) 0.137 (5) 0.168 (5) 0.267 (4)
S(8) 0.133 (5) 0.148 (5) 0.222 (4)
S(4) 0.146 (5) 0.151 (4) 0.184 (4)
Ci1(1) 0.167 (4) 0.197 (4) 0.247 (4)
Cl1(2) 0.182 (4) 0.203 (4) 0.234 (4)
c) 0.122 (22) 0.149 (19) 0.192 (14)
N(1) 0.158 (15) 0.177 (15) 0.202 (14)
N(2) 0.152 (17) 0.169 (14) 0.239 (15)
C(2) 0.126 (21) 0.183 (19) 0.222 (14)
N(3) 0.182 (15) 0.209 (15) 0.237 (14)
N(4) 0.135 (18) 0.242 (15) 0.294 (15)
C(3) 0.131 (22) 0.154 (17) 0.219 (14)
N(5) 0.168 (15) 0.172 (15) 0.221 (12)
N(6) 0.133 (16) 0.179 (17) 0.245 (12)
C(4) 0.137 (21) 0.178 (17) 0.183 (14)
N(T) 0.128 (18) 0.186 (14) 0.233 (15)
N(8) 0.145 (16) 0.168 (16) 0.228 (14)
Equations of Least-Squares Planes of the Type* Ax + By + Cz — D = 0
- Plane no.
1 2 3 4 5
A 0.9019 —0.3305 —0.1297 0.9294 0.2312
B 0.1497 —0.8118 —0.9356 0.0967 0.6706
C —0.4051 —0.4813 —0.3283 —0.3562 ~0.7049
D —0.4901 —0.6073 0.7804 —2.3069 —0.2906
Deviation of Atoms from the Least-Squares Planes, A
Plane no.
1 2 3 4 5
S(I) —0.005 (2) —0.004 (2) 0.001 (2) 0.008 (2) Pd 0.0182 (3)
C(I) 0.018 (7) 0.013 (7) —0.002 (7) —0.028 (8) s —0.095 (2)
N(21-1) —0.007 (7) —0.005 (7) 0.001 (7) 0.010 (7) S(2) 0.084 (2)
N(2I) —0.006 (8) —0.005 (8) 0.001 (7) 0.010 (7) S(3) 0.083 (2)
S(4) —0.091 (2)

e x, v, and 3 refer to atom positional parameters in dngstréms.

Electron-pair repulsions between the electrons in the
sulfur sp? lone-pair orbitals would make a lone-pair
orbital-S-C angle less than 120°. The range of M-5-C
angles of 106-116° makes it inescapable that thiourea is
using an sp? lone-pair orbital in bonding to the metal.
This M-S-C angle probably varies somewhat due to
packing, hydrogen bonding, and nature of the metal.
However, there is no obvious reason why a M(tu),?+
molecule could not be completely planar including C,
N, and H atoms. If such a hypothetical planar model
is constructed with reasonable bonded distances and
an M-8-C angle of 114°, no unreasonably short non-
bonded distances can be found. Hence, there is no
steric inhibition against such a planar model.

A “naive” Huckel r-electron calculation® for thiourea
gives energies and symmetries of the = molecular or-
bitals (MO’s) as follows: a;, —2.238; b;, —1.508;
a;’, —0.818; a;’/, +1.038. The six = electrons, one
from C and S and two from each nitrogen, fill these

(38) B, M. Gimarc, personal communication, University of South

Carolina.

All atoms are equally weighted in each least-squares plane.

levels through a,’; the next level is a strongly anti-
bonding a;,’’. It is well accepted that the =* MO’s of
carbon monoxide and other such ligands are important
in the stabilization of metal carbonyls and other com-
plexes by behaving as =* acceptors for metal electrons.
The a;’’ MO of thiourea could fulfill this same function
if the entire M(tu).2* unit were planar. However,
this interaction is energetically expensive and the sys-
tem has an energetically cheaper option open to it.
If the = electrons are taken out of possible overlap with
the d,, and d4,, (e;) metal orbitals by suitable rotation
and twisting, then low-energy sulfur d orbitals that do
not mix with the thiourea = orbitals are available as
acceptors for metal electrons. We postulate that this
electronic factor is the fundamental reason for the orien-
tation of the thiourea molecules in fransition metal—-
thiourea complexes and may well significantly influence
the magnetic and spectral properties of such complexes.
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