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tion elements occupy the centers of the tetrahedra.
As the B component becomes more and more metallic,
the inverted stoichiometry A,B; seems to be preferred
and the atoms of the B component take over the cen-
tral positions.

The occurrence of this structure with B component
atoms having atomic radii ranging from 1.27 (S) to
1.66 (Sb) A indicates that the sizes of these atoms do
not influence the choice or the stability of the structure.
However, the variations in the positional parameter x,
represented in Table T, can be interpreted in terms of
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the variations in size. In the case of the A;B4 phases it
appears that the parameter is not affected by the size of
the B component atoms, (Compare the values for
La,Tes and LasSes.) However, in the A,B; phases it de-
creases with a decrease in the size of the B component
atoms. (Compare the values for La,Ge; and Las-
Rhg.)

LasRh.; is the first representative of the ThsP,-type
structure wherein both the component atoms are of
transition elements. This structure has not yet been
found in other rare earth-rhodium alloys.
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The crystal and molecular structure of the tetra-#-butylammonium salt of the paramagnetic complex Mo(CN )%~ has been
determined by single-crystal X-ray diffraction methods and its electron spin resonance has been reexamined in light of the
structural results. Intensity data were collected by counter techniques and the structure has been refined by least-squares
methods to a conventional R factor of 0.094 for 597 nonzero independent reflections. The complex crystallizes in space
group P4/ncc of the tetragonal system in a cell of dimensions ¢ = 17.009 (5) A, ¢ = 22784 (21) A and V = 6502 A% An
experimental density of 1.03 (4) g/cm3 agrees with a calculated value of 1.03 g/cm3 for Z = 4. The Mo(CN)3~ anion pos-
sesses a slightly distorted triangular dodecahedral coordination geometry and is crystallographically required to have D,
molecular symmetry, The two independent Mo—C bond distances do not differ significantly and have an average value of
2.12 (2) A. Other important anion distances are the average C-N and Mo-N distances of 1.16 (2) and 3.27 (2) A, respec-
tively. The tetra-n-butylammonium cations exhibit significant disorder in the y- and §-carbon atoms of the butyl chains.
The electron spin resonance spectrum of a polycrystalline sample of [(#-CiH;)N]3[Mo(CN)s] has an isotropic g value of
1.991 =& 0.002 which agrees exactly with other values of <g> obtained from solution spectra or calculated from frozen-glass

spectra.

It is concluded that the Mo(CN)s3~ anion probably has the distorted dodecahedral coordination of Dy symmetry

in the solution state as well as in the crystalline state and that the unpaired electron occupies a metal-based orbital which

has both d,2-42 and d;. character.

Introduction

There has been much discussion in the literature
during the past decade concerning the geometry of
discrete eight-coordination in transition metal com-
plexes.!'=* Particular attention in this area has been
focused on the two octacyanomolybdate anions Mo'"-
(CN)g*~ and MoY(CN)g*~. Recently, the crystal
and molecular structure of Ky[Mo(CN);s]:-2H;0, which
was first reported 1939,5 has been reinvestigated.* The
triangular dodecahedral coordination of Mo(CN)st~
has been confirmed, along with more accurate struc-
tural parameters, and an exhaustive exploration of the

(1) E. L. Muetterties and C. M. Wright, Quari. Rev. (London), 81, 109
(1967), and references therein.

(2) 8. J. Lippard, Progr. Inorg. Chem., B, 108 (1967), and references
therein.

(3) J. L. Hoard and J. V. Silverton, I'norg. Chem., 2, 235 (1963).

{(4) J. L. Hoard, T. A. Hamor, and M. D. Glick, J. Am. Chem. Soc., 90,
3177 (1968). Professor Hoard has pointed out to us that the phrase “with
retention of the principal structural features’” was intended to mean “only
that the chemical and stereochemical integrity of the atomic grouping as a
discrete eight-coordination complex’ should be maintained in going from

Mo(CN)st~ to Mo(CN)st .
(8) J. L. Hoard and H. H. Nordsieck, J. Am. Chem. Soc., 61, 2853 (1939).

factors contributing to its dodecahedral geometry of
approximate D,g symmetry has been presented. The
two d electrons of this anionic Mo(I1V) complex occupy
the d,, orbital or, by the alternative symmetry defini-
tion, the dj.,: orbital of the metal which can be used
for limited = bonding with the ligands. In their dis-
cussion, Hoard, et al.,* stated that one of the two d
electrons can be removed to give the paramagnetic
complex Mo"(CN)g~ “with retention of the principal
structural features’—that is, that the Mo(CN)g¥—
anion should be dodecahedral. Electron spin reso-
nance studies, however, have indicated that, at least in
solution, the Mo(V) species exists as a square antiprism
of Dyq symmetry.t? Other physical data at this time
appear to be inconclusive. Published Raman and
infrared studies® of the Mo(CN)s*~ anion support the
contention of Dsq symmetry in the solution state but
are unable to eliminate the possibility of dodecahedral
(6) B. R. McGarvey, I'norg. Chem., B, 476 (1966).

(T) R. G. Hayes, J. Chem. Phys., 44, 2210 (1966).
(8) S.F. A. Kettle and R. V., Parish, Spectrochim. Acte, 21, 1087 (1965).
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coordination known to exist for that complex in the
crystalline state. On the other hand, a different,
recently reported Raman study? of the Mo(CN)gt—
anion has shown that the complex mainiains its dodeca-
hedral geometry in going to the solution state and does
not assume a square-antiprismatic configuration in
solution. Results for the Mo(CN)s?~ anion in the
same Raman study appear to be less conclusive.? In
order to shed some light on the coordination geometry
of the Mo(V) complex, we have determined the struc-
ture of [(n-CHg)4N];[Mo(CN)s] by single-crystal
X-ray diffraction methods. The results of that deter-
mination together with a reexamination of the electron
spin resonance of the Mo(V) species are presented in
this paper.

Collection and Reduction of the X-Ray Data

The complex [(#-CiHg):N J3[Mo(CN)s] was synthe-
sized from K;Mo(CN); in the following manner. K-
[Mo(CN)g], which was prepared by the method of
Furman and Miller,® was oxidized in an acidic solution
by KMnO, and the Ag™ salt of the Mo(CN)s*~ anion
was precipitated out by the addition of AgNO;. The
brown, amorphous precipitate was washed and added
to dilute HCl. The resulting AgCl was then filtered
off and excess [(#-C4H,)N |Br was added to the acidic
solution containing Mo(CN)g®~. [(#-CsHy)4N J3[Mo-
(CN)s] precipitated from the solution as a light greenish
vellow powder. Beautiful transparent yellow crystals
suitable for single-crystal X-ray work were grown from

acetonitrile—ether solutions. Anael. Caled for [(n-
C4H9)4N]3[MO(CN)3]Z C, 652, N, 14:9, H, 104,
0, 0.0. Found: C, 65.4; N, 14.9; H, 10.5; O, <0.5.

Elemental analyses were performed by Midwest Micro-
lab, Inc.

It was quickly apparent that the crystals of [(n-
CH,)N 3[Mo(CN)s] were sensitive to both light and
X-rays. Although decomposition of the crystals in
the X-ray beam was sufficiently slow to allow for the
collection of intensity data from a single crystal, several
crystals had to be used for preliminary measurements
including the unit cell and space group determinations.
The crystals were examined by optical goniometry and
standard film methods. Precession photographs, taken
with Mo Kea radiation (A 0.7107 A), revealed that the
complex crystallizes in a tetragonal unit cell of refined
dimensions ¢ = 17.009 (5) A, ¢ = 22.784 (21) A and
V = 6592 A3, An experimental density of 1.03 ==
0.04 g/cm?® obtained by flotation in zinc chloride solu-
tions agrees with a calculated value of 1.03 g/cm? for
four molecules in the unit cell. The observed extinc-
tions of #k0 for 2 + k& odd, 0! for [ odd, and 4kl for [
odd are consistent with the space group P4/ncc.!* The
precession photographs also revealed that the k&l reflec-
tions for which % 4 % and / are both even are generally

(8) T. V. Long, Paper No. 57, The New York Regional Meeting of the
American Chemical Society, New York, N. Y., May 1-2, 1969, and private
communication.

(10) N. H. Furman and C. O. Miller, Inorg. Syn., 8, 160 (1950).

(11) “International Tables for X.Ray Crystallography,” Vol. 1, The
Kynoch Press, Birmingham, England, 1962, p 226. In the refinement, the
second setting of P4/ncc with the origin at T was employed.
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much stronger than those reflections for which either or
both of the quantities # + % and [ are odd. Thus, the
complex is required to possess some crystallographic
symmetry and the molybdenum ion must occupy one of
the fourfold special positions of the space group.

The intensity data were collected at room tempera-
ture from a single crystal using a Picker four-circle
automated diffractomieter. The 6-26 scan technique
was employed with a scan rate of 1°/min and 10-sec
background counts collected at both ends of the 26
scan range. Ni-filtered Cu Ka radiation was employed.
Prior to the beginning of data collection, the crystal
was aligned along the tetragonal axis by optical goniom-
etry and with a number of precession photographs.
The crystal was then placed on the diffractometer and
approximately 15 reflections were carefully centered in
the counter aperture. The unit cell parameters and
orientation angles were refined by the least-squares
procedure of W. C. Hamilton’s MODE] diffractometer
setting program.!?

The intensities of two independent sets of reflections
in one octant of reciprocal space were collected out to a
maximum 26 value of 90°. A total of 2601 intensities
were measured. During the data collection, the in-
tensity of the 336 reflection, which was monitored at
least once every 150 reflections, showed a decrease of
approximately 309, of its original value. In the pro-
cessing of the data, the intensities of all reflections were
corrected for decomposition based on the assumption
that the decomposition was isotropic. The data were
then corrected for background, and Lorentz—polariza-
tion factors were applied to the observed intensities to
yield a set of F,? values where F, is the observed struc-
ture factor amplitude. The two independent data
sets were then averaged for all subsequent calculations.
No absorption correction was made in view of the
relatively small linear absorption coefficient (u =
20.3 em™!). The crystal used for the data collection
was a rectangular parallelipiped showing development
of the {110} and {001} faces and having approximate
dimensions 0.40 X 0.30 X 0.15 mm with the longest
direction corresponding to the ¢ axis of the crystal.

Solution and Refinement of the Structure

The Mo ion was assigned to the 4(a) special positions
of 222 site symmetry on the basis of a three-dimensional
Patterson function and packing considerations. The
two independent cation nitrogen atoms were then
assigned to the 4(b) and 8(f) special positions of the
space group. The positions of the anion cyanide
groups and 11 of the 12 independent cation carbon
atoms were determined from a number of difference
Fourier maps based on phases obtained from the re-
fined positions of the located atoms. In the prelimi-
nary cycles of least-squares refinement, each atom was
assigned an individual isotropic thermal parameter

(12) In addition to the MODEL setting program, the main programs for the
IBM 360/50 used in this work wer¢ local versions of the Busing~Levy ORFLS
least-squares program, the Zalkin Forpar Fourier program, the Busing—
Martin-Levy ORFFE function and error program, and C. K. Johnson’s

oRTEP plotting program. Various other local programs were also used in the
investigation,
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TABLE 1

FINAL POSITIONAL AND THERMAL PARAMETERS FOR
[(n-CsH3)uN]s[Mo(CN)s]

% By 2 B, Ar

Mo —0.250 0.250 0.250 a

Cib —0.142 (2) 0.282 (1) 0.289 (1) 8.2 (8)
Niu —0.084 (1) 0.304 (1) 0.310 (1) 10.6 (6)
Cy —0.215 (1) 0.162(1)  0.311(1) 6.9 (7)
Ng —0.199 (1) 0.116 (1) 0.346 (1) 10.3 (6)
BUN1 —0.250 0.250 0.000 13.4(9)
BUN2 —0.009 (2) 0.009 0.250 12.9(9)
BUIC1 —0.281(2) 0.184 (2) 0.042 (1) 13 (1)
BU1C2 —0.323(2) 0.110(2) 0.009 (2) 18 (1)
BUIC3  —0.366 (4) 0.051(3)  0.089(3) 30 (3)
BUIC4 —0.371(4) —0.015(5)  0.006 (3) 28 (3)
BU2C1 0.002(2) —0.073(3)  0.288(2) 11 (1)
BU2C2 —0.066(3) —0.066(3) 0.339(2) 15 (1)
BU2C3 —0.052 (3) —0.150 (4) 0.391 (3) 22 (3)
BU2C4  —0.089 (3) —0.186(3)  0.335(2) 21(2)
BU2C5  —0.011(2) 0.080(3)  0.290(2) 11(1)
BU2C6 0.070 (2) 0.094 (3) 0.321(2) 15 (1)
BU2C7 0.061 (2) 0.165(3)  0.373(2) 16 (1)

2 The form of the anisotropic thermal ellipsoid is: exp
[—(Buh? + Buk? + Baal? + 2Bphk + 281kl + 28:k)]. The
anisotropic thermal parameters for Mo are 811 = B = 0.00487
(9), Bas = 0.00319 (7), B2 = —0.0004 (4), and Bz = B = 0.0.
b C1-N1 and C2-N2 are the two independent cyanide groups.
BUNI1 is the cation nitrogen atom in the 4(b) special positions
while BUN2 is the other independent cation nitrogen atom
located in the 8(f) special positions of the space group. BUIC1
is attached to BUN1 and the other carbon atoms in the chain are
numbered successively, BU2CL and BU2C5 are both attached
to BUN2 with the other atoms numbered accordingly. BU2CS8
was not located because of disorder. ¢ The numbers in paren-
theses here and in succeeding tables are estimated standard
deviations in the least significant figures.

which was varied along with the positional parameters
of the atom. It was noted that all of the cation thermal
parameters were quite large, especially those assigned
to the 5- and é-carbon atoms of the #-butyl groups.
All attempts at determining the position of the re-
maining carbon atom, corresponding to the terminal
methyl group of one of the z-butyl chains, proved
unsuccessful and we concluded that its position was
completely disordered. The extremely low density of
the crystal, a model of the packing, and all subsequent
refinements and difference Fouriers lend support to the
notion of significant disorder in the alkyl chains of the
cations.

The trial structure was refined by a least-squares
procedure. The function minimized was Zw(F, — F,)?
where the weights w were assigned in the following way:
for Fy < 35, w = (F,/105)?%; for 35 < F, < &80, w =
(*/3)%; and for F, > 80, w = [1.0/(3.0 4+ 0.15F,/80) ]2
The merits of this weighting scheme as opposed to one
based on counting statistics are discussed below. The
neutral Mo, C, and N scattering factors were obtained
from Ibers’ tabulation!® while the anomalous parts of
the Mo scattering factor were obtained from Temple-
ton’s tabulation!* and were included in the calculated

(13) J. A. Ibers, “International Tables for X-Ray Crystallography,”
Vol. 3, The Kynoch Press, Birmingham, England, Table 3.3.1A.

(14) D. H. Templeton, “International Tahles for X-Ray Crystal
lography,” Vol. 3, The Kynoch Press, Birmingham, England, Table 3.3.2B.
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structure factors.’®* Only those reflections for which
the observed F? value was greater than twice the value
of o(F?) were included in the final refinements and in
the calculation of the discrepancy indices. The
standard deviations o(F?) were estimated according
to the formula

1

o(F?) = Hp[c + (t/26,)%(B1 + Bo) + (0.031)2]

where C is the total integrated count obtained in a
scan of time t,, By and B; are the two background
counts, each obtained in time #,, I is the net integrated
count, Lp is the Lorentz~polarization factor, and T is
the transmission coefficient.

In the initial round of calculations, all atoms were
restricted to isotropic thermal models. This refinement
of 65 parameters including one variable scale factor
converged to an R factor (R = Z||F| — |F||/2|F)
of 0.115 and a weighted R factor R’ (R’ =
(Sw(F, — Fo)/ZwF,)'"?) of 0.138. A difference
Fourier based on this refinement provided evidence for
anisotropic thermal motion of the molybdenum ion.
After the elimination of a number of data errors which
were due to either incorrect positioning or punching
errors, a final refinement was carried out in which the
Mo ion was described by an anisotropic thermal ex-
pression while all other atoms were restricted to the
isotropic vibration model. This refinement of 67
positional, thermal, and scale parameters converged to
a conventional R factor of 0.094 and a weighted R
factor of 0.085 for 597 independent reflections above
20. A final difference Fourier showed no peaks higher
than approximately 309 of the height of an average
carbon atom in this structure.

The parameters obtained in this final round of
calculations are taken as the final parameters of the
structure and are given in Table I. Standard devia-
tions, as obtained from the inverse matrix, are also
given. In Table II, the values of F, and |F| (in
electrons X 10) are given for the 597 reflections used in
the refinement. With the weighting scheme employed,
the values of w/*(F, — F.) are found to exhibit a
normal Gaussian distribution and the estimated stan-
dard deviation of an observation of unit weight is cal-
culated to be 1.38. This value, which is indicative of
the appropriateness of the weighting scheme, is con-
siderably closer to 1.0 than the corresponding values
obtained with different weighting schemes based on
counting statistics. In addition, for each of several
weighting schemes employed, it was found that the
weak reflections consistently gave the poorest agree-
ment, It appears that the intensities of the weak
reflections, which are in general solely dependent on
light-atom contributions, are most seriously affected
by the observed decomposition and the disorder in the
alkyl chains of the cations. Hence, the weak reflec-
tions are assigned excessive weights in a scheme based
solely on counting statistics and are more correctly
weighted in the scheme described above.

(15) J. A. Ihers and W, C. Hamilton, Acte Cryst., 17, 781 (1904).
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TasLE II
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Description of the Structure Tasre III
PriNcIPAL INTRAMOLECULAR DISTANCES AND ANGLES

interesting and i rtant feature of the
The most interest g 4 d mpo ta Distances Value, A Angles Value, deg

structure is the coordination geometry of the Mo- .

(CN)g*— ar.lion. This anion, wl}i(%h is crystallographi- Mo-C1 2.1 (3) ‘KES&_Nl 176 (2)

cally required to possess a minimum D, mo.lecu'lar Mo-Co 2.12(3) Mo-Co-N2 177 (2)

symmetry, has an essentially dodecahedral coordination  ppo_n1 3.27(2) Cl-Mo-Cl’ 74 (1)

geometry according to the various criteria proposed by Mo-N2 3.28(2) C2-Mo-C2”’ 92 (1)

Hoard and Silverton® and by Lippard and Russ.®  CI-N1 1.16 (3) C2-Mo-C2'" 98 (1)

Important intramolecular distances and angles are  C2-N2 1.16(3) C1-Mo-C2 70(1)
. . . . Cl1-Cl’ (aedge)* 2.56(5) Cl-Mo-C2"/ 75 (1)

summarized in Table III and' a stereoscopic firawmg Cl-C2 (medge) 2.44(3) Cl-MoC2'” 77(1)

of the anion is presented in Figure 1. The triangular  co_co/’ (pedge) 3.06 (5)

dodecahedron which has an ideal symmetry of Dyg or C2-C2""" (bedge) 3.20(5)

42m can be considered as consisting of two mutually  Cl-C2”/ (gedge) 2.58(3)

perpendicular trapezoids whose line of intersection  C1-C2"'(gedge) 2.64(4)

contains the metal ion and coincides with the 4 sym- Cation

metry axis. In this geometry, there are two different = BUNI-BUIC1 .87(3) BUICI-BUNI-BUICL’ 104 (2)

ligand environments. However, we find that in the BU1C1-BU1C2 .64 (4) BUIC1-BUNI-BU1C1" 112 (1)

. _ . BU1C2-BU1C3 .43 (6) BU2C1-BUN2-BU2C35 112 (1)
present structure, the two independent Mo—C distances BUIC3-BUIC4 1.35(7) BU2CL-BUN2-BU2CH’ 115(2)

1
1
1
" 1
do not differ 51gr11ﬁcar1tly and average 2.12 (2) A. The BUN2-BU2C1 1.64 (4) BU2C1-BUN2-BU2C1’ 95 (3)
apparent equality of the two different metal-ligand BU2C1-BU2C2 1.65(4) BU2C5-BUN2-BU2CH’ 108 (4)

1

1

1

1

1

distances in the dodecahedral geometry has also been BU2C2-BU2C3 .86 (6) BUNI1-BU1CI-BUIC2 114 (3)

observed by Hoard, et al.,* for the related complex BU2C3-BU2C4  1.55(6) BUN2-BU2C1-BU2C2 104 (3)
BUN2-BU2C5 .61 (56) BUN2-BU2C5-BU2C6 111 (8)

K4[Mo(CN)s]-2H,0 in which the Mo-C distances  prols piocg  1.57(5) BULCI-BUIC2-BUICS 123 (5)
average 2.163 A. Other 1mportant distances in the BU2C6-BU2CT .71(5) BU2C1-BU2C2-BU2C3 108 (4)
Mo(CN)g®~ anion are the average C-N distance of BU2C5-BU2C6-BU2CT 110 (3)
1.16 (2) A and the average Mo-N chain length value BU1C2-BU1C3-BU1C4 109 (7)
of 3.27 (2) AL BU2C2-BU2C3-BU2C4 74 (3)
In their discussion of the stereochemistry of discrete * The primes denote symmetry-related atoms.
eight-coordination, Hoard and Silverton defined a
number of shape parameters which can be used to
describe the coordination polyhedra in eight-coordinate
structures.® The two angular-shape parameters 6a
and @s, which represent angles between the 4 axis of the
dodecahedron and the two different metal-ligand bonds,

are found to be 37.2 and 72.5°, respectively, in this
structure. Other shape parameters for describing the
dodecahedron are summarized in Table IV along with
the corresponding values for Mo(CN)s*~ and the
“most favorable” values for these parameters as deter-
mined by Hoard and Silverton.?

(16) S.J. Lippard and B. J. Russ, Inorg. Chem., T, 1686 (1968). Lippard and Russ!® have suggested the planarity of
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Figure 1.—A stereoscopic drawing of the Mo(CN

TaBLE IV
NORMALIZED ‘‘SHAPE’’ PARAMETERS FOR THE Mo(CN )~
COORDINATION POLYHEDRON AND THE ‘M 0ST FAVORABLE”
VALUES CALCULATED BY HOARD AND SILVERTON¢

Shape parameter Mo(CN)gé— Mo(CN)sé~b “Most favorable’t
a 1.21 1.18 1.17
g 1.22 1.24 1.24
1.24
m 1.15 1.16 1.17
b 1.45 1.47 1.50
1.51 1.48
fa, deg 37.2 36.0 35.2
Og, deg 72.5 72.9 73.5
M-A/M-B 1.00 1.00 1.03

o Definition of the shape parameters is given in ref 3 and the
“most favorable’ values are taken from Table I of ref 3. ® Refer-
ence 4. ¢ Intended primarily for d® MOs groups, most specifi-
cally ZrOs.

the two trapezoids and the dihedral angle between them
as the two least ambiguous criteria for assigning the
eight-coordination polyhedron. The best least-squares
planes through the atoms defining the two trapezoids
are given by the equations

0.490x — 0.490y — 0.721z = —8.724
—0.480x 4 0.490y — 0.721z = 0.038

in Cartesian coordinates. The deviations of the atoms
C; and C; and the symmetry-related atoms C,’ and
Ci’ from the appropriate least-squares plane are 0.02,
—0.01,0.01, and —0.02 A, respectively. On the basis of
the x? value for these four atoms, they can be considered
to be rigorously planar. The dihedral angle between
the two least-squares planes is found to be 87.7° as
opposed to the ideal value of 90° for the dodecahedron
and 77.4° for the square antiprism. It can be con-
cluded from these deviations that the Mo(CN)g®—
anion exhibits slight but significant distortions from
perfect dodecahedral symmetry.

In choosing the coordination polyhedron for the
Mo(CN)s*~ anion, we examined the possibility of
describing it in terms of a square antiprism of Dug
symmetry. However, calculation of the shape param-
eters clearly revealed large deviations from this
symmetry. The best least-squares plane through the
atoms of the proposed square face of the square anti-
prism is given by the equation z = 6.842 (Cartesian co-

Inorganic Chemistry
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3¢~ anion. The thermal ellipsoids are scaled to 159, probability distributions.

ordinates), and the deviations of the atoms from this
plane are —0.24 A for Cy and C;’’ and 0.24 A for Cy and
Cy’'". According to its x? value, the proposed square face
deviates very significantly from planarity.

In the crystal, each Mo(CN)g?— anion is surrounded
by (#-CsHg)sN* cations and the closest Mo-Mo dis-
tance is 11.39 A. The packing, which is determined to
a great extent by the (#-C.H,),N* cations, is found to
be relatively loose—a conclusion supported by the
extremely low density of the crystal and the observed
disorder and large thermal parameters of the - and
§-carbon atoms of the #-butyl groups. A stereoscopic
view of the packing is presented in Figure 2.

The (n-C/Hq)JN T cations have their expected tetra-
hedral shape, and the bond distances and bond angles
for the cations are summarized in Table III. The
average C-N and C-C distances in the cations are
1.57 (2) and 1.59 (2) A, respectively. The individual
cation bond distances and angles show significant
deviations from the average values, principally as a
result of the disorder and the consequent uncertainty
in the light-atom positions. Whereas the estimated
standard deviations for the anion bond distances and
angles, as obtained from a function and error analysis
using the variance—covariance matrix, are reasonable,
the estimated standard deviations for the cation dis-
tances and angles are probably overly optimistic.

Discussion

On the basis of previous electron spin resonance
studies, the Mo(CN)®~ anion has been assigned a
square-antiprismatic  geometry in the solution
state.” A compelling reason for this assignment is the
relative ordering of the anisotropic g values as deter-
mined from the esr spectrum of a frozen-glass solution
of K3[Mo(CN)s]. In light of the present structural
results, it is clear that the assignment of the square-
antiprismatic geometry for Mo(CN)s®— is in need of
reexamination. We have therefore measured the
electron spin resonance spectrum of [(#-CiH)sN s
[Mo(CN);s] in a polyerystalline sample and in acetoni-
trile solution. The results of these measurements are
given in Table V along with the results reported by
McGarvey for the Mo(CN)s*~ anion.

We find that the isotropic g value of [(n-CyHg)sN |3~
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Figure 2.—A stereoscopic view of the packing as seen from a point slightly off the ¢ axis of the crystal.

The anions are not shown but

the molybdenum positions are shown by the large circles.

[Mo(CN)s] in a polycrystalline sample is equal to that
obtained in acetonitrile solution and that both of these
values agree well with the (g) values reported by
McGarvey for KzMo{(CN)g in an aqueous solution or
calculated from a glycerine glass. Because of the
equality of the isotropic g values determined for Mo-
(CN)s®~ in a variety of samples, we feel that the com-
plex anion maintains its distorted dodecahedral coor-
dination geometry in going from the crystalline to the
solution state and that previous assignments of the
square-antiprismatic geometry for the Mo(CN)s®~
anion in solution may be in error.

value of 2.0023. The previous assignments of the
square-antiprismatic structure for Mo(CN)s*~ in solu-
tion are made primarily because g; is found to be
greater than g .57

The above analysis does not consider the possibility
that the coordination geometry of the anion might be
intermediate between the ideal square antiprism and the
ideal dodecahedron. However, a quick perusal of the
available structural data on the eight-coordinate com-
plexes indicates that it is not unusual to find complexes
possessing intermediate geometries.”” The ground-
state orbital in such complexes is a linear combination

TABLE V
IsoTrROPIC g VALUES AND g-TENSOR COMPONENTS FOR Mo(CN)s3~
Solvent Cation Temp, °K [€3) £l gL Ref

H,O K+ 298 1.9915 6
(=0.0005)

CH;CN (n-CyH )y N+ 298 1.991 This work
(£0.001)

Glycerine K+ 77 1.99202 1.9981 1.9889 6
(=£0.0005) (£0.0005) (=£0.0005)

Powder (n-CoHy )N+ 208 1.991% This work
(£0.001)

Powder (n-CiHq)y N+ 100 1.991¢ This work
(£0.001)

e Calculated from the g-tensor components.
crystalline sample.

b Measured from the resonance position of the single line in the spectrum of the poly-
¢ Although the value of {g) at 100° does not differ from that obtained at 298°K, the line width becomes broader at

lower temperatures as one would expect in a paramagnetically concentrated sample.

The ordering of the d levels for the dodecahedral
geometry has been calculated to be by (xy) > e (xy, yz2)
> ap (22) > by (x? — ¥?) while the corresponding ordering
for the square-antiprismatic geometry has been found
to be e (xy, ¥8) > e (2 — ¥, xy) > a; (2%). Using first-
and second-order perturbation theory, expressions for
the spin-Hamiltonian parameters of a d! complex can be
derived for each of these two geometries.® For d,.y
as the ground-state orbital (a 2B, ground-state), one
predicts that g, should be greater than g;. On the
other hand, for d.. as the ground-state orbital (a 24,
ground state), one predicts that gy should be greater
than g, and that gy should equal the {free-electron

of available metal and ligand functions which transform
under the irreducible representation of the highest
filled energy level, In the point group D, the true
symmetry of the complex in the crystal, the choice of
bonding orbitals is not as exclusive as in the two ideal
cases, Dyg and Dyq. In particular, the inclusion of
d;. character in the ground-state function, which is
predominantly dgaype, is allowed by symmetry and might
lead to significant changes in the theoretical estimates
of the anisotropic g values. It should be noted at this
point that an analysis of the frozen-glass spectrum of
Mo(CN)s®~ yields a value for Ag (Ag = g — g4) which

(17) See, for example, Table I of ref 16.
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is much smaller than that predicted for pure Dy sym-
metry upon theoretical considerations. The inclusion
of a significant amount of d,. character in the ground-
state orbital would lead to the prediction of less anisot-
ropy in the g tensor and, hence, a smaller Ag, as well
as to the correct ordering of the g-tensor components.
The fact that gy does not equal 2.0023 as predicted
from theory lends further support to the idea of inter-
mediate D, symmetry as well as to the notion of ex-
tensive covalent bonding.

In the final analysis, a full calculation of the aniso-
tropic g values including both orbital mixing and
covalent bonding appears necessary but beyond the
scope of the present study. On the basis of the struc-
tural results and the constant isotropic g value of
Mo(CN)s*~ in a variety of samples, we conclude that

Inorganic Chemisiry

the esr parameters for this system are not indicative of
the molecular geometry as predicted from crystal field
considerations.
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The crystal and molecular structure of CH;CCo3(CO)sP(CsH;); has been determined by three-dimensional X-ray analysis.
Crystals of the compound are monoclinie, space group Cond-P2; /¢, with four molecules in a cell of dimensions ¢ = 12.19

(2), b = 16.11 (2), ¢ = 17.19 (4) A; 8 = 120.0 (1)°.

X-Ray data were collected by conventional film techniques using

Co Ka radiation, the intensities of 2189 independent reflections being measured photometrically. The structure has been

refined isotropically by modified full-matrix least-squares techniques to a conventional R factor of 0.099.
molecular structure closely resembles the parent compound CH;CCoy(CO)y being based on a Co; triangle.

The monomeric
The P(CeH;)g

unit has simply replaced one of the equatorial carbonyl groups, causing small distortions in the remainder of the molecule.

Co~-Co bond lengths are in the range 2.490-2.510 (6) A.

Introduction
Substituted  methinyltricobalt  enneacarbonyls,
YCCo3(CO)y (where Y may be halogen, alkyl, aryl,
CO,H, CF;, etc.) are of interest for a number of rea-
sons. First, they are very readily synthesized and
have high air stability.? Second, they possess the
unique structural feature of a tetrahedral carbon atom
triply bridging a triangle of bonded metal atoms.?
Third, there is mass spectral evidence that the Co-C
bridge bonds are unusually strong.* Following the
initial structure determination of the parent compound
(Y = CH;) by Sutton and Dahl? the structures of
Co3(CO)1BHyN (CoHy)s5 and  [CCo3(CO)Y¢1.CO% have
been reported. Both these compounds contain the
basic —CCo3(CO), unit as in the parent compound, with

(1) To whom inquiries should be addressed.
(2) For a summary of references to general properties and methods of

synthesis, see B. H. Robinson and W. 8. Tham, J. Chem. Soc., A, 1784
(1968).

(3) P. W. Sutton and L. ¥. Dahl, J. Am. Chem. Soc., 89, 261 (1967).

(4) See the reference cited in footnote 2.

(3) F. Klanberg, W. B. Askew, and L. J. Guggenberger, /norg. Chem., T,
2265 (1968).

(6) G. Allegra and 8. Valle, Acta Cryst,, B25, 107 (1969).

only slight distortions. Recent studies by Robinson
and coworkers’® indicate that methinyltricobalt ennea-
carbonyls undergo a number of facile chemical reactions
with the production of a variety of stable products in-
cluding the carbonyl carbides Cos(CO)1;CsH, Cog(CO) gs-
C;, and Cos(C0O)uCs® and the complexes YCCo3(CO)e-
(arene). We have undertaken a systematic study of
the structures of these products and report here the
first detailed results.

It has been found’ that alkyl- and arylphosphines
and -arsines react reversibly with YCCo3(CO)g (where
Y = Cl, Br, CH;, CsH;) to give a range of complexes
YCCoy(CO)sL and YCCoy(CO)7L, which are air stable,
volatile, and soluble without decomposition in non-
polar solvents. The solution infrared spectrum’ of
CH;CCo3(CO)sP(CeHs)s showed bands in the bridging
carbonyl region. This suggested the possibility of a
rearrangement of CO groups similar to that which oc-

(7) B. H. Rohinson and W. 8. Tham, J. Organometal. Chem. (Amsterdam),
16, 45 (1969).

(8) B. H. Robinson, J. Spencer, and R. Hodges, Chem. Commun., 1480
(1968).

(9) R. J. Dellaca and B, R. Penfold, Acte Cryst., A28, S170 (146Y).



