shorter than the corresponding distance in the chloro derivative, supporting the hypothesis of a $(d \rightarrow d) \pi$ bond between these atoms. The other distances which Robinson and Ibers suggested¹ might provide additional evidence for such a bond were not significantly different in the two compounds.

Acknowledgments.—The authors wish to thank Dr. A. G. McDiarmid for calling their attention to this problem and Dr. A. P. Hagen for providing the sample of $F_3SiCo(CO)_4$. Special thanks are also due to Mr. R. J. Dellaca for his contribution to the computer programs used in this determination.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201

The Crystal Structure of Solvated Hydridochloro(trichlorosilyl)bis(triphenylphosphine)rhodium, RhHCl(SiCl₃)(P(C₆H₅)₃)₂·xSiHCl₃

BY KENNETH W. MUIR AND JAMES A. IBERS

Received July 25, 1969

The crystal structure of solvated hydridochloro(trichlorosilyl)bis(triphenylphosphine)rhodium, RhHCl(SiCl₃)(P(C₆H₅)₃)₂. xSiHCl₃, has been determined by X-ray diffraction methods. The compound crystallizes in the space group C₁¹-PĪ of the triclinic system. There are two molecules of RhHCl(SiCl₃)(P(C₆H₅)₃)₂ in a unit cell of dimensions a = 11.727 (5) Å, b = 12.952 (6) Å, c = 13.365 (5) Å, $\alpha = 104.65$ (2)°, $\beta = 98.08$ (2)°, $\gamma = 94.43$ (2)°. The structure has been refined by least-squares methods to a conventional *R* factor of 0.064 over 2485 counter-diffractometric data. It consists of discrete monometric molecules of RhHCl(SiCl₃)(P(C₆H₅)₃)₂ and SiHCl₃. The latter are disordered over four different sites; the SiHCl₃:Rh ratio is 0.397 (7). The rhodium coordination polyhedron may be described as a highly distorted trigonal bipyramid, with *trans* phosphines at the apices and H, Cl, and SiCl₃ in the trigonal plane. Alternatively, the coordination about the formally d⁶ Rh(III) ion is distorted octahedral if one chooses to include at the sixth coordination site the contact of 2.79 Å with an *ortho*-hydrogen atom on a phenyl ring of a triphenylphosphine group. The short Rh-Si distance of 2.203 (4) Å is consistent with back-donation of electrons from the metal to the silyl group.

Introduction

The nature of metal-silicon bonding in transition metal-silyl complexes is at present a subject of debate.^{1,2} Structural details have been published only for the cobalt complexes $Co(SiR_3)(CO)_4$ (R = F,³ Cl,⁴ H⁵) and for Mn(Si(CH₃)₃)(CO)₅.⁶ It is our contention that a fruitful discussion of such problems as the relative importance of d_{π} - d_{π} back-bonding and electronegativity differences in stabilizing metal-silicon bonds and whether the metal-silicon bond may appropriately be considered as a metal-metal bond will only be possible if adequate structural data are at hand on a sufficient number of representative metal-silyl complexes.

Accordingly, we have determined the crystal structure of the formally d⁶ complex hydridochloro(trichlorosilyl)bis(triphenylphosphine)rhodium(III), Rh-HCl(SiCl₃)($P(C_6H_5)_3$)₂. This compound was chosen because we believed that back-donation to silicon would be favored by the presence of a second- as opposed to a first-row transition metal and by the absence of strongly π -bonding ligands such as carbonyl. In addition, this compound contains five-coordinate rhodium(III). Five-coordination is much less common in d⁶ systems than it is in d⁰, d⁸, or d¹⁰ systems;⁷ the only d⁶ complexes for which structural data are available are the ruthenium(II) complexes RuXCl(P(C₆H₅)₃)₃ (X = Cl,⁸ H⁹) and Rh(CH₃)I₂(P(C₆H₅)₃)₂.¹⁰ Further motives for our interest in this molecule were the presence of a metal-hydrogen bond and the relationship between the structure of the molecule and its postulated role as an intermediate in the catalytic hydrosilation of olefins.

The compound RhHCl(SiCl₃)($P(C_6H_5)_3$)₂ has been prepared independently by two groups. Haszeldine, Parish, and Parry¹¹ obtained an unsolvated complex. While this work was underway, de Charentenay, Osborn, and Wilkinson¹² reported a slightly different preparation which yields solvated complexes; these authors suggested that the complexes containing free

(7) E. L. Muetterties and R. A. Schunn, Quart Rev. (London), 20, 245

(11) R. N. Haszeldine, R. V. Parish, and D. J. Parry, J. Organometal.

⁽¹⁾ F. G. A. Stone in "New Pathways in Inorganic Chemistry," E. A. V. Ebsworth, A. G. Maddox, and A. G. Sharpe, Ed., Cambridge University Press, Cambridge, England, 1968.

⁽²⁾ B. J. Aylett, Advan. Inorg. Chem. Radiochem., 11, 249 (1968).
(3) K. Emerson, P. R. Ireland, and W. T. Robinson, Inorg. Chem., 9, 436 (1970).

⁽⁴⁾ W. T. Robinson and J. A. Ibers, *ibid.*, 6, 1208 (1967).

⁽⁵⁾ A. G. Robiette, G. M. Sheldrick, R. N. F. Simpson, B. J. Aylett, and J. A. Campbell, J. Organometal. Chem. (Amsterdam), 14, 279 (1968).

⁽⁶⁾ R. S. Hamilton and E. R. Corey, Abstracts, 156th National Meeting of the American Chemical Society, Atlantic City, N. J., Sept 1968, No. INOR 025.

^{(1966).}

⁽⁸⁾ S. J. La Placa and J. A. Ibers, Inorg. Chem., 4, 778 (1965).
(9) A. C. Skapski and P. G. H. Troughton, Chem. Commun., 1230 (1968).

 ⁽¹⁰⁾ P. G. H. Troughton and A. C. Skapski, *ibid.*, 575 (1968).

Chem. (Amsterdam), 9, 13 (1967); J. Chem. Soc., A, 683 (1969). (12) R. de Charanteney, I. A. Osbarn, and C. Willeimon, ibid. A. 787

⁽¹²⁾ F. de Charentenay, J. A. Osborn, and G. Wilkinson, $ibid.,\,A,\,787$ (1968).

chlorosilanes might involve weak coordination of the substituted silane molecule *via* chlorine to the rhodium atom of RhHCl(SiCl₃)($P(C_6H_5)_3$)₂.

Collection and Reduction of the X-Ray Data

Two samples of RhHCl(SiCl₃) ($P(C_6H_5)_3$)₂ were kindly given to us by Dr. R. V. Parish. The first, prepared by the original method of Haszeldzine, Parish, and Parry,¹¹ proved not to contain crystals suitable for a diffraction study. All X-ray measurements were therefore made on crystals from the second sample, which was prepared by treating trichlorosilane with solid chlorotris(triphenylphosphine)rhodium and subsequently pumping off the volatile products. The crystals decompose rapidly in air. Those used in the present work were mounted in well-dried glass capillaries under dry nitrogen.

Preliminary optical and photographic examination of the crystals suggested that they belong to the triclinic system. The dimensions of the Delaunay reduced cell, determined at 22° by the least-squares method outlined below, are a = 11.727 (5) Å, b =12.952 (6) Å, c = 13.365 (5) Å, $\alpha = 104.65$ (2)°, $\beta =$ 98.08 (2)°, $\gamma = 94.43$ (2)° (λ Mo K α_1) 0.70930 Å). The density calculated for two solvent-free molecules per unit cell is 1.373 g cm⁻³. Owing to the instability of the crystals in air, their density was not measured. The centrosymmetric triclinic space group C_i¹-PĪ was assumed to be the correct one; this assumption has been confirmed by a successful structure analysis.

Intensity measurements were made on a Picker fourcircle diffractometer using procedures which have already been described in detail.18 A crystal of dimensions $0.14 \text{ mm} \times 0.20 \text{ mm} \times 0.33 \text{ mm}$ (in the a^* , b^* , and c^* directions) was mounted on the diffractometer so that c^* was roughly coincident with the ϕ axis. The mean half-width of a number of narrow source-open counter ω scans¹⁴ was 0.30°, indicating that the mosaicity of the specimen was relatively high. These scans were, however, free of fine structure. Fourteen reflections in the range $10^{\circ} < 2\theta$ (Mo K α_1) $\leq 30^{\circ}$ were carefully centered through a top-bottom device and then through a narrow vertical slit at a takeoff angle at 0.5° to yield values of χ , ϕ , and 2θ for each reflection. These observations were used to determine the crystal orientation and cell dimensions by the method of least squares.^{13,15} Intensity measurements were made with the θ -2 θ scan technique at a takeoff angle of 2.8°. Each peak was scanned from -1.0 to $+1.0^{\circ}$ in 2θ from the Mo K α_1 center at a scan rate of 1°/min. The background was counted for 20 sec at each extreme of the scan range. Molybdenum radiation was used, in conjunction with a 3-mil niobium β filter and a pulseheight analyzer set to accept approximately a 90% window, centered on the Mo K α peak. The distances of the crystal from the source and from the counter were, respectively, 21 and 30 cm. The dimensions of the counter aperture were 6 mm vertically and 4 mm horizontally. Coincidence losses were cut by inserting copper foil attenuators into the diffracted beam until the maximum counting rate during a scan was less than 7000 counts/sec.

The intensities of 3342 independent reflections in the range $2\theta(Mo K\alpha_1) \leq 39^\circ$ were measured. In the range $36^{\circ} \leq 2\theta$ (Mo K α_1) $\leq 39^{\circ}$ few reflections were found to be significantly above background. The intensities of four strong reflections were measured periodically throughout the experiment in order to monitor crystal and electronic stability. The intensities of these standards gradually decreased, until they were about 90%of their initial values, presumably owing to decomposition of the specimen. The observed peak intensities were corrected on the assumption that decomposition was linear with time. The integrated intensities and their standard deviations were derived as before.13 A value of p = 0.04 was assumed, where $\sigma(I)/I$ approaches p as the counting errors become negligible.¹³ The intensities of 2485 reflections were greater than three times their estimated standard deviations. Only these reflections were used in the subsequent analysis. In order to apply corrections for absorption, the dimensions of the crystal were determined and then the faces of the crystal were indexed on the diffractometer. All members of the forms $\{100\}$, $\{010\}$, and $\{001\}$ were exhibited. The calculated transmission coefficients, based on a linear absorption coefficient of 8.4 cm^{-1} for Mo K $\bar{\alpha}$ radiation, ranged from 0.76 to 0.90. It was subsequently found (vide infra) that the cell contains about 0.4 molecule of SiHCl₃ per molecule of the rhodium complex. The calculated density then becomes 1.46 g/cm³ and the linear absorption coefficient becomes 9.4 cm⁻¹. The relative errors in the transmission coefficients introduced by this change in the linear absorption coefficient are negligible.

Structure Determination

The positions of the rhodium atom and of the atoms of the trichlorosilyl ligand were determined from the three-dimensional Patterson function. The sites of the remaining nonhydrogen atoms were obtained from subsequent electron density syntheses. The model so obtained was refined by the method of full-matrix least squares. The function minimized was $\Sigma w \Delta^2$, where $\Delta = |F_o| - |F_c|, |F_o|$ and $|F_c|$ are, respectively, the observed and calculated structure amplitudes, and $w = 1/\sigma^2(F_o) = 4F_o^2/\sigma^2(F_o^2)$. The atomic scattering factors used throughout the analysis were taken from ref 16, with the exceptions of those for Rh¹⁷ and H.¹⁸ The real and imaginary anomalous scattering corrections of

⁽¹³⁾ P. W. R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 6, 197 (1967).

⁽¹⁴⁾ T. C. Furnas, "The Single Crystal Orienter Instruction Manual," General Electric Co., Milwaukee, Wis., 1957.

⁽¹⁵⁾ The FORTRAN program PICK for the CDC 6400 was used. In addition to the other local programs used in this work, local modifications of Hamilton's GONO absorption correction program, Busing and Levy's ORFEF function and error program, Johnson's ORTEP thermal ellipsoid plotting program, and Zalkin's FORDAP Fourier program were used. Our least-squares program. NUCLS in its nongroup form resembles the Busing-Levy ORFLS program.

⁽¹⁶⁾ J. A. Ibers in "International Tables for X-Ray Crystallography,"

<sup>Vol. III, The Kynoch Press, Birmingham, England, 1962.
(17) D. T. Cromer and J. A. Waher, Acta Cryst., 18, 104 (1965).</sup>

⁽¹⁸⁾ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42, 3175 (1965).

POSITIO.	NAL, IHERMAL,	AND GROUP P	ARAMETERS	FOR KINC		$C_{6}\Pi_{5}/_{3}/_{2} \cdot x S_{1}C$	13	
x	У	z	β_{11} or B_{1so}^{a}	β_{22}	β_{33}	β_{12}	β13	\$ 28
0.19467(10)	0.12720(8)	-0.22192(8)	789(14)	651(11)	643(11)	52(7)	87(7)	156(7)
0.3382(4)	0.2019(3)	-0.2795(3)	882(43)	893(37)	1016(40)	-107(31)	238(32)	111 (30)
0.3228(4)	0.3487(4)	-0.3098(4)	1489(54)	1305(45)	1530(49)	-43(38)	477(40)	718 (38)
0.3984(5)	0.1198(4)	-0.4094(4)	1852(65)	1722(56)	1802(58)	-616(47)	1163(50)	-494(44)
0.4835(4)	0.2341(4)	-0.1650(4)	946(43)	1274(44)	1727(52)	-209(33)	-245(36)	351(37)
0.2398(3)	0.1019(3)	-0.0506(3)	1008(39)	864(32)	667(28)	108(26)	-17(25)	229(23)
0.1185(3)	0.2841(3)	-0.1434(3)	866(37)	560(28)	672(30)	44(25)	144(25)	156 (22)
0.2103(3)	-0.0522(3)	-0.3018(3)	849(38)	653(30)	656(30)	112(26)	24(25)	119 (23)
1/2	$^{1}/_{2}$	1/2	26.8(9)					
0.461(2)	0.356(1)	0.438(1)	26.2(7)					
0.322(2)	0.517(1)	0.493(1)	24.6(7)					
0.15	0.14	-0.33						
$x_{\mathrm{e}}{}^{d}$		Уc	zc		δ	e		η
0.2695	5(6) 0.	4304(5)	0.0731(5) —	1.253(8)	2.459(6)	-1.43	8(7)
0.0411	1(5) 0.	4448(5)	-0.2806(5)	2.544(8)	2.369(6)	2.34	7(8)
-0.1261	L(5) 0.	2111(4)	-0.0817(4)	0.263(5)	0.147(5)	0.42	8(5)
0.3956	-0.	1725(6)	-0.1884(5) —	0.676(6)	0.230(6)	2.78	0(6)
0.2336	3(5) - 0.	1190(5)	-0.5456(5)	0.681(6)	3.093(6)	1.65	4(6)
-0.0389	$\Theta(5) = -0.$	1663(4)	-0.2886(5) —	1.090(7)	2.396(5)	1.38	5(8)
	x 0.19467 (10) ^b 0.3382 (4) 0.3288 (4) 0.3288 (4) 0.3984 (5) 0.4835 (4) 0.2398 (3) 0.1185 (3) 0.2103 (3) ¹ / ₂ 0.461 (2) 0.322 (2) 0.15 x _c ^d 0.2698 0.0411 -0.1261 0.3956 0.2336 -0.0385	$\begin{array}{c cccc} x & y \\ 0.19467(10)^{b} & 0.12720(8) \\ 0.3382(4) & 0.2019(3) \\ 0.3228(4) & 0.3487(4) \\ 0.3984(5) & 0.1198(4) \\ 0.4835(4) & 0.2341(4) \\ 0.2398(3) & 0.1019(3) \\ 0.1185(3) & 0.2841(3) \\ 0.2103(3) & -0.0522(3) \\ ^{1/2} & ^{1/2} \\ 0.461(2) & 0.356(1) \\ 0.322(2) & 0.517(1) \\ 0.15 & 0.14 \\ & x_{c}^{d} \\ \hline & 0.2695(6) & 0. \\ 0.0411(5) & 0. \\ 0.3956(6) & -0. \\ 0.2336(5) & -0. \\ -0.0389(5) & -0. \\ \end{array}$	x y z 0.19467 (10) ^b 0.12720 (8) $-0.22192 (8)$ 0.3382 (4) 0.2019 (3) $-0.2795 (3)$ 0.3228 (4) 0.3487 (4) $-0.3098 (4)$ 0.3984 (5) 0.1198 (4) $-0.4094 (4)$ 0.4835 (4) 0.2341 (4) $-0.1650 (4)$ 0.2398 (3) 0.1019 (3) $-0.0506 (3)$ 0.1185 (3) 0.2841 (3) $-0.1434 (3)$ 0.2103 (3) $-0.0522 (3)$ $-0.3018 (3)$ $1/2$ $1/2$ $1/2$ 0.461 (2) 0.356 (1) 0.438 (1) 0.322 (2) 0.517 (1) 0.493 (1) 0.15 0.14 -0.33 x_c^d y_c $0.2695 (6)$ $0.4304 (5)$ 0.0411 (5) 0.2111 (4) $0.3956 (6)$ $-0.1725 (6)$ 0.2336 (5) $-0.1663 (4)$ $-0.0389 (5)$ $-0.1663 (4)$	POSITIONAL, THERMAL, AND GROUP PARAMETERS x y z β_{11} or B_{160}^a 0.19467 (10) ^b 0.12720 (8) -0.22192 (8) 789 (14) 0.3382 (4) 0.2019 (3) -0.2795 (3) 882 (43) 0.3228 (4) 0.3487 (4) -0.3098 (4) 1489 (54) 0.3984 (5) 0.1198 (4) -0.4094 (4) 1852 (65) 0.4835 (4) 0.2341 (4) -0.1650 (4) 946 (43) 0.2398 (3) 0.1019 (3) -0.0506 (3) 1008 (39) 0.1185 (3) 0.2841 (3) -0.1434 (3) 866 (37) 0.2103 (3) -0.0522 (3) -0.3018 (3) 849 (38) $1/a$ $1/a$ $1/a$ 26.8 (9) 0.461 (2) 0.356 (1) 0.438 (1) 26.2 (7) 0.322 (2) 0.517 (1) 0.493 (1) 24.6 (7) 0.15 0.14 -0.33 x_c^d y_o z_o 0.2695 (6) 0.4304 (5) 0.0731 (4) 0.0917 (4) 0.3956 (6) -0.1725 (6) -0.1884 (4) 0.2336 (5) -0.1190 (5) -0.5456 (4) -0.2386 (5) -0.1663 (4) -0.2886 (4) <t< td=""><td>FORTHONAL, THERMAL, AND GROUP FARAMETERS FOR KIRK x y z β_{11} or $B_{150}a^a$ β_{22} 0.19467 (10)^b 0.12720 (8) -0.22192 (8) 789 (14) 651 (11) 0.3382 (4) 0.2019 (3) -0.2795 (3) 882 (43) 893 (37) 0.3228 (4) 0.3487 (4) -0.3098 (4) 1489 (54) 1305 (45) 0.3984 (5) 0.1198 (4) -0.4094 (4) 1852 (65) 1722 (56) 0.4835 (4) 0.2341 (4) -0.1650 (4) 946 (43) 1274 (44) 0.2398 (3) 0.1019 (3) -0.0506 (3) 1008 (39) 864 (32) 0.1185 (3) 0.2841 (3) -0.1434 (3) 866 (37) 560 (28) 0.2103 (3) -0.0522 (3) -0.3018 (3) 849 (38) 653 (30) ¹/2 ¹/2 1/2 26.8 (9) 0.461 (2) 0.356 (1) 0.438 (1) 26.2 (7) 0.322 (2) 0.517 (1) 0.493 (1) 24.6 (7) 0.15 0.14 -0.33 x₆^d y₆ x_6^d y₆ z₆ 0.2695 (6) 0.4304 (5) 0.0731 (5) <td>POSITIONAL, THERMAL, AND GROUP FARAMETERS FOR KITCI (SICI3) (P(-xyzβ_{11} or $B_{150}^{a}$$\beta_{22}$$\beta_{33}$0.19467 (10)^b0.12720 (8)-0.22192 (8)789 (14)651 (11)643 (11)0.3382 (4)0.2019 (3)-0.2795 (3)882 (43)893 (37)1016 (40)0.3228 (4)0.3487 (4)-0.3098 (4)1489 (54)1305 (45)1530 (49)0.3984 (5)0.1198 (4)-0.4094 (4)1852 (65)1722 (56)1802 (58)0.4835 (4)0.2341 (4)-0.1650 (4)946 (43)1274 (44)1727 (52)0.2398 (3)0.1019 (3)-0.0506 (3)1008 (39)864 (32)667 (28)0.1185 (3)0.2841 (3)-0.1434 (3)866 (37)560 (28)672 (30)0.2103 (3)-0.0522 (3)-0.3018 (3)849 (38)653 (30)656 (30)$1/_2$$1/_2$$1/_2$$26.8$ (9)0.461 (2)0.356 (1)0.438 (1)26.2 (7)0.322 (2)0.517 (1)0.493 (1)24.6 (7)$0.15$$0.14$$-0.33$$x_c^d$$y_c$$z_6$$\delta$$0.2695$ (6)0.4304 (5)0.0731 (5)-1.253 (8)0.0411 (5)0.2111 (4)-0.0817 (4)0.263 (5)0.3956 (6)-0.1725 (6)-0.1884 (5)-0.676 (6)0.2336 (5)-0.1663 (4)-0.2886 (5)-1.090 (7)</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></t<>	FORTHONAL, THERMAL, AND GROUP FARAMETERS FOR KIRK x y z β_{11} or $B_{150}a^a$ β_{22} 0.19467 (10) ^b 0.12720 (8) -0.22192 (8) 789 (14) 651 (11) 0.3382 (4) 0.2019 (3) -0.2795 (3) 882 (43) 893 (37) 0.3228 (4) 0.3487 (4) -0.3098 (4) 1489 (54) 1305 (45) 0.3984 (5) 0.1198 (4) -0.4094 (4) 1852 (65) 1722 (56) 0.4835 (4) 0.2341 (4) -0.1650 (4) 946 (43) 1274 (44) 0.2398 (3) 0.1019 (3) -0.0506 (3) 1008 (39) 864 (32) 0.1185 (3) 0.2841 (3) -0.1434 (3) 866 (37) 560 (28) 0.2103 (3) -0.0522 (3) -0.3018 (3) 849 (38) 653 (30) ¹ /2 ¹ /2 1/2 26.8 (9) 0.461 (2) 0.356 (1) 0.438 (1) 26.2 (7) 0.322 (2) 0.517 (1) 0.493 (1) 24.6 (7) 0.15 0.14 -0.33 x ₆ ^d y ₆ x_6^d y ₆ z ₆ 0.2695 (6) 0.4304 (5) 0.0731 (5) <td>POSITIONAL, THERMAL, AND GROUP FARAMETERS FOR KITCI (SICI3) (P(-xyzβ_{11} or $B_{150}^{a}$$\beta_{22}$$\beta_{33}$0.19467 (10)^b0.12720 (8)-0.22192 (8)789 (14)651 (11)643 (11)0.3382 (4)0.2019 (3)-0.2795 (3)882 (43)893 (37)1016 (40)0.3228 (4)0.3487 (4)-0.3098 (4)1489 (54)1305 (45)1530 (49)0.3984 (5)0.1198 (4)-0.4094 (4)1852 (65)1722 (56)1802 (58)0.4835 (4)0.2341 (4)-0.1650 (4)946 (43)1274 (44)1727 (52)0.2398 (3)0.1019 (3)-0.0506 (3)1008 (39)864 (32)667 (28)0.1185 (3)0.2841 (3)-0.1434 (3)866 (37)560 (28)672 (30)0.2103 (3)-0.0522 (3)-0.3018 (3)849 (38)653 (30)656 (30)$1/_2$$1/_2$$1/_2$$26.8$ (9)0.461 (2)0.356 (1)0.438 (1)26.2 (7)0.322 (2)0.517 (1)0.493 (1)24.6 (7)$0.15$$0.14$$-0.33$$x_c^d$$y_c$$z_6$$\delta$$0.2695$ (6)0.4304 (5)0.0731 (5)-1.253 (8)0.0411 (5)0.2111 (4)-0.0817 (4)0.263 (5)0.3956 (6)-0.1725 (6)-0.1884 (5)-0.676 (6)0.2336 (5)-0.1663 (4)-0.2886 (5)-1.090 (7)</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	POSITIONAL, THERMAL, AND GROUP FARAMETERS FOR KITCI (SICI3) (P(-xyz β_{11} or B_{150}^{a} β_{22} β_{33} 0.19467 (10) ^b 0.12720 (8) -0.22192 (8)789 (14)651 (11)643 (11)0.3382 (4)0.2019 (3) -0.2795 (3)882 (43)893 (37)1016 (40)0.3228 (4)0.3487 (4) -0.3098 (4)1489 (54)1305 (45)1530 (49)0.3984 (5)0.1198 (4) -0.4094 (4)1852 (65)1722 (56)1802 (58)0.4835 (4)0.2341 (4) -0.1650 (4)946 (43)1274 (44)1727 (52)0.2398 (3)0.1019 (3) -0.0506 (3)1008 (39)864 (32)667 (28)0.1185 (3)0.2841 (3) -0.1434 (3)866 (37)560 (28)672 (30)0.2103 (3) -0.0522 (3) -0.3018 (3)849 (38)653 (30)656 (30) $1/_2$ $1/_2$ $1/_2$ 26.8 (9)0.461 (2) 0.356 (1) 0.438 (1) 26.2 (7) 0.322 (2) 0.517 (1) 0.493 (1) 24.6 (7) 0.15 0.14 -0.33 x_c^d y_c z_6 δ 0.2695 (6) 0.4304 (5) 0.0731 (5) -1.253 (8) 0.0411 (5) 0.2111 (4) -0.0817 (4) 0.263 (5) 0.3956 (6) -0.1725 (6) -0.1884 (5) -0.676 (6) 0.2336 (5) -0.1663 (4) -0.2886 (5) -1.090 (7)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table I cositional, Thermal, and Group Parameters for $RhHCl(SiCl_2)(P(C_sH_2)_2) \cdot xSiCl_2$

^a The β_{ij} have been multiplied by 10⁵; the form of the anisotropic temperature factor is: $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl]]$. ^b Throughout this paper limits of errors are estimated standard deviations. They are given in units of the least significant digits of the quantity to which they refer. ^cSi(S), Cl(S1), and Cl(S2) are the independent atoms of the disordered SiHCl₃ solvent in the cell. ^d x_e , y_e , z_e are fractional coordinates of the phenyl-ring centroids; the angles δ , ϵ , η (radians) have been defined previously.²⁴ ^eP(1)R(1): phenyl ring 1 bonded to phosphorus atom P(1).

Cromer¹⁹ for Rh, Cl, P, and Si were applied to the calculated structure factors.²⁰ In all refinement calculations the phenyl rings were constrained to D_{6h} symmetry and the C–C bond length was assumed to be 1.392 Å. In the initial refinement the nongroup atoms were constrained to isotropic vibration, and a single isotropic vibrational parameter was adjusted for each group. This refinement converged to values of *R* and $R_{\rm w}$ of 0.12 and 0.15, respectively, where the reliability indices are $R = \Sigma |\Delta| / \Sigma |F_{\rm o}|$ and $R_{\rm w} = (\Sigma w \Delta^2 / \Sigma w F_{\rm o}^2)^{1/2}$.

The reasons for the poor agreement at this stage of the analysis were apparent on inspection of a difference map. Situated close to the center of symmetry at $\binom{1}{2}, \frac{1}{2}, \frac{1}{2}$ were three independent peaks, each about $2 e^{-/\text{Å}^3}$ in height. Since these peaks were not within bonding distance of any atoms of the RhHCl(SiCl₃)(P- $(C_6H_5)_8)_2$ molecule, we concluded that they were due to the presence of solvent of crystallization. We were unable to perform any experiments on the crystal to determine the nature of the solvent. However, the samples of RhHCl(SiCl₃) ($P(C_6H_5)_3$)₂ prepared by Wilkinson and his coworkers¹² by direct reaction of trichlorosilane with $RhCl(P(C_6H_5)_3)_3$ contained onethird of a molecule of trichlorosilane per rhodium. In the absence of definitive analytical data for the crystal used in the present work we have assumed that the residual peaks on the difference map are due to highly disordered trichlorosilane molecules. It was also apparent from this difference map that the motions of several of the heavier atoms, in particular those of the trichlorosilyl ligand, were highly anisotropic.

In a further round of calculations the positional parameters of the group and nongroup atoms were again adjusted; anisotropic thermal parameters for the

nongroup atoms and individual isotropic thermal parameters for the carbon atoms of the phenyl rings were refined. In these calculations reflections for which $\lambda^{-1} \sin \theta < 0.29$ Å⁻¹ were assigned weights of zero. This course was adopted for the following reason. Inspection of the results of isotropic refinements with and without solvent contributions indicated, as expected, that scattering from the disordered solvent molecules made little or no contribution to the highangle data. The positional and thermal parameters for the $RhHCl(SiCl_3)(P(C_6H_5)_3)_2$ molecule derived from the high-angle data alone should thus be relatively unbiased by our failure to correct for the solvent scattering or by the adoption of an inadequate model for such scattering. The high-angle refinement led to values of R and R_w of 0.062 and 0.068 for the 1804 highangle data and to values of 0.084 and 0.133 for all 2485data.

In an attempt to account for the solvent scattering, a trichlorosilane group was next introduced into the calculations. An Si-Cl distance of 2.01 Å was assumed, as were tetrahedral angles within the molecule. The ratio of solvent to rhodium complex was taken to be 1:3. The refinement converged after two cycles to values of R and R_w of 0.079 and 0.106 (146 variables, 2485 data). The resultant positions of the atoms within the solvent molecule are consistent with those three peaks found on the previous difference Fourier map. Two of those peaks correspond to two of the chlorine atoms. The third peak (the one nearest to $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ results from the overlap of the silicon atom with the third chlorine atom, yet this description of the solvent scattering is still unsatisfactory, for the major features in a subsequent difference Fourier map were all in the region of this molecule, the highest peak being 1.7 $e^{-}/Å^3$. Attempts to reduce these residual peaks

⁽¹⁹⁾ D. T. Cromer, Acta Cryst., 18, 17 (1965).

⁽²⁰⁾ J. A. Ibers and W. C. Hamilton, $\mathit{ibid., 17},\,781$ (1964).

by variation in the amount of trichlorosilane in the cell were not successful. The best agreement with the data is achieved when a ratio of one molecule of solvent to three molecules of the rhodium complex is used.

A careful examination of the electron density in the vicinity of 1/2, 1/2, 1/2 on the original difference Fourier map suggests that the solvent molecules are arranged in a more complex manner than the simple disordering of a molecule across a center of symmetry assumed above. Although no unique description is possible, a model in which there is equal disordering of two independent solvent molecules about the center of symmetry, leading to four orientations of four halfmolecules, reproduces well the main features of the density map. Yet such a model seems too elaborate and too uncertain to justify the direct refinement of two independent trichlorosilane groups. Rather we chose to simulate this model by placing individual atoms in the positions corresponding to the three main peaks on the difference Fourier map. The silicon atom was placed at 1/2, 1/2, 1/2, near the position of one of the peaks. This atom was assigned a multiplier α which was initially given the value 1/3. The two remaining solvent peaks were assumed to be chlorine atoms. Each chlorine atom was assigned a multiplier 1.5α to obtain the overall stoichiometry Si:Cl = 1:3. In this refinement all data were again used, and the positional and thermal parameters were adjusted for all the nonhydrogen atoms. The occupancy parameter α was also refined. Also in this final refinement fixed contributions for the scattering of the hydrogen atoms of the phenyl rings were introduced.

This refinement led to values of R and R_w of 0.064 and 0.079 (156 variabless, 2485 data). The final positional and thermal parameters are presented in Tables I and II, and the final values $10|F_0|$ and $10|F_0|$ (in electrons) are given in Table III. The parameters of the RhHCl(SiCl₃)(P(C₆H₅)₃)₂ molecule given in Tables I and II differ in most cases by less than three times their estimated standard deviations from the corresponding values obtained from the high-angle data alone. The differences from the group refinement are even smaller. Thus any systematic errors resulting from possibly incorrect treatment of the solvent scattering is small. No important conclusion from the analysis would be altered if the results of the high-angle refinement were used instead of those given in Tables I and II.

The standard deviation of an observation of unit weight is 2.4, suggesting either that the errors in $|F_0|$ have been underestimated or, more probably, that the solvent model is not wholly adequate since the mean $\Sigma w \Delta^2$ shows no systematic variation with $|F_0|$ but decreases steadily with increasing $\lambda^{-1} \sin \theta$. For none of the low-intensity reflections excluded from the analysis was $F_0^2/\sigma(F_0^2) > 2.5$. The highest peak in a difference map calculated with all 2485 data was $1.0 \text{ e}^-/\text{Å}^3$ or 25% of the mean height of a carbon atom in an observed electron density synthesis. This peak is associated with the disordered solvent. In a difference map

TABLE II Derived Parameters for Group Atoms

Atom	x	У	z	<i>B</i> , Å ²
		P(1)R(1)		
$C(1)^a$	0.2028(9)	0.3670(9)	-0.0198(6)	4.6(3)
C(2)	0.1591(7)	0.3831(9)	0.0739 (8)	6.0(4)
C(3)	0.2258(9)	0.4464(7)	0.1667(6)	6.8(4)
C(4)	0.3363(9)	0.4937(10)	0.1659(7)	7.1(4)
C(5)	0.3800(7)	0.4777(10)	0.0722(9)	8.0(4)
C(6)	0.3132 (8)	0.4143(7)	-0.0206(6)	7.0(4)
		$\mathbf{D}(1)\mathbf{D}(0)$		
C(1)	0.0779(12)	P(1)R(2) = 0.2785(7)	0,0001 (0)	4 7 (0)
C(1)	0.0772(13) 0.1012(7)	0.3703(7)	-0.2201(6)	4.7(3)
C(2)	0.1013(7)	0.4873(8)	-0.1789(6)	6.0(3)
C(3)	0.0052(12)	0.5550(5)	-0.2394(8)	7.3(4)
C(4)	0.0051(13)	0.5131(8)	-0.3410(7)	7.5(4)
C(5)	-0.0191(8)	0.4023(8)	-0.3822(5)	7.4(4)
C(0)	0.0170(11)	0.3339(5)	-0.3218(7)	5.6(3)
		P(1)R(3)		
C(1)	-0.0220(6)	0.2426(6)	-0.1103(6)	3.7(3)
C(2)	-0.1009(7)	0.3164(5)	-0.0865(7)	5.0(3)
C(3)	-0.2050(6)	0.2849(6)	-0.0579(7)	5.8(3)
C(4)	-0.2302(6)	0.1796(7)	-0.0531(7)	5.0(3)
C(5)	-0.1513(7)	0.1058(5)	-0.0770(7)	5.3(3)
C(6)	-0.0472(6)	0.1373(6)	-0 1056 (6)	4 4 (2)
H(6)	0.010	0.085	-0.121	1.1 (0)
(-)	0.000	0.000	0	
~ (1)		P(2)R(1)		
C(1)	0.3136(8)	-0.1215(7)	-0.2379(7)	5.2(3)
C(2)	0.4183 (10)	-0.0638(6)	-0.1823(8)	7.3(4)
C(3)	0.5003(7)	-0.1149(9)	-0.1329(8)	9.3(5)
C(4)	0.4776(9)	-0.2236(9)	-0.1390 (8)	8.9(5)
C(5)	0.3728(10)	-0.2812(6)	-0,1945(9)	8.3(4)
C(6)	0.2909(7)	-0.2302(7)	-0.2440(7)	5.8(3)
		P(2)R(2)		
C(1)	0.2221(8)	-0.0939(7)	-0.4402(5)	47(3)
C(2)	0.2936(8)	-0.1703(7)	-0.4785(7)	$\frac{1}{6}$ 0 (4)
C(3)	0.3050(8)	-0.1955(7)	-0.5840(8)	7.4(4)
C(4)	0.2450(9)	-0.1442(8)	-0.6511(5)	6 0 (4)
C(5)	0.1735(8)	-0.0677(8)	-0.6128(7)	0.9(4)
C(6)	0.1621(7)	-0.0077(8)	-0.0128(7)	7.0(4)
$\mathbf{C}(0)$	0.1021(7)	-0.0420(0)	-0.5073 (7)	5.5(3)
		P(2)R(3)		
C(1)	0.0701(7)	-0.1213 (9)	-0.2966(7)	4.3(3)
C(2)	0.0428(7)	-0.1215(10)	-0.1986(5)	5.2(3)
C(3)	-0.0661(8)	-0.1664(7)	-0.1905(6)	6.1(3)
C(4)	-0.1478(7)	-0.2112(10)	-0.2805(8)	7.1(4)
C(5)	-0.1206(7)	-0.2110(11)	-0.3786(6)	7.1(4)
C(6)	-0.0117(8)	-0.1661(7)	-0.3866(5)	5.6(3)
^a In each group $C(1)$ is bonded to a phosphorus atom and $C(4)$				

is para to C(1).

based on the data for which $\lambda^{-1} \sin \theta < 0.30$ Å⁻¹ the top two peaks were again associated with the solvent. However, the third highest peak, with $\rho = 0.55$ e/Å³, is 1.5 Å from the rhodium atom, in a position consistent with its being due to the hydridic hydrogen atom. Positional parameters obtained from this map are given for the hydridic hydrogen H in Table I. The bond distances and angles derived from them (Table IV) are necessarily of extremely low accuracy.

Description of the Structure

The crystal structure is built from discrete monomeric molecules of composition RhHCl(SiCl₈)(P-(C₈H₅)₈)₂. Figures 1 and 2, respectively, show perspective views of the entire molecule, and of the coordination around the rhodium atom. The structure also conTABLE III

 $Observed \text{ and } Calculated \text{ Structure Amplitudes (in electrons} \times 10) \text{ for } RhHCl(SiCl_3)(P(C_6H_5)_3)_2 \cdot \alpha SiCl_3 \otimes (SiCl_3) \otimes (SiCl$

K 0000000011111111111111111111111111111	
45444545454545454545454444444444444444	

TABLE III (Continued)						
K L FO FC K L FO FC K L FO	FC K L FO FC K L FO FC	K L FO FC K L FO FC K L F	O FC K L FO FC K L FO FC K L FO FC			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
-5 2 226 240 -2 5 355 361 2 -6 303 -5 3 304 269 -2 6 134 146 2 -4 286 -5 4 133 151 -2 7 255 288 2 -2 562	300 5 3 154 94 -5 -2 267 274 322 5 4 230 242 -5 -1 203 200 497 6 -9 326 287 -5 0 119 67 6 -6 253 266 -6 1 617 620	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			

SELECT	ed Interatom	iic Distances and Angi	ES	
Distances	Value, Å	Angles	Value,	deg
Rh–Si	2.203(4)	Si-Rh-Cl	115.9	(1)
RhCl	2.387(4)	Si-Rh-P(1)	98.3	(1)
Rh-P(1)	2.344(4)	Si-Rh-P(2)	98.4	(2)
Rh-P(2)	2.332(4)	Si-Rh-H	69	
Rh-H	1.48ª	Si-Rh-H136	166	
Rh-H ₁₃₆	2.79	Cl-Rh-P(1)	87.2	(1)
Si-Cl(1)	2.057(6)	Cl-Rh-P(2)	92.1	(1)
Si-Cl(2)	2.042(6)	Cl-Rh-H	174	
Si-Cl(3)	2.063(6)	Cl-Rh-H ₁₃₆	62	
P-C (av of 6)	1.823(11)	P(1)-Rh-P(2)	161.7	(1)
Si-Cl	3.891(6)	P(1)-Rh-H	89	
Si-P(1)	3.441(6)	$P(1)-Rh-H_{136}$	68	
Si -P(2)	3.434(5)	P(2)-Rh-H	90	
Si-H	2.2	$P(2)-Rh-H_{136}$	96	
$Si-H_{136}$	4.96	H–Rh–H ₁₈₆	11 2	
Cl-P(1)	3.261(5)	Rh-Si-Cl(1)	118.5	(2)
C1-P(2)	3.398(5)	Rh-Si-Cl(2)	120.5	(2)
С1Н	3.86	Rh-Si-Cl(3)	108.5	(2)
C1-H136	2.70	Cl(1)-Si- $Cl(2)$	101.6	(3)
P(1)-P(2)	4.616(5)	Cl(1)-Si- $Cl(3)$	102.8	(3)
P(1)–H	2.75	Cl(2)-Si- $Cl(3)$	102.6	(3)
$P(1) - H_{136}$	2,89	Rh-P-C (av of 6)	114(3))
$H-H_{136}$	3,62	C-P-C (av of 6)	104.0	(17)
Cl(1)-Cl(2)	3.177(7)	Cl(S1)-Si(S)-Cl(S2)	91	
C1(2)-C1(3)	3.204(7)			
Cl(3)-Cl(1)	3.219(6)			
Si(S)-Cl(S1)	1,83			
Si(S)-Cl(S2)	2.11			
	• •			

TABLE IV

^{*a*} No meaningful errors can be assigned to distances and angles involving the hydridic hydrogen atom because of the uncertainties in the coordinates of this atom caused, in large measure, by the difficulties with the solvent scattering.

 Table V

 Root-Mean Square Amplitudes of Vibration (Å)

	~		
Atom	Min	Intermed	Max
Rh	0.222(2)	0.232(2)	0.237(2)
Si	0.222(6)	0.267(6)	0.316(6)
Cl(1)	0.238(6)	0.341(6)	0.372(6)
Cl(2)	0.242(6)	0.287(6)	0.549(7)
Cl(3)	0.224(6)	0.331(6)	0.404(6)
C1	0.220(5)	0.260(5)	0.277(5)
P(1)	0.209(5)	0.234(5)	0.245(5)
P(2)	0.220(5)	0.226(6)	0.259(5)

tains disordered molecules of solvent which, on the basis of the work of Wilkinson and his coworkers,¹² we believe to be trichlorosilane. Our results are con-

-1 -2 138 115

Figure 1.—Perspective view of the RhHCl(SiCl₃)($P(C_6H_5)_3$)₂ molecule. Here and in Figure 2 the 50% probability ellipsoids are shown except for the hydrogen atoms. Most of the hydrogen atoms have been omitted for clarity.

Figure 2.—Perspective view of the coordination polyhedron around the rhodium atom.

sistent with a disorder in which the trichlorosilane molecule can adopt four orientations in space; in each the silicon atom is less than 0.5 Å from the center of symmetry at (1/2, 1/2, 1/2). The resulting electron density distribution consists of a peak at the center of symmetry due to silicon and two independent peaks roughly 2 Å from the center due to chlorine atoms. These peaks are necessarily diffuse since they involve at least four noncoincident equilibrium atomic positions. The occupancy parameter α refined in our least-squares calculations leads to a value of 0.397 (7) molecule of SiHCl₃ per Rh, in reasonable agreement with the value of 1/3 of Wilkinson, et al.¹² The closest approach of a nonhydrogen atom of the metal complex to (1/2, 1/2, 1/2)is that made by CI(1) at 4.24 Å; the four other contacts of less than 5 Å all involve carbon atoms of the phenyl rings. Atom Cl(1) also makes the closest approach to each of the two independent solvent chlorine sites, namely, 3.96 Å to Cl(S1) and 3.82 Å to Cl(S2). The closest approach of the rhodium atom to one of the solvent chlorine sites is 6.97 Å. There is accordingly no reason to suppose that the interactions between the metal complex and the solvent represent anything but van der Waals contacts. Owing to the disorder, the differences between the distances and angles found here for the solvent molecule and the known values for trichlorosilane²¹ are without significance.

The vibrational motions of the atoms (Figures 1 and 2 and Tables I, II, and V) show no unexpected features. Only the atoms of the trichlorosilyl group appear to undergo appreciable anisotropic vibration, presumably owing to the proximity of the chlorine atoms, especially Cl(1), to the partially occupied solvent position.

The coordination polyhedron about the rhodium atom may be described as a highly distorted trigonal bipyramid, with apical phosphines, and H, Cl, and SiCl₃ in the trigonal plane. A certain artificiality is involved in such a description, particularly since the position of the hydridic hydrogen atom is poorly determined. The coordination polyhedron could also be called a distorted tetragonal pyramid with equal validity. Furthermore, on the assumption of normal phenyl ring geometry, the hydrogen atom H_{136} , bonded to carbon C(6) of ring P(1)R(3), makes an intramolecular contact of 2.79 Å with the rhodium atom. If H_{136} is considered as part of the coordination sphere, then the rhodium has distorted octahedral coordination. If a trigonalbipyramidal description is adopted, then the idealized values of the P-Rh-P and P-Rh-Si angles would be, respectively, 180 and 90°. The departures of the observed bond angles about rhodium from these idealized values can then be ascribed to steric repulsions between the bulky phosphine and silyl ligands. Relief of these repulsions is brought about by opening of the Si-Rh-P angles to 98°, with a corresponding closure of the P-Rh-P angle to 162°. As a result the intramolecular $Cl(1) \cdots P(1)$ and $Cl(2) \cdots P(2)$ contacts are, respectively, 3.68 and 3.70 Å, close to the sum of the corresponding van der Waals radii; the short H₁₃₆-Rh contact is probably the result of the closure of the P-Rh-P angle, rather than a genuine interaction between H136 and Rh.

The mean Si–Cl distance of 2.054 (5) Å in the coordinated silyl group is slightly longer than the value of 2.035 (3) Å found in $Co(SiCl_3)(CO)_4^4$ but is within the range of 2.01–2.05 Å found in free chlorosilanes.²¹ The coordination around the silicon is distorted tetrahedral, but the distortions are slightly different from those found in the cobalt complexes $Co(SiR_3)(CO)_4$ (R = F,³ Cl⁴). In the cobalt compounds the Co–Si–Cl angles are all around 115° and the Cl–Si–Cl angles are all around 104°. The Rh–Si–Cl(3) angle found here is 109° while the other two Rh–Si–Cl angles are 119 and 121°. These irregularities are a further manifestation of the nonbonded interactions $P(1) \cdots Cl(1)$ and $P(2) \cdots Cl(2)$.

The geometry found here about the rhodium is extremely similar to the corresponding geometries found about ruthenium in the d⁶ complexes $RuXCl(P(C_6H_5)_3)_3$ $(X = Cl, {}^{8}H^{9})$. In the ruthenium complexes two phosphine ligands are *trans* to one another, the P-Ru-P angles being 156° when X = Cl and 153° when X = H, and the third phosphine is cis to the other two, the angles subtended by cis phosphines at the metal being around 100°. In both of these compounds there is a short contact between the metal and a phenyl-ring hydrogen atom²² (2.59 Å for X = C1; 2.85 Å for X = H). It has been suggested that the metal-phenyl hydrogen contact stabilizes the unexpected five-coordinate d⁶ complex by preventing the approach of a sixth ligand.^{8,23} It is interesting to note that on purely steric grounds one would predict that these five-coordinate complexes would adopt a regular trigonal-bipyramidal configuration, with the phosphine or silyl ligands in the trigonal plane, as occurs in $RhH(CO)(P(C_6H_5)_3)_2$.²⁴

The fact that the potential sixth coordination site about the Rh atom is blocked by a phenyl hydrogen atom may be of significance in understanding the chemistry of the complex. Thus the complex is not an effective hydrosilation catalyst for olefins,¹² possibly because no coordination site is open for the incoming olefin. Moreover the compound RhHCl(SiCl₃)(CO)- $(P(C_6H_5)_3)_2$ is not formed by the addition of CO to RhHCl(SiCl₃)($P(C_6H_5)_3$)₂, but rather SiHCl₃ is split off and RhCl(CO) $(P(C_6H_5)_3)_2$ is left. Yet through the addition of SiHCl₃ to the analogous RhCl(CO)(P- $(C_2H_5)_3)_2$ the compound RhHCl(SiCl₃)(CO)(P(C_2H_5)_3)_2 is apparently formed.¹² It is possible that the blocking of the sixth coordination site is more effective when $P(C_6H_5)_3$, rather than $P(C_2H_5)_3$, is employed but, of course, such differences in the chemistry may also be due to the more basic nature of $P(C_2H_5)_3$.

The similarities in these five-coordinate d⁶ complexes also extend to the bond distances involving the metal. The Rh–P distances of 2.344 (4) and 2.332 (4) Å found here are normal; recent determinations of Rh–P bond lengths have given mean values in the range 2.32– 2.36 Å.^{10,24–28} The Rh–Si distance of 2.203 (4) Å is

⁽²¹⁾ L. E. Sutton, Ed., Special Publication No. 18, The Chemical Society London, 1965.

⁽²²⁾ RuCl₂(P(C₆H₆)₃)₃ was originally described as a somewhat distorted tetragonal pyramid, while RuHCl(P(C₆H₅)₃)₃ was described as having ''distorted pentacoordinate'' geometry. Nevertheless, these two Ru complexes and the Rh complex described here have remarkably similar coordination about the metal atom.

⁽²³⁾ J. Chatt and A. E. Underhill, J. Chem. Soc., 2088 (1963).

⁽²⁴⁾ S. J. La Placa and J. A. Ibers, Acta Cryst., 18, 511 (1965).

⁽²⁵⁾ J. L. de Boer, D. Rogers, A. C. Skapski, and P. G. H. Troughton, Chem. Commun., 756 (1966).

⁽²⁶⁾ B. T. Kilbourn and P. G. Owston, private communication.

⁽²⁷⁾ J. A. McGinnety, N. C. Payne, and J. A. Ibers, J. Am. Chem. Soc., **91**, 3601 (1969).

⁽²⁸⁾ K. W. Muir and J. A. Ibers, Inorg. Chem., 8, 1921 (1969).

the shortest yet reported for a metal-silicon bond.²⁹ In the ruthenium complexes the two Ru–P bonds involving phosphorus atoms which are mutually *trans* to one another are normal, the mean values being 2.393 (6) Å (X = Cl) and 2.345 (4) Å (X = H), whereas the third Ru–P distance, involving the phosphorus atom which is *cis* to the other two, is in each case much shorter, being 2.230 (8) Å (X = Cl) and 2.206 (4) Å (X = H).^{8,9} These results may be rationalized if one assumes that transition metal-phosphine and --silyl bonds involve some back-donation from the metal; short metal-phosphorus and metal-silicon distances

(29) Further discussion of metal-silicon bond lengths appears in the following paper: Lj. Manojlović-Muir, K. W. Muir, and J. A. Ibers, *ibid.*, **9**, 447 (1970).

occur when there is no competing π -bonding ligand in the *trans* position. Since the covalent radius of phosphorus is some 0.07 Å shorter than the covalent radius of silicon, while the covalent radii of Ru and Rh differ by about 0.01 Å,³⁰ it would then appear, from the near equality of the short Ru–P distance in RuHCl(P-(C₆H₅)₈)₂ with the Rh–Si distance found here, that back-bonding occurs more readily with SiCl₈ than with P(C₆H₅)₃. Such an explanation is consistent with the relative stabilities of these complexes formed with different substituted silanes.¹²

Acknowledgment.—We are grateful to the National Science Foundation for its support of this study.

(30) L. Pauling, "The Nature of the Chemical Bond," Cornell University Press, Ithaca, N. Y., 1960.

Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60201

The Crystal and Molecular Structure of Hydridobis(trichlorosilyl)carbonyl- π -cyclopentadienyliron, (π -C₅H₅)FeH(SiCl₃)₂(CO)

By LJUBICA MANOJLOVIĆ-MUIR, KENNETH W. MUIR, AND JAMES A. IBERS

Received July 22, 1969

The crystal structure of hydridobis(trichlorosilyl)carbonyl- π -cyclopentadienyliron, (π -C₃H₃)FeH(SiCl₃)₂(CO), has been determined by X-ray diffraction methods. A monoclinic unit cell of dimensions a = 7.493 (5) Å, b = 11.867 (9) Å, c = 8.651 (5) Å, and $\beta = 99.73$ (2)° contains two monomeric molecules; the observed and calculated densities are, respectively, 1.88 (2) and 1.835 g cm⁻³, and the space group is C₂²-P2₁. The structure has been refined by least-squares methods to a conventional *R* factor of 0.041 over 1245 counter-diffractometric data. The absolute configuration of the molecules in the crystal used in the analysis has been determined by least-squares methods and Bijvoet ratio tests. The coordination polyhedron around the Fe atom can be regarded as a distorted tetragonal pyramid, with the centroid of the cyclopentadienyl ring at the apex and the remaining ligands in the basal plane. The Fe atom is displaced from the basal plane toward the ring. The two Fe–Si distances are equal at 2.252 (3) Å. This is the first determination of the length of such a bond. Structural data on transition metal-silicon bonds are summarized and arguments are presented in favor of some d_{π} - d_{π} back-bonding being involved in these bonds.

Introduction

Although complexes containing metal-silicon bonds are known for a wide variety of transition metals, there is still very little structural information on such compounds. The recent work on silylcobalt complexes of the type $Co(SiX_3)(CO)_4^{1-3}$ (where X = Cl, F, and H) tends to confirm the suggestion of Hagen and McDiarmid⁴ that the empty silicon d orbitals may be involved in the Co–Si bonding. We have pointed out in the previous paper that the Rh–Si distance in RhHCl(SiCl₃)-(P(C₆H₅)₈)₂ provides evidence that the silicon d orbitals are used in the Rh–Si bonding.⁵ In order to obtain further insight into the behavior of substituted silyl groups as ligands in transition metal complexes, we have determined the structure of π -CpFeH(SiCl₃)₂(CO) $(Cp = cyclopentadienyl = C_{\delta}H_{\delta}^{-})$. This is the first reported structure of a compound which contains an Fe–Si bond. The work also reflects our interest in the geometries of five-coordinated⁶ transition metal complexes and, in particular, those containing a hydridic hydrogen bonded to the transition metal.

Collection and Reduction of Intensity Data

A sample of π -CpFeH(SiCl₃)₂(CO) was kindly supplied by Graham.⁷ The crystals are pale yellow needles, moderately stable in air. A preliminary X-ray photographic examination showed that they possess monoclinic symmetry. According to the photographs of the 0kl, hk0, h0l, and h1l reciprocal lattice nets, taken with Mo K α radiation, systematic absences occur only

⁽¹⁾ W. T. Robinson and J. A. Ibers, Inorg. Chem., 6, 1208 (1967).

⁽²⁾ K. Emerson, P. R. Ireland, and W. T. Robinson, *ibid.*, 9, 436 (1970).

⁽³⁾ A. G. Robiette, G. M. Sheldrick, R. N. F. Simpson, B. J. Aylett, and

<sup>J. A. Campbell, J. Organometal. Chem. (Amsterdam), 14, 279 (1968).
(4) A. P. Hagen and A. G. McDiarmid, Inorg. Chem., 6, 686 (1967).</sup>

⁽⁵⁾ K. W. Muir and J. A. Ibers, ibid., 9, 440 (1970).

⁽⁶⁾ In this paper the cyclopentadienyl ring is regarded as occupying one vertex of the iron coordination polyhedron. Some authors assume that a cyclopentadienyl ring occupies three vertices of the coordination polyhedron and would therefore describe the iron as heptacoordinate in the present case.

⁽⁷⁾ W. A. G. Graham and W. Jetz, Abstracts, 155th National Meeting of the American Chemical Society, San Francisco, Calif., March-April 1968, No. M 082.