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shorter than the corresponding distance in the chloro
derivative, supporting the hypothesis of a (d - d) =
bond between these atoms. The other distances which
Robinson and Ibers suggested! might provide addi-
tional evidence for such a bond were not significantly
different in the two compounds.
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The crystal structure of solvated hydridochloro(trichlorosilyl)bis(triphenylphosphine)rhodium, RhITCI(SiCls)(P(CsHs)s)z
xSiHCl;, has been determined by X-ray diffraction methods. The compound crystallizes in the space group Ci!-PI of the
triclinic system. There are two molecules of RnHCI(SiCL)(P(CeHs)s)z in a unit cell of dimensions ¢ = 11.727 (5) A, b =
12.952 (6) &, ¢ = 13.365 (5) A, = 104.65 (2)°, 8 = 98.08 (2)°, v = 94.43 (2)°. The structure has been refined by least-
squares methods to a conventional R factor of 0.064 over 2485 counter-diffractometric data. It consists of discrete mono-
meric molectles of RhWHCI(SiCl3)(P(CsHs)s): and SiHCl;,  The latter are disordered over four different sites; the SiHCl;:Rh
ratio is 0.397 (7). The rhodium coordination polyhedron may be described as a highly distorted trigonal bipyramid, with
trans phosphines at the apices and H, Cl, and SiCls in the trigonal plane. Alternatively, the coordination abott the formally
d® Rh(III) ion is distorted octahedral if one chooses to include at the sixth coordination site the contact of 2.79 A with an
ortho-hydrogen atom on a phenyl ring of a triphenylphosphine group. The short Rh—Si distance of 2.203 (4) A is consistent

with back-donation of electrons from the metal to the silyl group.

Introduction

The nature of metal-silicon bonding in transition
metal-silyl complexes is at present a subject of de-
bate.!»? Structural details have been published only
for the cobalt complexes Co(SiR;)(CO): (R = F,? Cl,*
H5) and for Mn(Si(CH;);3)(CO);5.6 It is our contention
that a fruitful discussion of such problems as the rela-
tive importance of d,—d, back-bonding and electro-
negativity differences in stabilizing metal-silicon bonds
and whether the metal-silicon bond may appropri-
ately be considered as a metal-metal bond will only be
possible if adequate structural data are at hand on a
sufficient number of representative metal-silyl com-
plexes.

Accordingly, we have determined the crystal struc-
ture of the formally d® complex hydridochloro(tri-
chlorosilyl) bis(triphenylphosphine)rhodium(I1I), Rh-
HCI(SiCL) (P(CsHs)s)e.  This compound was chosen
because we believed that back-donation to silicon would
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be favored by the presence of a second- as opposed to
a first-row transition metal and by the absence of strong-
ly w-bonding ligands such as carbonyl. Inaddition, this
compound contains five-coordinate rhodium(III).
Five-coordination is much less common in d°® systems
than it is in d°, d5 or d!® systems;” the only d° com-
plexes for which structural data are available are the
ruthenium(Il) complexes RuXCl(P(CiH;)): (X =
Cl® H? and Rh(CH)I(P{Ce¢H;)s)».'® Further mo-
tives for our interest in this molecule were the pres-
ence of a metal-hydrogen bond and the relationship be-
tween the structure of the molecule and its postulated
role as an intermediate in the catalytic hydrosilation of
olefins,

The compound RLIHCI(SICl;)(P(C¢Hs)s)e has been
prepared independently by two groups. Haszeldine,
Parish, and Parry!! obtained an unsolvated complex.
While this work was underway, de Charentenay, Os-
born, and Wilkinson!? reported a slightly different
preparation which yields solvated complexes; these
authors suggested that the complexes containing free
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chlorosilanes might involve weak coordination of the
substituted silane molecule zza chlorine to the rhodium
atom of RhHCl (SIC13) (P (CeHs) 3)2.

Collection and Reduction of the X-Ray Data

Two samples of RhHCI(SiCly) (P(CsHs)s)2 were
kindly given to us by Dr. R. V. Parish. The first,
prepared by the original method of Haszeldzine, Parish,
and Parry,!! proved not to contain crystals suitable for
a diffraction study. All X-ray measurements were
therefore made on crystals from the second sample,
which was prepared by treating trichlorosilane with
solid chlorotris(triphenylphosphine)rhodium and sub-
sequently pumping off the volatile products. The
crystals decompose rapidly in air. Those used in the
present work were mounted in well-dried glass capil-
laries under dry nitrogen.

Preliminary optical and photographic examination
of the crystals suggested that they belong to the tri-
clinic system. The dimensions of the Delaunay re-
duced cell, determined at 22° by the least-squares
method outlined below, are ¢ = 11.727 (5) A, b =
12.952 (6) A, ¢ = 13.365 (5) A, o = 104.65 (2)°, 8 =
08.08 (2)°, v = 9443 (2)° (\ Mo Kay) 0.70930 A).
The density calculated for two solvent-free molecules
per unit cell is 1.373 g cm™% Owing to the instability
of the crystals in air, their density was not measured.
The centrosymmetric triclinic space group Ci!-P1 was
assumed to be the correct one; this assumption has been
confirmed by a successful structure analysis.

Intensity measurements were made on a Picker four-
circle diffractometer using procedures which have al-
ready been described in detail.’® A crystal of dimen-
sions 0.14 mm X 0.20 mm X 0.33 mm (in the ¢ *, b*, and
¢* directions) was mounted on the diffractometer so
that ¢* was roughly coincident with the ¢ axis. The
mean half-width of a number of narrow source-open
counter wscans'* was 0.30°, indicating that the mosaicity
of the specimen was relatively high. These scans were,
however, free of fine structure. Fourteen reflections
in the range 10° < 28 (Mo Koay) < 30° were carefully
centered through a top-bottom device and then through
a narrow vertical slit at a takeoff angle at 0.5° to yield
values of x, ¢, and 26 for each reflection. These ob-
servations were used to determine the crystal orienta-
tion and cell dimensions by the method of least
squares.’® % Intensity measurements were made with
the §-26 scan technique at a takeoff angle of 2.8°. Each
peak was scanned from —1.0 to 41.0° in 2¢ from the
Mo Ka; center at a scan rate of 1°/min. The back-
ground was counted for 20 sec at each extreme of the
scan range. Molybdenum radiation was used, in con-
junction with a 3-mil niobium g filter and a pulse-

(13) P. W. R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 8, 197
(lg(flyi; T. C. Furnas, “The Single Crystal Orienter Instruction Manual,”
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(15) The FORTRAN program PIcK for the CDC 6400 was used. In addition
to the other local programs used in this work, local modifications of Hamil-
ton’s GONO absorption correction program, Busing and Levy’s oRFFE func-
tion and error program, Johnson’s ORTEP thermal ellipsoid plotting program,

and Zalkin’s FORDAP Fourier program were used. Qur least-squares program
NUCLS in its nongroup form resembles the Busing—Levy ORFLS program,
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height analyzer set to accept approximately a 909,
window, centered on the Mo K« peak. The distances
of the crystal from the source and from the counter
were, respectively, 21 and 30 ¢m. The dimensions of
the counter aperture were 6 mm vertically and 4 mm
horizontally. Coincidence losses were cut by inSerting
copper foil attenuators into the diffracted beam until
the maximum counting rate during a scan was less than
7000 counts/sec.

The intensities of 3342 independent reflections in the
range 26(Mo Kay) < 39° were measured. In the range
36° < 20(Mo Kay) < 39° few reflections were found
to be significantly above background. The intensities
of four strong reflections were measured periodically
throughout the experiment in order to monitor crystal
and electronic stability. The intensities of these stan-
dards gradually decreased, until they were about 909,
of their initial values, presumably owing to decom-
position of the specimen. The observed peak intensi-
ties were corrected on the assumption that decomposi-
tion was linear with time. The integrated intensities
and their standard deviations were derived as before.!3
A value of p = 0.04 was assumed, where o(7)/I ap-
proaches p as the counting errors become negligible.!$
The intensities of 2485 reflections were greater than
three times their estimated standard deviations. Only
these reflections were used in the subsequent analysis.
In order to apply corrections for absorption, the dimen-
sions of the crystal were determined and then the faces
of the crystal were indexed on the diffractometer. All
members of the forms {100}, {010}, and {001} were
exhibited. The calculated transmission coefficients,
based on a linear absorption coefficient of 8.4 cm 1 for
Mo Ka radiation, ranged from 0.76 to 0.90. It was
subsequently found (vide infra) that the cell contains
about 0.4 molecule of SiHCl; per molecule of the
rhodium complex. The calculated density then be-
comes 1.46 g/cm?® and the linear absorption coefficient
becomes 9.4 cm~!. The relative errors in the trans-
mission coefficients introduced by this change in the
linear absorption coefficient are negligible.

Structure Determination

The positions of the rhodium atom and of the atoms
of the trichlorosilyl ligand were determined from the
three-dimensional Patterson function. The sites of the
remaining nonhydrogen atoms were obtained from
subsequent electron density syntheses. The model so
obtained was refined by the method of full-matrix least
squares. The function minimized was ZwA2 where
A = |F,| — |F,, |F,| and| F,| are, respectively, the ob-
served and calculated structure amplitudes, and w = 1/
o2(F,) = 4F2/d?(F,?). The atomic scattering factors
used throughout the analysis were taken from ref 16,
with the exceptions of those for Rh' and H.'®* The
real and imaginary anomalous scattering corrections of

(16) J. A. Ibers in ‘‘International Tables for X-Ray Crystallography,”
Vol. IIl, The Kynoch Press, Birmingham, England, 1962.
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PositioNAL, THERMAL, AND GROUP PARAMETERS FOR RhHCI(SiCl: ) P(CeHs)s):- xSiCly

Atom x k% 2z B or Biso® B2 Baz Bz B3 B
Rh 0.19467 (10) 0.12720(8) —0.22192(8) 789(14) 651 (11) 643(11) 52 (7) 87 (7) 156 (7)
Si 0.3382(4) 0.2019(3) —0.2795(3) 8R82(43) 893(37) 1016(40) —107(31) 238(32) 111 (30)
ClI(1) 0.3228(4) 0.3487(4) —0.3098(4) 1489(54) 1305(45) 1530 (49) —43(38) 477 (40) 718 (38)
Cl(2) 0.3984 (5) 0.1198(4) —0.4094(4) 1852(65) 1722(56) 1802(58) —616(47) 1163 (50) —494 (44)
Ci(3) 0.4835(4) 0.2341(4) —0.1650(4) 046(43) 1274(44) 1727(52) —209(33) —245(36) 351(37)
Cl 0.2398 (3) 0.1018(3) —0.0506(3) 1008(39) 864(32) 667(28) 108 (26) —17(25) 229 (23)
P(1) 0.1185(3) 0.2841(3) —0.1434(3) 866(37) 560(28) 672(30) 44 (25) 144 (25) 156 (22)
P(2) 0.2103(3) —0.0522(3) —0.3018(3) 849(38) 6353(30) 656(30) 112 (26) 24 (25) 119 (23)
Si(S) 2 1/ s 26.8(9)

CI(S1) 0.461(2) 0.356(1) 0.438(1) 26.2(7)

Cl(82) 0.322(2) 0.517(1) 0.493(1) 24.6(7)

H 0.15 0.14 —0.33

Groups x4 Yo 2Zo 8 € 7
P(1)R(1)e 0.2695(6) 0.4304(5) 0.0731(5) —1.253(8) 2.459 (6) —1.438(7)
P(1)R(2) 0.0411(5) 0.4448(5) —0.2806 (5) 2.544(8) 2,369(6) 2.347(8)
P(1)R(3) —0.1261(5) 0.2111(4) —0.0817 (4) 0.263(5) 0.147 (5) 0.428(5)
P(2)R(1) 0.3956 (6) —0.1725(6; —0.1884(5) —0.676(6) 0.230(6) 2.780(6)
P(2)R(2) 0.2336(5) —0.1190(5) —0.5456(5) 0.681(6) 3.093(6) 1.654(6)
P(2)R(3) —0.0389 (5) —0.1663(4) —0.2886 (5) —~1.090(7) 2.396 (5) 1.385(8)

@ The 8;; have been multiplied by 105; the form of the anisotropic temperature factor is:
b Throughout this paper limits of errors are estimated standard deviations.
CI(81),
? %o, Yo, % are fractional coordinates of the phenyl-ring centroids; the angles §, ¢, » (radians) have
phenyl ring 1 bonded to phosphorus atom P(1).

2813kl 4 2Buskl)].
nificant digits of the quantity to which they refer.
ordered SiHCI; solvent in the cell.
been defined previously.?* ¢ P(1)R(1):

Cromer!® for Rh, Cl, P, and Si were applied to the
calculated structure factors.® In all refinement calcu-
lations the phenyl rings were constrained to Dep sym-
metry and the C-C bond length was assumed to be
1.392 A. In the initial refinement the nongroup atoms
were constrained to isotropic vibration, and a single
isotropic vibrational parameter was adjusted for each
group. This refinement converged to values of R and
R, of 0.12 and 0.15, respectively, where the reliability
indices are R = Z |Al /2 |F,| and Ry = (SwA?/SwF,?)"/

The reasons for the poor agreement at this stage of
the analysis were apparent on inspection of a differ-
ence map. Situated close to the center of symmetry at
(Y/2, /4, /2) were three independent peaks, each about
2 e~/A® in height. Since these peaks were not within
bonding distance of any atoms of the RhHCI(SiCly) (P-
(CsHj)s)s molecule, we concluded that they were due
to the presence of solvent of crystallization. We were
unable to perform any experiments on the crystal to
determine the nature of the solvent. However, the
samples of RhHCI(SiCly)(P(CeHs)s)s prepared by
Wilkinson and his coworkers!? by direct reaction of tri-
chlorosilane with RhCI(P(C¢Hs)s); contained one-
third of a molecule of trichlorosilane per rhodium.
In the absence of definitive analytical data for the
crystal used in the present work we have assumed that
the residual peaks on the difference map are due to
highly disordered trichlorosilane molecules. It was
also apparent from this difference map that the motions
of several of the heavier atoms, in particular those of
the trichlorosilyl ligand, were highly anisotropic.

In a further round of calculations the positional
parameters of the group and nongroup atoms were
again adjusted; anisotropic thermal parameters for the

(19) D. T. Cromer, Acta Cryst., 18, 17 (1965).
(20) J. A. Ibers and W, C. Hamilton, ibid., 1T, 781 (1964).

¢ 8i(8),

exp[—(Buh? + Buk® + Bul® 4 28nik +
They are given in units of the least sig-
and CI(S2) are the independent atoms of the dis-

nongroup atoms and individual isotropic thermal
parameters for the carbon atoms of the phenyl rings
were refined. In these calculations reflections for
which A=! sin § < 0.29 A~! were assigned weights of
zero. This course was adopted for the following reason.
Inspection of the results of isotropic refinements with
and without solvent contributions indicated, as ex-
pected, that scattering from the disordered solvent
molecules made little or no contribution to the high-
angle data. The positional and thermal parameters
for the RhHCI(SiCly)(P(CsHs)s)s molecule derived
from the high-angle data alone should thus be rela-
tively unbiased by our failure to correct for the solvent
scattering or by the adoption of an inadequate model
for such scattering. The high-angle refinement led to
values of R and R,, of 0.062 and 0.068 for the 1804 high-
angle data and to values of 0.084 and 0.133 for all 2485
data.

In an attempt to account for the solvent scattering,
a trichlorosilane group was next introduced into the
calculations. An Si-Cl distance of 2.01 A was as-
sumed, as were tetrahedral angles within the molecule.
The ratio of solvent to rhodium complex was taken to be
1:3. The refinement converged after two cycles to
values of R and R,, of 0.079 and 0.106 (146 variables,
2485 data). The resultant positions of the atoms
within the solvent molecule are consistent with those
three peaks found on the previous difference Fourier
map. Two of those peaks correspond to two of the
chlorine atoms. The third peak (the one nearest to
/e, /2, 1/2) results from the overlap of the silicon atom
with the third chlorine atom, yet this description of the
solvent scattering is still unsatisfactory, for the major
features in a subsequent difference Fourier map were all
in the region of this molecule, the highest peak being
1.7 e~/A3  Attempts to reduce these residual peaks
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by variation in the amount of trichlorosilane in the cell
were not successful. The best agreement with the
data is achieved when a ratio of one molecule of sol-
vent to three molecules of the rhodium complex is
used.

A careful examination of the electron density in the
vicinity of /s, /s, 1/2 on the original difference Foutier
map suggests that the solvent molecules are arranged
in a more complex manner than the simple disordering
of a molecule across a center of symmetry assumed
above. Although no unique description is possible,
a model in which there is equal disordering of two
independent solvent molecules about the center of
symmetry, leading to four orientations of four half-
molecules, reproduces well the main features of the
density map. Yetsuch a model seems too elaborate and
too uncertain to justify the direct refinement of two
independent trichlorosilane groups. Rather we chose
to simulate this model by placing individual atoms in
the positions corresponding to the three main peaks on
the difference Fourier map. The silicon atom was
placed at /;, /s, /s, near the position of one of the
peaks. Thisatom wasassigned a multiplier « which was
initially given the value !/;. The two remaining solvent
peaks were assumed to be chlorine atoms. Each
chlorine atom was assigned a multiplier 1.5« to obtain
the overall stoichiometry Si:Cl = 1:3. In this refine-
ment all data were again used, and the positional and
thermal parameters were adjusted for all the nonhydro-
gen atoms. The occupancy parameter « was also re-
fined. Also in this final refinement fixed contributions
for the scattering of the hydrogen atoms of the phenyl
rings were introduced.

This refinement led to values of R and R, of 0.064
and 0.079 (156 variabless, 2485 data). The final posi-
tional and thermal parameters are presented in Tables
I and II, and the final values 10|F,) and 10/F,| (in elec-
trons) are given in Table III. The parameters of the
ROHCI(SiCly) (P(CsHs)s), molecule given in Tables I
and II differ in most cases by less than three times their
estimated standard deviations from the corresponding
values obtained from the high-angle data alone. The
differences from the group refinement are even smaller.
Thus any systematic errors resulting from possibly in-
correct treatment of the solvent scattering is small.
No important conclusion from the analysis would be
altered if the results of the high-angle refinement were
used instead of those given in Tables I and IT.

The standard deviation of an observation of unit
weight is 2.4, suggesting either that the errors in [Fo[
have been underestimated or, more probably, that the
solvent model is not wholly adequate since the mean
SwA? shows no systematic variation with |F,| but de-
creases steadily with increasing A~* sin 8. For none of
the low-intensity reflections excluded from the analysis
was F.2/c(F,% > 2.5. The highest peak in a differ-
ence map calculated with all 2485 data was 1.0 e~/AS3
or 259, of the mean height of a carbon atom in an ob-
served electron density synthesis. This peak is associ-
ated with the disordered solvent. In a difference map
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TaBLE 1L
DERIVED PARAMETERS FOR GROUP ATOMS
Atom x ¥ z B, As
P(1)R(1)
C(1)a 0.2028 (9) 0.3670 (9) ~0.0198(6) 4.6 (3)
C(2) 0.1591 (7) 0.3831(9) 0.0739(8) 6.0(4)
C(3) 0.2258 (9) 0.4464 (7) 0.1667 (6) 6.8 (4)
C4) 0.3363 (9) 0.4937 (10) 0.1659(7) 7.1(4)
C(5) 0.3800 (7) 0.4777 (10) 0.0722(9) 8.0(4)
C(6) 0.3132(8) 0.4143 (7) ~0.0206 (6) 7.0(4)
P(L)R(2)
C(1) 0.0772 (13) 0.3765 (7) ~—0.2201(6) 4.7(3)
C(2) 0.1013 (7) 0.4873 (8) ~0.1789 (6) 6.0(3)
C@3) 0.0652 (12) 0.5556 (5) —0.2394(8) 7.3(4)
C4) 0.0051 (13) 0.5131(8) —0.3410(7) 7.5(4)
C(5) —0.0191(8) 0.4023 (8) ~0.3822(5) 7.4 (4)
C(6) 0.0170(11) 0.3339 (5) —-0.3218(7) 5.6(3)
P(1)R(3)
C(1) —0.0220(6) 0.2426 (6) ~0.1103 (6) 3.7(3)
C(2) —0.1009(7) 0.3164 (5) ~0.0865(7) 5.0(3)
C@3) ~—0.2050(6) 0.2849 (6) ~0.0579 (7) 5.8(3)
C(4) —0.2302(6) 0.1796 (7) —0.0531(7) 5.0(3)
C(5) ~0.1513(7) 0.1058 (5) —~0.0770(7) 5.3(3)
C(6) —0.0472(6) 0.1373 (6) ~0.1056 (6) 4.4 (3)
H(6) 0.010 0.085 -0,121
P(2)R(1)
c) 0.3136 (8) —0.1215(7) ~0.2379(7) 5.2(3)
C(2) 0.4183(10) —0.0638(6) —0.1823(8) 7.3(4)
C(3) 0.5003 (7) —0.1149(9) —0.1329(8) 9.3(5)
C@4) 0.4776 (9) —0.2236 (9) —0.1390 (8) 8.9(5)
C(5) 0.3728(10) —0.2812(6) —-0.1945(9) 8.3 (4)
C(6) 0.2909(7) —0.2302(7) —0.2440(7) 5.8(3)
P(2)R(2)
C) 0.2221(8) —0.0939 (7) —0.4402 (5) 4.7 (3)
C(2) 0.2936 (8) —0.1703 (7) —0.4785(7) 6.0(4)
C(3) 0.3050 (8) —0.1955(7) —0.5840(8) 7.4 (4)
C4) 0.2450 (9) ~0.1442 (8) —0.6511(5) 6.9(4)
C(5) 0.1735(8) —0.0677 (8) —0.6128(7) 7.0(@4)
C(6) 0.1621(7) —~0.0426 (6) ~0.5073 (7) 5.5(3)
P(2)R(3)
c1) 0.0701(7) —0.1213 (9) —0.2966 (7) 4.3 (3)
C(2) 0.0428(7) —0.1215(10) —0.1986(5) 5.2(3)
C({3) —0.0661(8) —0.1664 (7) —0.1905(6) 6.1(3)
C4) —0.1478(7) —0.2112(10) —0.2805(8) 7.1(4)
C(58) —0.1206(7) —0.2110(11) —0.3786(6) 7.1(4)
C(6) —0.0117(8) —0.1661 (7) —0.3866 (5) 5.6(3)

@ In each group C(1) is bonded to a phosphorus atom and C(4)
is para to C(1).

based on the data for which A~*sin § < 0.30 A ! the top
two peaks were again associated with the solvent.
However, the third highest peak, with p = 0.55 e/A3,
is 1.5 A from the rhodium atom, in a position consistent
with its being due to the hydridic hydrogen atom.
Positional parameters obtained from this map are given
for the hydridic hydrogen H in Table I. The bond dis-
tances and angles derived from them (Table IV) are
necessarily of extremely low accuracy.

Description of the Structure

The crystal structure is built from discrete mono-
meric molecules of composition RhHCI(SICl)(P-
(CsHs)s)2.  Figures 1 and 2, respectively, show perspec-
tive views of the entire molecule, and of the coordina-
tion around the rhodium atom. The structure also con-
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OBSERVED AND CALCULATED STRUCTURE AMPLITUDES (IN ELECTRONS X 10) ForR REHCI(SIiCl3 ) (P(CeHs)s)z %SiCls
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TaBLE IV
SELECTED INTERATOMIC DISTANCES AND ANGLES

Distances Value, & Angles Value, deg

Rh-Si
Rh-Cl
Rh-P(1)
Rh-P(2)
Rh-H
Rh-H;z
Si~Cl(1)
Si-Cl1(2)
Si-C1(3)
P-C (av of 6)
Si-Cl
Si~-P(1)
Si-P(2)
Si-H 2
Si—-Higs 4
CI-P(1) 3
Cl-P(2) 3
Cl-H 3
Cl-H;3 2.
P(1)-P(2) 4.
2
2
3
3
3

Si-Rh-Cl
Si-Rh-P(1)
Si-Rh-P(2)
Si-Rh-H
Si-Rh-Hjzs
Cl-Rh-P(1)
CI-Rh-P(2)
Cl-Rh-H
Cl-Rh~Hiss
P(1)-Rh-P(2)
P(1)-Rh-H
P(1)-Rh-Hyg
P(2)-Rh-H
P(2)-Rh-Hjss

6 H-Rh—Hjs
Rh-8i~Cl(1)
Rh-8i-Cl1(2)

6 Rh-Si—C1(3)
CI(1)-Si~C1(2)
C1(1)-8i-Cl1(3)

5 Cl1(2)-Si-C1(3)

9 Rh-P-C (av of 6)
C-P-C (av of 6)
CI(81)-8i(S)-C1(S2)

2.203 (4)
2.387 (4)
2.344 (4)
2.332 (4)
1.48¢

2.79

2.057 (6)
2.042 (6)
2.063 (6)
1.823(11)
3.891 (6)
3.441 (6)
3.434 (5)

115.9 (1)
98.3 (1)
98.4 (2)
69

166
87.2(1)
92.1(1)

174
62

161.7(1)
89
68
90
96

112

118.5 (2)

120.5 (2)

108.5(2)

101.6(3)

102.8(3)

102.6 (3)

114 (3)

104.0 (17)
91

P(1)-H
P(1)~His
H_H136
CI(1)-CL(2)
C1(2)-C1(3)
C1(3)-Cl(1)
Si(8)-Cl1(81)
Si(8)-C1(82)

¢ No meaningful errors can be assigned to distances and angles
involving the hydridic hydrogen atom because of the uncertain-
ties in the coordinates of this atom caused, in large measure, by
the difficulties with the solvent scattering.

TABLE V

ROOT-MEAN SQUARE AMPLITUDES OF VIBRATION (A)
Atom Min Max

Rh .922(2) 0.237 (2)
Si .222 (6) 0.316 (6)
CI(1) 238 (6) 0.372(6)
cue) .242 (6) 0.549 (7)
C1(3) .224 (6) 0.404 (6)
cl .220 (5) 0.277 (5)
P(1) .209 (5) 0.245 (5)
P(2) 0.220 (5) 0.259 (5)

Intermed
0.232 (2)
0.267 (6)
0.341 (8)
0.287 (6)
0.331(6)
0.260 (5)
0.234 (5)
0.226 (6)

[=NeloNoNoNoeNo]

tains disordered molecules of solvent which, on the
basis of the work of Wilkinson and his coworkers,!?
we believe to be trichlorosilane. Our results are con-
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Figure 1.—Perspective view of the RhHCI(SiCl;)(P(CeHs)s)e
molecule. Here and in Figure 2 the 509 probability ellipsoids
are shown except for the hydrogen atoms, Most of the hydrogen
atoms have been omitted for clarity.

Mize

Figure 2.—Perspective view of the coordination polyhedron
around the rhodium atom.

sistent with a disorder in which the trichlorosilane
molecule can adopt four orientations in space; in each
the silicon atom is less than 0.5 A from the center of
symmetry at (Y/s2, !/, /2). The resulting electron
density distribution consists of a peak at the center of
symmetry due to silicon and two independent peaks
roughly 2 A from the center due to chlorine atoms.
These peaks are necessarily diffuse since they involve at
least four noncoincident equilibrium atomic positions.
The occupancy parameter « refined in our least-squares
calculations leads to a value of 0.397 (7) molecule of
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SiHCI; per Rh, in reasonable agreement with the value
of 1/; of Wilkinson, et al.'? The closest approach of a
nonhydrogen atom of the metal complex to (}/s, 1/, 1/2)
is that made by CI(1) at 4.24 A; the four other contacts
of less than 5 A all involve carbon atoms of the phenyl
rings. Atom CI(1) also makes the closest approach to
each of the two independent solvent chlorine sites,
namely, 3.96 A to CI(S1) and 3.82 A to CI(S2). The
closest approach of the rhodium atom to one of the
solvent chlorine sites is 6.97 A. There is accordingly
10 reason to suppose that the interactions between the
metal complex and the solvent represent anything but
van der Waals contacts. Owing to the disorder, the
differences between the distances and angles found here
for the solvent molecule and the known values for tri-
chlorosilane?! are without signiticance.

The vibrational motions of the atoms (Figures 1
and 2 and Tables I, II, and V) show no unexpected
features. Only the atoms of the trichlorosilyl group
appear to undergo appreciable anisotropic vibration,
presumably owing to the proximity of the chlorine
atoms, especially C1(1), to the partially occupied solvent
position.

The coordination polyhedron about the rhodium
atom may be described as a highly distorted trigonal
bipyramid, with apical phosphines, and H, Cl, and SiCl;
in the trigonal plane. A certain artificiality is involved
in such a description, particularly since the position
of the hydridic hydrogen atom is poorly determined.
The coordination polyhedron could also be called a
distorted tetragonal pyramid with equal wvalidity.
Furthermore, on the assumption of normal phenyl ring
geometry, the hydrogen atom His, bonded to carbon
C(6) of ring P(1)R(3), makes an intramolecular contact
of 2.79 A with the rhodium atom. If Hsis considered
as part of the coordination sphere, then the rhodium
has distorted octahedral coordination. If a trigonal-
bipyramidal description is adopted, then the idealized
values of the P-Rh-P and P-Rh-Si angles would be,
respectively, 180 and 90°. The departures of the ob-
served bond angles about rhodium from these idealized
values can then be ascribed to steric repulsions be-
tween the bulky phosphine and silyl ligands. Relief
of these repulsions is brought about by opening of the
Si-Rh-P angles to 98°, with a corresponding closure
of the P-Rh-P angle to 162°. As a result the intra-
molecular CI(1)- - -P(1) and Cl(2) - - -P(2) contacts are,
respectively, 3.68 and 3.70 A, close to the sum of the
corresponding van der Waals radii; the short Hize—Rh
contact is probably the result of the closure of the P-
Rh-P angle, rather than a genuine interaction between
Hggs and Rh.

The mean Si-Cl distance of 2.054 (5) A in the co-
ordinated silyl group is slightly longer than the value of
2.035 (3) A found in Co(8iCl;)(CO).4 but is within the
range of 2.01-2.05 A found in free chlorosilanes.?!
The coordination around the silicon is distorted tetra-
hedral, but the distortions are slightly different from

(21) L. E. Sutton, Ed., Special Publication No. 18, The Chemical Society
London, 1965,

Inorganic Chemistry

those found in the cobalt complexes Co(SiR;)(CO),
(R = F,*Cl%. In the cobalt compounds the Co-Si—Cl
angles are all around 113° and the CI-Si-Cl angles are
all around 104°. The Rh-Si-Cl(3) angle found here is
109° while the other two Rh-Si—Cl angles are 119 and
121°. ‘These irregularities are a further manifestation
of the nonbonded interactions P(1)---Cl(1) and
P(2)---Cl2).

The geometry found here about the rhodium is ex-
tremely similar to the corresponding geometries found
about ruthenium in the d® complexes RuXC1(P(CsHs)s)s
(X = Cl2H?). Intheruthenium complexes two phos-
phine ligands are frams to one another, the P-Ru-P
angles being 156° when X = Cland 153° when X = H,
and the third phosphine is ¢is to the other two, the
angles subtended by cis phosphines at the metal being
around 100°. In both of these compounds there is a
short contact between the metal and a phenyl-ring
hydrogen atom?2 (2.59 A for X = Cl; 2.85 Afor X = H).
It has been suggested that the metal-phenyl hydrogen
contact stabilizes the unexpected five-coordinate d°
complex by preventing the approach of a sixth ligand.* 28
It is interesting to note that on purely steric grounds
one would predict that these five-coordinate com-
plexes would adopt a regular trigonal-bipyramidal
configuration, with the phosphine or silyl ligands in the
trigonal plane, as occurs in RhH(CO) (P(CsHs);),.24

The fact that the potential sixth coordination site
about the Rh atom is blocked by a phenyl hydrogen
atom may be of significance in understanding the
chemistry of the complex. Thus the complex is not
an effective hydrosilation catalyst for olefins,!? possibly
because no coordination site is open for the incoming
olefin. Moreover the compound RhHCI(SiCl;) (CO)-
(P(CeH;);)s is not formed by the addition of CO to
RhHCI(SICL) (P(CsHs)s)z, but rather SiHCly is split
off and RhCl(CO)(P(CsHs)s): is left. Vet through the
addition of SiHCIl; to the analogous RhCI(CO)(P-
(CeHs)s)2 the compound RhHCI(SICly) (CO) (P(C,Hsz)s)e
is apparently formed.’® It is possible that the block-
ing of the sixth coordination site is more effective when
P(CeH;)s, rather than P(C.H;), is employed but, of
course, such differences in the chemistry may also be
due to the more basic nature of P(CyHj)s.

The similarities in these five-coordinate d® complexes
also extend to the bond distances involving the metal.
The Rh-P distances of 2.344 (4) and 2.332 (4) A found
here are normal; recent determinations of Rh—P bhond
lengths have given mean values in the range 2.32—
2.36 A.10.24=28 The Rh-Si distance of 2.203 (4) A is

(22) RuCl:(P(CeHs)s)s was originally described as a somewhat distorted
tetragonal pyramid, while RuHCI(P(C¢Hs)s)s was described as having ‘‘dis-
torted pentacoordinate’’ geometry. Nevertheless, these two Ru complexes
and the Rh complex described here have remarkably similar coordination
about the metal atom.

(23) J. Chatt and A. E. Underhill, J. Chem. Soc., 2088 (1963).

{24) 8. J. La Placa and J. A. Ibers, 4cie Crysi., 18, 511 (1965).

(25) J. L. de Boer, D. Rogers, A, C. Skapski, and P. G. H. Troughton,
Chem. Commun., 756 (1966).

(26) B. T. Kilbourn and P. G. Owston, private communication,

(27) J. A. McGinnety, N. C. Payne, and J. A. Ibers, J. Am. Chem. Soc.,
91, 3601(1969).

(28) K, W. Muir and J. A. Ibers, Inorg. Chem., 8, 1921 (1969).
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the shortest yet reported for a metal-silicon bond.?®
In the ruthenium complexes the two Ru-P bonds in-
volving phosphorus atoms which are mutually frans
to one another are normal, the mean values being 2.393
(6) A (X = Cl) and 2.345 (4) A (X = H), whereas the
third Ru~P distance, involving the phosphorus atom
which is c¢¢s to the other two, is in each case much
shorter, being 2.230 (8) A (X = Cl) and 2.206 (4) A
(X = H).%*% These results may be rationalized if one
assumes that transition metal-phosphine and -silyl
bonds involve some back-donation from the metal;
short metal-phosphorus and metal-silicon distances

{29) Further discussion of metal-silicon bond lengths appears in the
following paper: Lj. Manojlovié-Muir, K. W, Muir, and J. A. Ibers, ¢bid.,
9, 447 (1970).
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occur when there is no competing r-bonding ligand in
the trans position. Since the covalent radius of phos-
phorus is some 0.07 A shorter than the covalent radius
of silicon, while the covalent radii of Ru and Rh differ
by about 0.01 A,% it would then appear, from the near
equality of the short Ru-P distance in RuHCI(P-
(CsHy)s)2 with the Rh-Si distance found here, that
back-bonding occurs more readily with SiCl; than with
P(CeH;);. Such an explanation is consistent with the
relative stabilities of these complexes formed with
different substituted silanes.!?
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The crystal structure of hydridobis(trichlorosilyl)carbonyl-r-cyclopentadienyliron, (x-C;H;)FeH(SiCl;):(CO), has been
determined by X-ray diffraction methods. A monoclinic unit cell of dimensions a = 7.493 (5) &, b = 11.867 (9) &, ¢ =
8.651 (5) A4, and 8 = 99.73 (2)° contains two monomeric molecules; the observed and calculated densities are, respectively,
1.88 (2) and 1.835 g cm 3, and the space group is C22-P2;, The structure has been refined by least-squares methods to a con-
ventional R factor of 0.041 over 1245 counter-diffractometric data. The absolute configuration of the molecules in the crystal
used in the analysis has been determined by least-squares methods and Bijvoet ratio tests. The coordination polyhedron
around the Fe atom can be regarded as a distorted tetragonal pyramid, with the centroid of the cyclopentadienyl ring at the
apex and the remaining ligands in the basal plane. The Fe atom is displaced from the basal plane toward the ring. The two
Fe-Si distances are equal at 2.252 (3) A. This is the first determination of the length of such a bond. Structural data on
transition metal-silicon bonds are summarized and arguments are presented in favor of some d-d, back-bonding being in-

volved in these bonds.

Introduction

Although complexes containing metal-silicon bonds
are known for a wide variety of transition metals,
there is still very little structural information on such
compounds. The recent work on silylcobalt complexes
of the type Co(SiX;)(CO),' 3 (where X = C|, F, and H)
tends to confirm the suggestion of Hagen and McDiar-
mid* that the empty silicon d orbitals may be involved
in the Co~-Si bonding. Wehave pointed out in the pre-
vious paper that the Rh-Si distance in RhHCI(SiCly)-
(P(CsH:)s)2 provides evidence that the silicon d orbitals
are used in the Rh-Si bonding.® In order to obtain
further insight into the behavior of substituted silyl
groups as ligands in transition metal complexes, we
have determined the structure of 7-CpFeH (SiCl;),(CO)

(1) W.T. Robinson and J. A. Ibers, Inorg. Chem., 8, 1208 (1867).

(2) K.Emerson, P, R. Ireland, and W, T. Robinson, bid., 9, 436 (1970).

(3) A. G. Robiette, G. M, Sheldrick, R. N. F. Simpson, B. J. Aylett, and
JoA. Campbell, J. Organometal. Chem, (Amsterdamy}, 14, 279 (1968).

(4) A.P. Hagen and A. G, McDiarmid, Inorg. Chem., 6, 686 (1967).

(5) K. W.Muir and J. A. Ibers, sbid., 9, 440 (1970).

(Cp = cyclopentadienyl = C;H;~). This is the first
reported structure of a compound which contains an
Fe-Si bond. The work also reflects our interest in the
geometries of five-coordinated® transition metal com-
plexes and, in particular, those containing a hydridic
hydrogen bonded to the transition metal.

Collection and Reduction of Intensity Data

A sample of w-CpFeH(SiCly),(CO) was kindly sup-
plied by Graham.” The crystals are pale yellow nee-
dles, moderately stable in air. A preliminary X-ray
photographic examination showed that they possess
monoclinic symmetry. According to the photographs
of the 0&I, 20, h0I, and k1] reciprocal lattice nets, taken
with Mo Ko radiation, systematic absences occur only

(6) In this paper the cyclopentadienyl ring is regarded as occupying one
vertex of the iron coordination polyhedron. Some authors assume that a
cyclopentadienyl ring occupies three vertices of the coordination polyhedron
and would therefore describe the iron as heptacoordinate in the present case.

(7) W. A. G. Graham and W, Jetz, Abstracts, 155th National Meeting
of the American Chemical Society, San Francisco, Calif., March-April
1968, No. M 082.



