Contribution from the Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

Nickel(II) Tetrachloroaluminate¹

BY JORULF BRYNESTAD, HARRY L. YAKEL, AND G. PEDRO SMITH

Received September 12, 1969

We have prepared the compound Ni(AlCl₄)₂ by direct reaction between NiCl₂ and Al₂Cl₆ at temperatures near 200° in a sealed silica tube. We found that the binary system NiCl₂-Al₂Cl₆ has an invariant phase equilibrium at a temperature in the range 205–215° among the four phases gas, liquid, and solid Ni(AlCl₄)₂ and a second nickel-containing phase that may be Ni-Cl₂. Below this invariant point the stable solid phase is Ni(AlCl₄)₂ while above it the other solid phase is stable. These phase relations explain why Munday and Corbett² did not observe Ni(AlCl₄)₂ in this system; they worked at temperatures above the conversion point.

The $Ni(AlCl_4)_2$ was prepared by placing $NiCl_2^3$ and an excess of $AlCl_3^4$ in thick-walled silica tubes which were then evacuated and sealed. These tubes were heated in windowed furnaces and gently agitated in such a way as to maintain the liquid, solid, and gas phases in mutual contact.

When Al_2Cl_6 and vacuum-sublimed NiCl₂ were heated to 200°, the reaction to form Ni(AlCl₄)₂ proceeded very slowly. However, if the mixture was first heated to 250–270° for an extended period, then upon cooling to 200° the reaction to form Ni(AlCl₄)₂ proceeded at a much faster rate. The two solid phases were easily distinguished in these reactions by their different crystal habits and colors.

In the presence of excess Al_2Cl_6 , $Ni(AlCl_i)_2$ may be recrystallized in a thermal gradient at temperatures near 200°. During this recrystallization it appears as though nickel(II) transport may take place in the gas phase.

 $Ni(AlCl_4)_2$ was isolated by slowly evaporating excess Al_2Cl_6 in a thermal gradient. A 0.092-g sample was analyzed. *Anal.* Calcd for Ni(AlCl_4): Ni, 14.81; Al, 13.62; Cl, 71.57. Found: Ni, 14.1; Al, 13.6; Cl, 71.57.

Ni(AlCl₄)₂ formed at 200° consists of reddish orange needles which single-crystal X-ray diffraction data show to be monoclinic with lattice parameters $a_0 = 12.72 \pm$ 0.01 Å, $b_0 = 7.672 \pm 0.007$ Å, $c_0 = 11.47 \pm 0.02$ Å, and $\beta = 92^{\circ} 10' \pm 5'$. Placement of four formula weights of Ni(AlCl₄)₂ in this unit cell leads to a predicted density of 2.353 \pm 0.008 g/cm³. The intensity distribution has systematic absences due to body centering of the lattice and a *c*-glide plane normal to *b*; the space group is therefore Ic or I2/c. The lattice dimensions, possible space groups, and individual reflection intensities indicate that Ni(AlCl₄)₂ is isostructural with Co(AlCl₄)₂,⁵ in which MCl₆ octahedra share corners with AlCl₄ tetrahedra to form infinite chains along the c axis.

(5) J. A Ibers, Acta Cryst., 15, 967 (1962).

Contribution from the Chemistry Department of the University of Rome, 00100 Rome, Italy

On the Preparation and Properties of the Complex Hydrazopentaamminecobalt(III) Perchlorate

By F. Monacelli, G. Mattogno, D. Gattegno, and M. Maltese

Received September 29, 1969

It is known that ammino-azido complexes undergo acid hydrolysis through an acid-promoted path.¹⁻³ The influence of H^{\pm} concentration on the aquation rate and on the spectra⁴ of these compounds has been explained by a reversible protonation of the coordinated azide group. However, the existence of such protonated species has not been proved directly nor have the compounds been isolated as solids. [The single example of an isolable protonated amminecobalt(III) complex reported so far is *cis*-[Co(NH₈)₄(NO₂)(NO₂H)]-(NO₈)₂, which may be obtained from a nitric acid solution of the conjugate base.⁵ Nitro complexes are known to hydrolyze in acid solution through an acidcatalyzed path for which a protonated intermediate of the above type has been postulated.]

Here, we wish to report the preparation of and a preliminary study of the properties of the complex $[Co(NH_3)_5NHN_2](ClO_4)_3$.

During an investigation of the photochemical behavior of solid $[Co(NH_3)_5N_3](CIO_4)_2$ it was observed that the addition of 70% HClO₄ to a cold solution of azidopentaamminecobalt(III) perchlorate resulted in the precipitation of a product whose properties were different from those of the starting complex.

The electronic spectrum of its aqueous solution was similar to that of $[Co(NH_3)_5N_3](ClO_4)_2$ but a titration with standard NaOH showed that it behaves, in water solution, as a strong acid with an equivalent weight between 520 and 550. The presence of a H₃O⁺ group in the solid was excluded since a check for water (Karl Fischer method) on a pyridine solution of the acidic product proved negative.

Calculations based on the equivalent weight of a typical sample (535) led to the empirical formula $[Co(NH_3)_5N_3](ClO_4)_2 \cdot 0.89HClO_4$, which was also consistent with the elemental analysis. *Anal.* Calcd for

⁽¹⁾ Research sponsored by the U. S. Atomic Energy Commission under contract with the Union Carbide Corp.

⁽²⁾ T. C. F. Munday and J. D. Corbett, Inorg. Chem., 5, 1263 (1966).

⁽³⁾ Prepared by the method of D. M. Gruen and R. L. McBeth, J. Phys. Chem., **63**, 393 (1959).

⁽⁴⁾ Prepared by the method of N. J. Bjerrum, C. R. Boston, and G. P. Smith, Inorg. Chem., 6, 1162 (1967).

⁽¹⁾ G. C. Lalor and A. Moelwyn-Hughes, J. Chem. Soc., 1560 (1963).

⁽²⁾ T. W. Swaddle and E. L. King, Inorg. Chem., 3, 234 (1964).

⁽³⁾ P. J. Staples, J. Chem. Soc., A, 2731 (1968).
(4) G. C. Lalor, *ibid.*, A, 1 (1966).

⁽⁵⁾ R. Ugo and R. D. Gillard, *ibid.*, A, 2078 (1967).