mary C=N stretching force constants for the BF₃ adduct ($f_{\rm CN} = 18.8 \, {\rm mdyn/\AA}$) with that of the free acetonitrile³¹ ($f_{\rm CN} = 17.4 \, {\rm mdyn/\AA}$) shows that this constant does increase upon adduct formation. The increase in $f_{\rm CN}$ indicates an increase in the C=N bond strength upon coordination, which agrees with the decrease in the C=N bond length observed in the crystal structures.¹³

The CC stretching frequency is also found to increase upon adduct formation and there is an indication that the bond length may decrease. However, the force constants for the adduct ($f_{\rm CC} = 5.32 \, {\rm mdyn/Å}$) and for free acetonitrile ($f_{\rm CC} = 5.3 \, {\rm mdyn/Å}$) agree within their limits of error. Part of the increase in ν_4 can be attributed to kinematic coupling with BN stretch since this force constant contributes to the CC stretching frequency. The increase in F_{11} and F_{99} and the decrease in F_{33} and $F_{10,10}$ agree with the shifts observed for ν_1 , ν_3 , ν_9 , and ν_{10} upon complexation. The remaining force constants for the acetonitrile part of the molecule are similar to those of free acetonitrile.

(31) The CN force constant of free acetonitrile used here was determined from liquid vibrational data on HaCC¹⁶N, HaCCN, and DaCCN. Comparisons with this force field minimize the errors resulting from phase differences, since the frequencies for nitriles are known to be phase dependent: B. H. Thomas and W. L. Orville-Thomas, J. Mol. Struct., **3**, 161 (1969). In this force field, fcn is lower than that of Duncan²⁴ and the difference may be attributed to the phase dependence of $^{\nu}$ CN and the change in the off-diagonal constant involving C=N and CC bond stretch interaction. The force constant for the donor-acceptor BN bond is of particular interest. The BN valence force constants for F₃BNH₃, F₃BN(CH₃)₃, and F₃BNCCH₃ are 3.97,¹⁶ 3.53,²⁶ and 2.5 mdyn/Å. Thus the decrease in ν_{BN} on going from a strong to a weak adduct is matched by a decrease in f_{BN} . The weak nature of the BN bond in F₃BNCCH₃ is clear from ν_{BN} , f_{BN} , and the BN bond length ($r_{BN} = 1.63 \text{ Å}$).¹³ However, a monotonic correlation is not found between ν_{BN} , f_{BN} , or ΔH_f° and the BN bond lengths ($r_{BN} = 1.60 \text{ Å}$ for F₃BNH₃ and $r_{BN} = 1.585 \text{ Å}$ for F₃BN(CH₃)₃).³²

The BF₃ stretching force constant shows the expected decrease upon coordination ($f_{\rm BF} = 4.8 \, {\rm mdyn/\AA}$ for F₃BNCCH₃). However, no simple monotonic correlations involving $f_{\rm BF}$ for adducts of this type can be found with the existing data.

Acknowledgments.—This research was supported by the National Science Foundation through Grants GP-6676 and -10117 and by the ARPA through the Northwestern Materials Research Center. We thank Professor R. C. Taylor for supplying a copy of P. Clippard's thesis and for helpful discussions. We are also grateful to Dr. G. M. Begun for a copy of Jacques Le Calve's thesis.

(32) J. L. Hoard, S. Geller, and T. B. Owen, Acta Cryst., 4, 405 (1951).

Contribution from the Department of Chemistry, University of Kentucky, Lexington, Kentucky, and the U. S. Army Research Office, Durham, North Carolina

Boron–Nitrogen Compounds. XXXIII.¹ A Normal-Coordinate Analysis of Borazine

BY KENNETH E. BLICK, JOHN W. DAWSON, AND KURT NIEDENZU

Received December 1, 1969

Utilizing a recent reassignment of the vibrational spectrum of borazine, $(-BH-NH-)_{3}$, and isotopically labeled derivatives thereof, a normal-coordinate analysis on this six-membered heterocycle has been performed. The calculated valence force field was adjusted to provide a good fit for all of the available data. When the entire set of suggested assignments for the normal vibrations of $(-BH-NH-)_{3}$, $(-^{10}BH-NH-)_{3}$, $(-BH-ND-)_{3}$, $(-^{10}BH-ND-)_{3}$, $(-BD-NH-)_{3}$, $(-^{10}BD-NH-)_{3}$, and $(-BD-ND-)_{3}$ was utilized in a simultaneous least-squares adjustment, the average error between all of the calculated and observed frequencies was 1.01%. The calculated force constants are in agreement with recent judgments on the strength of the various bonds in the borazine molecule. The calculated potential energy distribution of the isotopically labeled derivatives indicates that the character of several BH and NH vibrations is altered substantially upon deuteration at either the boron or the nitrogen atoms. Displacements calculated for the parent borazine molecule reveal appreciable movement of the annular atoms out of the molecular plane.

Introduction

The vibrational spectrum of borazine, $(-BH-NH-)_{a}$, has been recently reexamined using isotopically labeled derivatives.² Based on the resultant data, reassignments of several fundamentals of borazine were suggested; they should have a significant bearing on the previously reported values³⁻⁵ of a number of valence force constants of borazine. For example, a significant change in the B–N force constant was anticipated due to the reassignment of the highest B–N stretching mode of species E' from 1605 to 1465 cm⁻¹.²

Also, some minor uncertainties had remained with respect to the assignment of fundamentals² and it

- (3) B. L. Crawford and J. T. Edsail, J. Chem. Phys., 7, 233 (1939).
- (4) R. A. Spurr and S. Chang, ibid., 19, 518 (1951).
- (5) E. Silberman, Spectrochim. Acta, 23, 2021 (1967).

⁽¹⁾ Part XXXII: K. Niedenzu, P. J. Busse, and C. D. Miller, Inorg. Chem., 9, 977 (1970).

⁽²⁾ K. Niedenzu, W. Sawodny, H. Watanabe, J. W. Dawson, T. Totani, and W. Weber, *ibid.*, **6**, 1453 (1967).

was hoped that a normal-coordinate analysis of the data would clarify the situation and increase our understanding of the borazine molecule. The 990- cm^{-1} band had been reassigned to an E' fundamental;² however, it is the only E' mode that was observed without a Raman counterpart. Also, previous calculations by Crawford and Edsall³ and Kubo and coworkers⁶ indicated that ν_8 , an A_2'' fundamental, should be found at a much higher frequency than the 917-cm⁻¹ mode which was reassigned to ν_8 primarily on the basis of its band shape.^{2,7}

Two previous calculations on borazine have assumed all interaction force constants to be zero.^{3,6} Silberman⁵ included one interaction force constant (a bend-bend interaction) in his calculations where only the in-plane modes were considered. The multiple possibilities of using data derived from isotopically labeled borazine have enabled us to obtain a least-squares-adjusted force field which includes those interaction force constants which were tested and found to be significant.

Detailed descriptions of each of the normal modes were obtained in terms of Cartesian atom displacements and potential energy distribution. The calculated atom displacements indicated that several of the out-of-plane fundamentals involve large displacements of annular atoms from the molecular plane. The potential energy distribution obtained for the normal modes indicates that the nature of the B–N and N–H vibrations is substantially altered upon deuteration of either or both the boron and the nitrogen atoms.

The Molecular Model

The molecular structure of borazine has been investigated by electron diffraction, and D_{3h} symmetry has been assigned to the molecule; all bond angles were calculated to be 120° and the BN bond length was given with a value of 1.44 Å.^{8,9} The NH and BH bond distances were given with 1.02 and 1.20 Å, respectively. On this basis, the following representation can be readily determined

$$\Gamma = 4 A_1' + 3 A_2' + 7 E' + 3 E'' + 3 A_2''$$

This term depicts the number and corresponding symmetry of the expected fundamentals of borazine.

Forty-two internal coordinates were constructed using the notation as depicted in Figure 1. The following representation was determined for the internal coordinates

$$\Gamma = 7 A_1' + 3 A_2' + 10 E' + A_1'' + 3 A_2'' + 4 E''$$

This expression leads to a redundancy representation of

$$\Gamma = 3 A_{1}' + 3 E' + A_{1}'' + E''$$

The latter term was verified by the diagonalized G

Figure 1.—Internal coordinates of borazine. (Numbering of atoms refers to the numbering used in the calculations.)

matrix. Redundancies were removed by methods discussed by Schachtschneider.¹⁰ The use of symmetry coordinates greatly facilitated the calculation by factoring the F and G matrices in accordance with the representation generated by the internal coordinates.

Calculations of Frequencies and Force Constants

All calculations were performed on an IBM 360-50 digital computer at the University of Kentucky Computing Center. The programs, which use the Wilson FG technique¹¹ for setting up the vibrational secular equation, were written by Schachtschneider.¹⁰

A number of assumptions were necessary in order to facilitate the performance of the normal-coordinate analysis. For example, although 23 interaction force constants were included, most of the off-diagonal elements in the force field were assumed to be zero; the effects of anharmonicity of NH and BH vibrations have also been ignored. An initial force field was constructed using interaction force constants judged to be significant in cyclic molecules¹² (cf. Table I); primarily, interaction force constants were considered for those motions involving displacements of the same atoms. Additional interaction force constants were considered, and, in all cases, a least-squares adjustment was applied in an effort to test the significance of the modifications on the force field. The final valence force field as used in the following calculations is reflected in Table I.

One of the first objectives in performing the normalcoordinate analysis of borazine was to resolve the minor uncertainties which remained in the assignment of fundamentals.² In pursuing this objective, the "di-

⁽⁶⁾ H. Watanabe, M. Narisada, T. Nakagawa, and M. Kubo, Spectrochim. Acta, 16, 78 (1960).

⁽⁷⁾ V. B. Kartha, S. L. Krishnamachari, and C. R. Subramaniam, J. Mol. Spectry., 23, 149 (1967).

 ⁽⁸⁾ A. Stock and R. Wierl, Z. Anorg. Allgem. Chem., 203, 228 (1931).
 (9) S. H. Bauer, J. Am. Chem. Soc., 60, 524 (1938).

⁽¹⁰⁾ J. H. Schachtschneider, Technical Report No., 231-63, Shell Development Co., Emeryville, Calif., 1966.

⁽¹¹⁾ E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, "Molecular Vibrations," McGraw-Hill Book Co., Inc., New York, N. Y., 1955.

⁽¹²⁾ L. L. Garber, L. B. Sims, and C. H. Brubaker, Jr., J. Am. Chem. Soc., 90, 2518 (1968).

	Таві	εI	
	Force Constant	S OF BORAZINE ^a	
No.	Lescription	Value ^b	Estd error
	A. Valence For	rce Constants	
1	BN str	5.462306	± 0.152900
2	BH str	3.349860	± 0.007700
3	NH str	6.667682	± 0.001100
4	Planar BH bend	0.554421	± 0.000000
5	Planar NH bend	0.459214	± 0.001300
6	NBN ring distortion	1.344997	± 0.0
7	BNB ring distortion	0.908514	± 0.0
8	Nonplanar BH bend	0.517036	± 0.0
9	Nonplanar NH bend	0.331620	± 0.0
10	BN torsion	0.232487	± 0.050000
	B. Interaction F	orce Constants ^e	
11	$\mathrm{B^{1}N^{2}}$ str- $\mathrm{N^{2}B^{3}}$ str	1.212458	± 0.0
12	B ¹ N ² str B ¹ N ⁶ str	0.560607	± 0.100000
13	${ m B^1N^2}$ str- ${ m B^3N^4}$ str	-0.263022	± 0.050000
14	B¹N² str−B⁴N⁵ str	-0.019357	± 0.010000
15	Planar B ¹ H bend–B ¹ H str	-0.181614	± 0.057000
16	Planar N²H bend–N²H str	-0.169943	± 0.016700
17	Planar B¹H bend–B¹N² str	0.165007	± 0.140000
18	Planar N²H bend–N²B³ str	0.032108	± 0.020000
19	Planar B ¹ H bend–B ¹ N ⁶ str	-0.064749	± 0.023000
20	Planar B ² H bend–N ² B ¹ str	-0.054853	± 0.022000
21	N ² B ¹ N ⁶ ring distortion-	0.239252	± 0.0
	B ¹ N ² B ³ ring distortion		
22	N ² B ¹ N ⁶ ring distortion-	0.097247	± 0.006300
	N ² B ³ N ⁴ ring distortion		
23	N ² B ¹ N ⁶ ring distortion-	0.143867	± 0.065000
	B ¹ N ² str		
24	B ¹ N ² B ³ ring distortion-	0.032108	± 0.015400
	N ² B ³ str		
25	Planar N ² B ¹ H bend–	-0.008442	± 0.012500
	planar N ⁶ B ¹ H bend		
26	Planar B ¹ N ² H bend–	0.018106	± 0.010000
	planar B ³ N ² H bend		
27	Planar N ² B ¹ H bend-	0.020744	± 0.007100
~ ~	planar B ¹ N ² H bend		
28	B ¹ N ² torsion-nonplanar	-0.128124	± 0.016800
	B ¹ H bend		
29	B ¹ N ² torsion-nonplanar	-0.161528	± 0.005200
	N ² H bend		
30	Nonplanar B ¹ H bend-	-0.052649	± 0.011000
	nonplanar N ² H bend	0.0010=1	
31	B^1N^2 torsion $-N^2B^3$ torsion	0.001671	± 0.001000
32	B ¹ N ² torsion–B ³ N ⁴ torsion	0.022024	± 0.013800
33	B ¹ N ² torsion–N ⁴ B ⁵ torsion	-0.036196	± 0.007500

^a Calculated from data in Tables II and III. ^b Units: stretchings, mdyn/Å; bendings, mdyn Å/radian²; stretch-bend interactions, mdyn/radian. ^c Superscripts denote numbering of atoms as depicted in Figure 1; all of the symmetrical interactions were included in the calculations though only one example of each type is depicted.

agonal" force constants as proposed by Crawford and Edsall³ and some estimated interaction force constants were adjusted by a least-squares perturbation technique in an effort to fit the reported² reassignments for the parent borazine and its isotopically labeled species. The calculated data as compared with the proposed² frequency assignments are listed in Tables II and III. The data compiled in these tables indicate a very good agreement between calculated and observed (assigned²) frequencies. Some of the resultant force constants are compared with previous calculations^{8,5} and are listed in Table IV.

A complete set of force constants including inter-

		Table I	I	
CAI	LCULATED AN	ND OBSERVE	D ² FREQUENCIE	SOF
	Borazini	E FUNDAMEN	NTALS $(CM^{-1})^a$	
Species	Obsd	Calcd	% error	$\Delta \nu$, cm ⁻¹
A_1'	3452	3486	-0.986	-34
	2535	2520	0.580	15
	940	946	-0.609	-6
	852	855	-0.386	-3
E'	3486	3485	0.036	1
	2520	2519	0.061	-1
	1465	1463	0.131	2
	1406	1399	0.495	7
	1096	1105	-0.809	9
	990	987	0.344	3
	518	518	0.034	0
$A_2^{\prime\prime}$	917	933	-1.656	-16
	719	724	-0.661	-5
	394	379	3.776	15
$E^{\prime\prime}$	968	942	2.665	26
	798	770	3.505	28
	288	285	1.019	3
		Av er	ror 1.04	10.2

" The per cent error presented here was obtained before the calculated frequency was rounded off to the nearest wave number.

action constants calculated for the above data was obtained after extensive perturbations; the numerical values including estimated errors are illustrated in Table I. These data appear to be consistent with values expected on the basis of the molecular model and with literature values for the type of internal displacement under consideration.¹³ The value of about 5.5 mdyn/Å reflects a sizable reduction in the value of the BN force constant as compared to the value of 6.3 mdyn/Å originally proposed by Crawford and Edsall.³ However, this difference was anticipated on the basis of the reassignment of the 1605-cm⁻¹ mode from a BN ring vibration to a band belonging to the impurity, diborane.²

The least-squares adjustment technique used in our calculations has facilitated the calculation of estimated errors for the force constants as shown in Table I. However, in many instances little significance can be placed on these error estimates due to the random distribution of errors with respect to the frequencies. This randomness might be attributed to the anharmonicity of the B–H and N–H vibrations. Also, several of the larger estimated errors noted could be due to the fact that the corresponding force constants are not particularly sensitive to the observed data.¹⁰

Interaction force constants are of particular significance in the case of out-of-plane vibrations. The relatively large value of the (B-H)-torsion and (N-H)torsion interaction force constants as shown in Table I is consistent with the data obtained in normal-coordinate calculations on the isoelectronic benzene molecule for the analogous interaction.¹⁴ The relative positive or negative character of the internal coordinates

^{(13) (}a) G. Herzberg, "Infrared and Raman Spectra," D. Van Nostrand Co., New York, N. Y., 1945; (b) J. H. Schachtschneider and R. G. Snyder, J. Polymer Sci., C7, 99 (1964); (c) R. G. Snyder and J. H. Schachtschneider, Spectrochim. Acta, 21, 169 (1965).

^{(14) (}a) Y. Kakiuti and T. Shimanouchi, J. Chem. Phys., 25, 1252 (1956);
(b) J. R. Scherer, J. C. Evans, W. M. Muelder, and J. Overend, Spectrochim. Acta, 18, 57 (1962).

		CALCULAT	ed and U	BSERVED F	REQUENCI	$ES(CM^{-1})$	OF ISOTOR	PICALLY LA	ABELED BO	RAZINES		
Normal	(10BH	(NH)3	(BD)	NH)8	<i>─</i> ─(10BD	NH)3	——(BHN	۷D)₃—	(10BH]	ND)3	(BD)	ND)8
vib	Obsd	Calcd	Obsd	Calcd	Obsd	Calcd	Obsd	Calcd	Obsd	Calcd	Obsd	Calcd
						A_1'						
ν_1	3452	3486	3452	3486		3486	2579	2572		2574	2567	2569
ν_2	2554	2533	1893	191 0		1932	2521	2517		2529	1895	1909
ν_3	978	976	903	892		911	940	945		976	901	886
ν_4	852	856	852	847	• • •	851	824	822		823	824	818
						$\mathbf{E'}$						
ν_{11}	3486	3485	3485	3485	3484	3485	2594	2568	2621	2569	2582	2568
$ u_{12} $	2535	2531	1897	1914	1921	1935	2519	2518	2522	2530	1895	1912
ν_{13}	1487	1500	1440	1423	1462	1462	1438	1448	1472	1484	1418	1406
ν_{14}	1408	1407	1328	1363	1392	1366	1289	1298	1304	1310	1245	1240
ν_{15}	1102	1108	1022	1008	1030	1013	1071	1060	1075	1066	797	807
ν_{16}	1005	996	813	781	816	783	786	789	796	793	766	764
ν_{17}	526	525	509	508	516	514	507	508		514	499	499
						A_2''						
ν_8	930	940	808	791	820	796	900	916	913	925	782	756
ν_9	725	728	716	708	723	718	546	539	551	542	540	537
ν_{10}	396	383	326	329	326	331	383	374	385	377	323	3 27
						Е''						
ν_{18}		952	788	806		811	96 0	936		947		767
ν_{19}		771	725	737		747	550	583		583		581
ν_{20}	291	289	262	259	•••	261	279	281	• • •	285	255	254
Av error												
$\Delta \nu$, cm ⁻¹	8	.28	1	4.34	12	.63	10.13		13	.16	8	.80
%	0	.728	1	.351	1.	378	78 1.199		1.088		0.858	

TABLE III

TABLE IV

COMPARISON OF FORCE CONSTANTS OF BORAZINE (MDYN/Å)

No.	Description	a	Ь	C
1	BN str	6.300	6.609	5.462
2	BH str	3.423	3.428	3.350
3	NH str	6.524	6.765	6.668
4	Planar BH bend	0.35	0.778	0.554
5	Planar NH bend	0.65	0.347	0.459
6	NBN ring distortion	0.525	0.957	1.345
7	BNB ring distortion	0.525	0.957	0.909
8	Nonplanar BH bend	0.23		0.517
9	Nonplanar NH bend	0.42		0.332
10	BN torsion	0.10		0.232
11	BNB-NBN interaction		-0.05	0.239

^a Reported by Crawford and Edsall.³ ^b Reported by Silberman⁵ (bending and interaction force constants in mdyn Å). ^c This work based on reported² assignments and data in Table II (bending and interaction force constants in mdyn Å/radian²). symmetry species factoring; however, it will result in unusually high values for the frequency of ν_8 . The authors are greatly indebted to Dr. J. Scherer for his extremely valuable advice concerning this matter. It may be pointed out that similar high-frequency values for ν_8 are obtained if the cited interaction force constants are deleted. As a matter of fact, all previous calculations on the borazine molecule resulted in a value of about 1200 cm⁻¹ for the frequency of ν_8 .^{3,6} The same situation holds true for calculations of the vibrational spectra of B-trihaloborazines, (-BX-NH-)₃, which are presently being investigated in our laboratories.

The potential energy distributions calculated for ν_{15} and ν_{16} are presented in Table V. Kubo and coworkers¹⁵ suggested the assignment of ν_{15} and ν_{16} to

Potential Energy Distribution (%) of ν_{13} and ν_{16} (cm ⁻¹) of Borazines										
Borazine species	ν_{15}	$\nu(NB)$	$\delta(BH)$	$\delta(\mathrm{NH})$	ν_{16}	$\nu(NB)$	$\delta(BH)$	$\delta(NH)$	$\delta(NBN)$	$\delta(BNB)$
(BHNH)₃	1105	29	43	17	987	47	16	21	8	0
(10BHNH)3	1108	26	47	17	996	44	17	22	8	0
$(BHND)_3$	1060	26	51	6	790	21	2	71	6	0
$(BDNH)_3$	1008	52	7	30	780	14	74	0	1	0
$(BDND)_3$	807	12	40	42	764	21	38	29	5	0
(10BDNH) ₃	1013	51	6	31	783	13	74	0	1	0
(10BHND) ₈	1066	23	55	5	793	20	2	72	6	0

Table V Potential Energy Distribution (%) of ν_{15} and ν_{16} (cm⁻¹) of Borazine

involved in this interaction must correspond with the sign of the element in the force constant matrix in order to obtain the correct contribution to the potential energy function. If this point is not taken into consideration, it will not destroy the symmetry of the calculation and hence will not be detected by improper in-plane BH and NH deformations, respectively, on the basis of isotopic data obtained on $(-BH-ND-)_3$. Crawford and Edsall³ attributed ν_{15} and ν_{16} to NH and BH deformations, respectively, based on their

(15) H. Watanabe, T. Totani, T. Nakagawa, and M. Kubo, Spectrochim. Acta, 16, 1076 (1960).

1420 K. E. BLICK, J. W. DAWSON, AND K. NIEDENZU

,			Potent	ial energy distri	bution					
NH		BH	BN	BH planar	NH planar	NBN ring	BNB ring	Fr€	eq, cm -1—	
str		str	str	bend	bend	distortion	distortion	Obsd	C	aled
				1	A1'					
0.99								3452	3	486
		0.97						2535	2	520
· · ·		0.03	0.57	0.04	0.03	0.18	0.12	94 0		946
0.01			0.23	0.09	0.07	0.43	0.29	852		855
					E'					
0.99								3486	3	485
		0.96						2520	2	519
			0.63	0.41	0.01		0.05	1465	1	463
0.02			0.37	0.03	0.67	0.06		1406	1	400
			0,29	0.43	0.17	0.02	0.02	1096	1	105
			0.47	0.16	0.21	0.08		99 0		987
		• • •	0,16	0.11	0.10	0.50	0.41	518		518
			P	otential energy	distribution					
BH	$\mathbf{N}\mathbf{H}$	BN	NH-BH	BH-torsion	NH-torsion		-Torsion-torsion	L	-Freq,	cm ⁻¹
wag	wag	torsion	interaction	interaction	interaction	No. 31	No. 32	No, 33	Obsd	Calcd
					A_2''					
1.10	0.30	0.21	0.29	-0.51	-0.42		0.04	-0.03	917	933
0.29	0.52	0.15	-0,20	-0.22	-0.45		0.03	-0.02	719	724
0.09	2.29	3.40	0.23	-0.59	-4.59	0.05	0.64	-0.53	394	379
					E''					
1.09	0.13	0.07	0.09	-0.26	-0.14			0.01	968	942
0.09	1.01		-0.08						798	770
0.15	0.91	2.27	0.09	-0.53	-2.05	0.02	-0.21	0.35	288	285
	NH str 0.99 0.01 0.99 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01	NH str 0.99 0.01 0.99 0.02 NH str 0.01 0.99 0.02 NH wag NH Nag NH wag 1.10 0.29 0.52 0.09 1.09 0.13 0.09 1.01	NH BH str str 0.99 0.97 0.03 0.01 0.99 0.96 0.96 0.96 0.02 star	NH BH BN str str str 0.99 0.97 0.03 0.57 0.01 0.23 0.99 0.96 0.96 0.96 0.96 0.16 0.16 BH NH BN NH-BH wag wag torsion interaction 1.10 0.30 0.21 0.29 0.29 0.52 0.15 -0.20 0.09 2.29 3.40 0.23 1.09 0.13 0.07 0.09 0.15 0.91 2.27 0.09	Potential energy distrist NH BH BN BH planar str str str bend 0.99 bend 0.97 0.03 0.57 0.04 0.01 0.23 0.09 0.99 0.036 0.23 0.09 0.99 0.23 0.09 0.99 0.163 0.41 0.02 0.37 0.03 0.47 0.16 0.16 0.11 Image: String	NH BH BN BH planar NH planar str str str bend bend bend A_1' 0.99 A_1' 0.99 A_1' 0.99 A_1' 0.99 0.03 0.57 0.04 0.03 0.01 0.23 0.09 0.07 E' 0.99 0.96 0.163 0.41 0.01 0.02 0.29 0.43 0.17 0.47 0.16 0.21 0.16 0.11 0.10 Mage wag torsion interaction interaction Mage 0.29 -0.51	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Potential energy distribution NBN ring distortion BNB ring distortion NH BH BN BH planar NBN ring distortion BNB ring distortion A1' A_1' A_1' A_1' A_1' 0.99 A_1' A_1' 0.01 0.23 0.09 0.07 0.43 0.29 0.01 0.23 0.09 0.07 0.43 0.29 0.99 0.23 0.09 0.07 0.43 0.29 0.96 0.01 0.05 0.06 0.02	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 Table VI

 Calculated and Observed Frequencies and Potential Energy Distribution^a of Borazine

^a In some cases the PED's given for in-plane modes do not add up to 1 due to contributions of interaction constants.

normal-coordinate calculations, whereas Price, et al.,¹⁶ have assigned these modes to either BH or NH bending or to a combination of both. The calculations reported in the present study seem to confirm that the specific assignment of ν_{15} and ν_{16} is dependent on the annular atoms selected for deuteration. The exact nature of the normal coordinates is subject to variation, and the interpretation of either Kubo, et al.,¹⁵ or Crawford and Edsall³ can be justified from the isotopic data. This variation in the nature of the normal vibration may interpret the spectral dissimilarities observed² in certain regions of the vibrational spectra of the various deuterated borazine derivatives. The potential energy distribution of all observed fundamentals of the parent borazine is depicted in Table VI.

Discussion

On the basis of the reassignments of the vibrational modes of borazine as suggested recently,² a normalcoordinate analysis of the molecule has been performed. The present data are clearly in consonance with the concept of delocalized electrons in the heterocycle and a BN bond order greater than 1, though the force constant for the BN stretch is significantly smaller than that previously accepted.⁸

The calculations clearly substantiate the revised² assignments of the borazine fundamentals and they facilitate complete descriptions of the latter in terms of potential energy distribution and Cartesian atom

displacements. Also, the significance of certain interaction constants particularly for the calculation of out-of-plane fundamentals is illustrated.

After the work reported herein had been virtually completed, a reinvestigation of the structure of borazine was described.¹⁷ The reported minor changes in the bond distance and angles will have no significant effect on the validity of the present calculations. However, the postulated¹⁷ possibility of C₂ symmetry is in conflict with the reported spectral data² as well as the present normal-coordinate analysis. Assumption of C_2 symmetry would require the observation of 16 additional Raman lines all of which should have corresponding infrared absorptions. Furthermore, if the symmetry is lowered from D_{3h} to C₂, all infraredactive bands should have corresponding Raman lines. The quality of the reported spectra² makes it appear unlikely that such a large number of additional Raman lines should have escaped detection. On this basis, it appears unreasonable to discuss the borazine molecule with the assumption of C₂ symmetry. Indeed, Harshbarger, et al., 17 discussed an alternate interpretation of their data. It was suggested¹⁷ that the "shrinkage effects" which were observed for the C2 model of borazine might be due to the occurrence of large out-of-plane deformations of a D_{3h} species. Hence, it is interesting to note that the equilibrium Cartesian coordinates calculated on the basis of the C2 model of borazine¹⁷ compare favorably with displacements for several out-of-plane vibrations calculated in the

⁽¹⁶⁾ W. C. Price, R. D. B. Fraser, T. S. Robinson, and H. C. Longuet-Higgins, Discussions Faraday Soc., 9, 131 (1950).

⁽¹⁷⁾ W. Harshbarger, G. Lee, R. F. Porter, and S. Bauer, *Inorg. Chem.*, **8**, 1683 (1969).

Atom	Mass	C2 model	<i>v</i> 8	νg	P10	\$\$18	<i>ν</i> 19	ν_{20}
1	10.811	0.0	0.1518	-0.1345	0.1803	-0.2258	0.0783	-0.2057
2	14.007	0.1065	-0.0801	0.0147	-0.1972	-0.0004	-0.0350	-0.0662
3	10.811	-0.1065	0.1518	-0.1345	0.1803	0.2272	-0.1071	0.2717
4	14.007	0.0	-0.0801	0.0147	-0.1972	-0.0658	-0.0950	-0.2064
5	10.811	0.1065	0.1518	-0.1345	0.1803	-0.0014	0.0288	-0.0660
6	14.007	-0.1065	-0.0801	0.0147	-0.1972	0.0662	0.1300	0.2726
7	1.008	0,7332	0.3957	1.0429	-0.1690	0.0019	0.3833	-0.0660
8	1.008	-0.8588	-0.9109	0.1949	0.6365	-1.1297	0.2838	0.7299
9	1.008	0.0	0.3957	1.0429	0.1690	0.3223	1.0418	-0.2058
10	1.008	0.8588	-0.9109	0.1949	0.6365	0.0068	-0.0763	-0.1773
11	1.008	-0.7332	0.3957	1.0429	0.1690	-0.3242	-1.4251	0.2718
12	1.008	0.0	-0.9109	0.1949	0.6365	1,1229	-0.2075	-0.5526

TABLE VII ALCHLATED OUT-OF-PLANE ATOM DISPLACEMENTS[®] AS COMPARED TO C₂ MODEL EQUILIBRIUM COORDINATES

^a Assuming a D_{3h} model.

present work which utilizes D_{3h} symmetry (Table VII). The vibrational mean amplitudes calculated by Harshberger, *et al.*,¹⁷ using a D_{3h} and a C_2 model are depicted in Table VIII. The data are very similar but those obtained for the D_{3h} model are in slightly better agree-

TABLE VIII VIBRATIONAL MEAN AMPLITUDES

Type	D _{8h} 17	C ₂ 17	This work
B-N	0.0573	0.057 ± 0.002	0.0478734
B–H	0.0651	0.059 ± 0.012	0.0856076
N-H	0.0784	0.078 ± 0.009	0.0717101
$B \cdots B$	0.0670	0.074 ± 0.003	0.0634850
$N \cdots N$	0.0670	0.074 ± 0.003	0.0631891
$N \cdots B$	0.0724	0.072 ± 0.003	

ment with the data obtained from the present normalcoordinate analysis. These observations tend to indicate that the borazine molecule is indeed best discussed on the basis of D_{3h} symmetry.

Acknowledgments.—The authors wish to express their sincere gratitude to Dr. J. R. Scherer, Western Regional Research Laboratory, U. S. Department of Agriculture, Albany, Calif., for his generous advice and assistance in setting up the correct Z matrix for our calculations. Initial parts of this work were supported by the U. S. Army Research Office (Durham). The authors acknowledge the sizable funds for computing services which were made available by the University of Kentucky Graduate School.

Contribution No. 1792 from the Department of Chemistry, Indiana University, Bloomington, Indiana 47401

An Assignment of the Hydrogen-1 Magnetic Resonance Spectrum of Decaborane at 220 MHz

By G. M. BODNER¹ and L. G. SNEDDON

Received October 13, 1969

The ¹H nmr spectrum of $B_{10}H_{14}$ has been elucidated through the study of the 2-Br $B_{10}H_{13}$ and 1,2,3,4- $B_{10}H_{10}D_4$ derivatives. Both solvent studies and dilution studies are reported.

The structure of B10H14, given below, is well

documented and can be analyzed by symmetry argu-(1) NSF Predoctoral Trainee. ments to be composed of four potentially nonequivalent boron environments, the 1,3; 2,4; 5,7,8,10; and 6,9 positions.

The ¹¹B nmr spectrum of $B_{10}H_{14}$ consists of four sets of overlapping doublets which have been assigned^{2,3} (in order of increasing field strength) to the 1,3; 6,9; 5,7,8,10; and 2,4 positions respectively.

The analysis of the $^1\!H$ nmr of $B_{10}H_{14}$ is complicated by the $^3/_2$ nuclear spin of the ^{11}B isotope, which results in a quartet of equal intensity lines for each non-

⁽²⁾ R. L. Pilling, F. N. Tebbe, M. F. Hawthorne, and E. A. Pier, Proc. Chem. Soc., 402 (1964).

⁽³⁾ P. C. Keller, D. Maclean, and R. O. Schaeffer, Chem. Commun., 204 (1965).