oxidation-reduction systems may be too short-lived to be detected by esr spectroscopy at 22°. As reported, oxyvanadium(V) ions do form short-lived complexes detectable by esr spectroscopy.⁵ The characteristic esr spectra were not obtained with Ce⁴⁺ ions, probably because Ce⁴⁺ ions are not stable in the presence of H₂O₂, being reduced to Ce³⁺ ions. Apparently, neither Ce⁴⁺ or Ce³⁺ ions (or Fe³⁺ ions formed in the Fe²⁺-H₂O₂ system) form complexes with free-radical species in oxidation--reduction systems detectable by esr spectroscopy at 22°.

Experimental Section

A Varian 4502-15 epr spectrometer system, operating at 100kcps field modulation and using an aqueous flow cell at 22° , was used. The flow rate of mixing of the oxidation-reduction systems was varied, in the usual way, by pressurizing the two solution reservoirs with nitrogen (0.5 atm), by adjusting a clip on the exit line, and by measuring the rates of flow by meters inserted on the inlet sides of the mixing chamber to the aqueous cell.^{3,5}

The compositions of the solutions, usually being mixed in equal volumes, were: (1) Fe^{2+} (0.01 M)-H₂SO₄ (9 ml of concentrated 1.⁻¹) and UO₂(NO₃)₂ (0.01 M)-H₂O₂ (0.1 M)-H₂SO₄ (9 ml of concentrated 1.⁻¹); (2) Ce⁴⁺ (0.001 M)-H₂SO₄ (9 ml of concentrated 1.⁻¹) and UO₂(NO₃)₂ (0.02 M)-H₂O₂ (0.1 M)-H₂SO₄ (9 ml of concentrated 1.⁻¹); (3) Ce⁴⁺ (0.001 M)-H₂SO₄ (9 ml of concentrated 1.⁻¹); (3) Ce⁴⁺ (0.001 M)-H₂SO₄ (0.005 M)-H₂SO₄ (7.5 ml of concentrated 1.⁻¹) and H₂O₂ (0.1 M)-H₂SO₄ (9 ml of concentrated 1.⁻¹); (4) Ce⁴⁺ (0.001 M)-H₂SO₄ (9 ml of concentrated 1.⁻¹); (5) Fe²⁺ (0.01 M)-H₂SO₄ (9 ml of concentrated 1.⁻¹); (5) Fe²⁺ (0.01 M)-H₂SO₄ (9 ml of concentrated 1.⁻¹); (6) Ce⁴⁺ (0.001 M)-H₂SO₄ (7.5 ml of concentrated 1.⁻¹); (7.5 Fe²⁺ (0.01 M)-H₂SO₄ (9 ml of concentrated 1.⁻¹); (7.5 Fe²⁺ (0.01 M)-H₂SO₄ (7.5 ml of concentrated 1.⁻¹); (7.5 Fe²⁺ (0.01 M)-H₂SO₄ (7.5 ml of concentrated 1.⁻¹); (7.5 Fe²⁺ (0.01 M)-H₂SO₄ (7.5 ml of concentrated 1.⁻¹); (7.5 Fe²⁺ (0.01 M)-H₂SO₄ (7.5 ml of concentrated 1.⁻¹); (7.5 Fe²⁺ (0.01 M)-H₂SO₄ (7.5 ml of concentrated 1.⁻¹); (7.5 Fe²⁺ (0.01 M)-H₂SO₄ (7.5 ml of concentrated 1.⁻¹); (7.5 Fe²⁺ (0.01 M)-H₂SO₄ (7.5 ml of concentrated 1.⁻¹).

The esr spectrum of the mixed solutions was recorded at 22° after equilibrium for a given flow rate was reached; that is, the intensity of the esr spectrum became constant. g values and line widths of the esr spectra were determined at a relatively slow scan rate for the magnetic field and a relatively high speed for the chart. DPPH was used as a standard. Chemicals used were reagent grade; solutions were prepared with oxygen-free distilled water.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823

Reaction of Difluorophosphines with Pseudohalogen Halides

By R. FOESTER AND KIM COHN

Received November 24, 1969

Although it has been well established that phosphoranes can be obtained by oxidizing phosphines with halogens, 1^{-3} the only pseudohalogen halide which has been reported to act as an oxidizing agent with phosphines is cyanogen bromide. Specifically, it has been observed that BrCN would interact with (CH₃)₂NPF₂ to give (CH₃)₂NPF₃(CN) and (CH₃)₂NPFBr as products, although BrCN does not interact with PF₃.⁴

In this paper, the results of a series of studies of the reactions of difluorophosphines with BrCN and ClCN are reported.

Methyltetrafluorophosphorane, dicyanomethylphosphine, dibromomethylphosphine, and the previously unreported $CH_3PBr(CN)$ were obtained when CH_3PF_2 was allowed to interact with BrCN. In contrast, no evidence that any reaction occurred was obtained when ClCN was allowed to interact with PF₃, CH_3PF_2 , or $(CH_3)_2NPF_2$. These compounds were identified by infrared, nmr, mass spectral, and elemental analyses. $CH_3PBr(CN)$ was also prepared by the direct interaction of CH_3PBr_2 and $CH_3P(CN)_2$.

These reactions of pseudohalogen halides with phosphines appear to depend on two factors. First, as the strength of the carbon-halogen bond increases, the reactivity of the pseudohalogen halide appears to decrease. CICN does not react, although BrCN does. Second, the reactivity of the phosphine appears to depend on the relative electronegativity of the phosphorus atom. When electron-releasing groups are attached to phosphorus (*i.e.*, $(CH_3)_2N$ or CH_3), the phosphine is reactive. PF₃ is not reactive. The factors which influence the amounts and nature of the products are not well understood.

Experimental Section

Apparatus.—Standard high-vacuum techniques were used throughout. Proton and fluorine nmr spectra were obtained on a Varian Model 56/60 nuclear magnetic resonance spectrometer operating at 60.0 Mc for the proton and 56.4 Mc for fluorine. For the proton spectra, tetramethylsilane and methylene chloride were used as external standards. For fluorine magnetic resonances, fluorotrichloromethane was used as an external reference, by the tube-interchange technique. Whenever possible, samples were run as neat liquids. Phosphorus nmr absorptions were obtained on a Varian Model DA 60 spectrometer operating at 24.3 Mc. Phosphoric acid (85%) was used as an external reference.

An F & M 810 research chromatograph was used, with helium as the carrier gas and a flame ionization detector. Glpc analyses of the products were performed on a 0.125 in. \times 20 ft stainless steel column packed with 20% silicon gum rubber SE 30 on Chromosorb W. The column was operated at 70°. The infrared spectra were obtained on a Perkin-Elmer 457 grating infrared spectrometer. For volatile materials a gas cell with a 7.5-cm path length and CsI windows was used. Nonvolatile materials were examined as smears between CsI plates. All mass spectra were obtained on a Perkin-Elmer Hitachi RMU-6E mass spectrometer operating with an ionization potential of 70 eV.

Materials and Analyses.—Cyanogen bromide (Aldrich Chemical Co.) was dried before use by distilling it *in vacuo* at 23° through two traps filled with phosphorus pentoxide suspended on asbestos. Cyanogen chloride was prepared from sodium cyanide and chlorine;⁵ mp -5.1° (lit.⁵ mp -5 to -6°). Dimethylaminodifluorophosphine was prepared by a previously described method.⁶ The identity of the phosphine was established by comparison of its infrared spectrum with a previously reported spectrum⁷ and by a vapor pressure of 93.7 mm at 0° (lit.⁶ pressure 93.4 mm). Phosphorus trifluoride (Ozark Mahoning Co.) was bubbled through water at 0° and dried by passing the gas

⁽¹⁾ J. F. Nixon, J. Inorg. Nucl. Chem., 27, 1281 (1965).

⁽²⁾ K. Cohn and R. W. Parry, Inorg. Chem., 7, 46 (1968).

⁽³⁾ T. Kesavadas and D. S. Payne, J. Chem. Soc., A, 1001 (1967).

⁽⁴⁾ J. E. Clune and K. Cohn, Inorg. Chem., 7, 2067 (1968).

⁽⁵⁾ G. H. Coleman, R. W. Leeper, and C. C. Schulze, Inorg. Syn., 2, 90 (1964).

⁽⁶⁾ J. G. Morse, K. Cohn, R. W. Rudolph, and R. W. Parry, *ibid.*, 10, 147 (1967).

⁽⁷⁾ R. Schmutzler, Inorg. Chem., 3, 415 (1964).

through 0 to -78 to -196° traps. The -78° fraction was discarded. The purity of the sample thus obtained was established by a vapor pressure of 114.4 mm at -126.0° (lit.⁸ pressure 113.9 mm). Methyldifluorophosphine was prepared by allowing CH₃-PCl₂ to interact with SbF₈ suspended in pyridine.⁹ The infrared, proton, and fluorine nmr spectra of CH₈PF₂ prepared in this manner were identical with previously reported spectra;¹⁰ mp -112° (lit.¹⁰ mp -110°).

All analyses were carried out by Galbraith Laboratories, inc., Knoxville, Tenn.

Attempted Reactions of Difluorophosphines with Cyanogen Chloride.—In a typical reaction ClCN (2.06 mmol) was condensed at -196° in vacuo into a 340-ml reaction tube equipped with a stopcock and a standard taper joint. While the tube was maintained at -196° , 3.29 mmol of PF₃ was distilled in vacuo onto solid ClCN.

The mixture was allowed to warm to 25° for 1 hr. After this time, the gaseous mixture was heated to 75° for 5 hr by immersion of the reaction tube in a heated oil bath. After heating, the reaction mixture was passed through traps held at 0, -78, and -196° . A 3.26-minol sample of unreacted PF₈ was recovered from the -196° trap, indicating no reaction occurred. The PF₈ thus recovered was identified by its infrared and mass spectra, which were identical with those of a sample of authentic PF₈.

Methyldifluorophosphine and dimethylaminodifluorophosphine also were allowed to interact with ClCN in a similar manner. No evidence that any reaction occurred was obtained.

Reaction of CH_3PF_2 with BrCN.—In a typical experiment a sample of cyanogen bromide (11.1 mmol) was distilled in vacuo into a 25-ml glass reaction tube maintained at -196° . The tube was equipped with a standard taper joint and a glass Teflon highvacuum stopcock (Ace, Catalog No. 8194). Methyldifluorophosphine (11.1 mmol) was then distilled in vacuo into the same tube. The reaction mixture was warmed to -20° by placing the reaction tube in a bath of salt and ice. The colorless reaction mixture turned amber within about 10 min. After the color change, the mixture was cooled again to -196° . The mixture was then allowed to warm to 23° over a period of 2.3 hr. During this time, the volatile products were removed by distillation in vacuo. These products were passed through a trap filled with molecular sieves (previously dried at 550° under a stream of nitrogen for 2 hr) and then through traps held at -12, -90, and -196° . A 2.7-mmol sample of $CH_{3}P(CN)_{2}$ was recovered from the -12° trap. The -90° trap contained 2.8 mmol of a mixture of about 90% CH₃PBr₂, about 9% CH₃PBr(CN), and about 1% CH₃P-(CN)₂.¹¹ A pure sample of CH₃PBr₂ was obtained from this mixture by passing the mixture through traps held at -45 and -196° ; the CH₃PBr₂ was retained in the -196° trap. Identification of these products is described in subsequent portions of this paper.

The -196° trap used in the original distillation contained a 5.3-mmol sample of CH₃PF₄, identified by its mass spectrum which was identical with a previously reported spectrum¹² and by a vapor pressure of 752 mm at 10° (lit.¹² bp 10°).

Characterization of CH₂PBr₂ and CH₂P(CN)₂.—The proton and phosphorus nmr data are presented in Table I. The chemical shifts and coupling constants of the absorptions are consistent with the proposed formulations. The ³¹P chemical shifts obtained for CH₃PBr₂ (δ -184.1 ppm) and CH₃P(CN)₂ (δ +80.3 ppm) are almost identical with previously reported values (lit.¹³ δ (CH₃PBr₂) -184.0 ppm; lit.¹⁴ δ (CH₃P(CN)₂ +81.4 ppm). The position and intensity of ir absorptions are identical with previously reported data.^{13,14}

TABLE I PROTON AND PHOSPHORUS NMR DATA FOR METHYLPHOSPHINES

	/1H nmr				
Compound	δ, ppm	$J_{\rm PH}$, cps	δ, pp	m	$J_{\rm PH},{\rm cps}$
CH_3PBr_2	-2.66°	19.9	$-184.1^{a,d}$		19.6
$CH_{3}PBr(CN)$	-2.20°	13.1	-23.6^{d}		13.9
$CH_3P(CN)_2$	-1.88°	7.7	$+80.3^{b,d}$		7.5
^a Lit. ¹³ -184.0	ppm. b Lit	.14 +81.4	ppm.	° 1:1	doublet.
^d 1:3:3:1 quartet.					

The mass spectrum of CH₃PBr₂ shows peaks attributed to the following positive ions, m/e, relative intensity: CH₃F⁸¹Br₂, 208, 31; CH₃F⁷⁹Br s¹Br, 206, 64; CH₃P⁷⁹Br₂, 204, 32; P⁸¹Br₂, 193, 13; P⁷⁹Br s¹Br, 191, 28; P⁷⁹Br₂, 189, 13; ?, 162, 2; ?, 160, 2; ?, 147, 2; ?, 145, 2; CH₃P⁸¹Br, 127, 69; CH₂P⁸¹Br, 121, 4; CH₃-P⁷⁹Br and CHP⁸¹Br, 125, 73; CH₂P⁷⁹Br, 124, 4; CHP⁷⁹Br, 123, 3; P⁸¹Br, 112, 7; P⁷⁹Br, 110, 7; H⁸¹Br, 82, 9; ⁸¹Br and ?, 81, 16; H¹⁹Br, 80, 9; ⁷⁹Br, 79, 9; CH₃P, 46, 6; CH₂P, 45, 78; CHP, 44, 27; CP, 43, 6; O₂, 32, 20; N₂, 28, 100; H₂O, 18, 20; HO, 17, 19; CH₄, 15, 3.

The mass spectrum of $CH_3P(CN)_2$ shows peaks attributed to the following positive ions: $CH_3P(CN)_2$, 98, 25; $P(CN)_2$, 83, 4; ?, 73, 6; CH_3PCN , 72, 4; CH_2PCN , 71, 36; CHPCN, 70, 10; CPCN, 69, 4; HPCN, 58, 3; PCN, 57, 31; CH_3P , 46, 24; CH_2P , 45, 13; CHP, 44, 15; CP, 43, 3; ?, 40, 3; ?, 39, 5; O_2 , 32, 65; P, 31, 8; N_2 , 28, 80; HCN, 27, 100; CN, 40, 35; H_2O , 18, 32; HO, 17, 7; O, 16, 4; CH_3 , 15, 10; N, 14, 10.

The large amount of HCN which appears is apparently formed by hydrolysis of $CH_3P(CN)_2$ at the injection point of the mass spectrometer.

Anal. Calcd for CH₃PBr₂: C, 5.83; H, 1.47; Br, 77.65. Found: C, 6.03; H, 1.55; Br, 77.42.

Characterization of $CH_3P(CN)Br.$ —The $^{31}\mathrm{P}$ and $^1\mathrm{H}$ mmr of the material recovered from the -90° trap suggested it was a mixture. It was impossible to separate this mixture using trap-totrap distillation. In a separate experiment we were also unable to separate this mixture by glpc, although several columns with different packings were employed. The mass spectrum of the mixture showed peaks, together with appropriate isotopic intensity distributions, corresponding to CH₃PBr₂⁺, PBr₂⁺, CH₃P- $(CN)_2^+$, $P(CN)_2^+$, $CH_3PBr(CN)^+$, CH_3PBr^+ , $CH_3P(CN)^+$, CH3PBr+, CH3PCN+, CH3P+, Br+, CN+, and CH3+. The observation of a peak corresponding to CH₃PBr(CN)⁺ as well as fragments which would arise from this molecule suggested the presence of $(CH_3)PBr(CN)$ in the mixture. The ¹H nmr (Table I) showed that a doublet was observed whose chemical shift and coupling constants were between those of CH3PBr2 and CH3P- $(CN)_2$. Additional support for the existence of $CH_3PBr(CN)$ is obtained from the ³¹P nmr spectrum, where a peak is observed whose chemical shifts, splitting pattern, and coupling constants are consistent with $CH_3PBr(CN)$.

In a separate experiment a sample (1.2 mmol) of pure CH_3P -(CN)₂ and a sample (1.2 mmol) of pure CH_3PBr_2 were mixed and allowed to equilibrate for 48 hr at 24°. At the end of this time the ³¹P and ¹H nmr indicated the presence of a new compound whose identity was the same as that obtained from the interaction of CH_3PF_2 and BrCN. Ligand-exchange reactions between PX₃ (where X is any halogen except F) and PZ₅ (where Z is a pseudohalogen such as NCS, NCO, SCN, and OCN) are well known,¹⁶ so it is expected that the interaction of CH_3PBr_2 and $CH_3P(CN)_2$ would produce $CH_3P(CN)Br$.

⁽⁸⁾ H. S. Booth and A. R. Bozarth, J. Am. Chem. Soc., 61, 2927 (1939).
(9) G. T. Drozd, S. Z. Ivin, and V. V. Sheluchenko, Zh. Vses. Khim.

Obshchestva, 12, 474 (1967).
(10) F. Seel, K. Rudolph, and R. Budenz, Z. Anorg. Allgem. Chem., 341, 196 (1965).

⁽¹¹⁾ The relative amounts of CH₂PBr₂, CH₃PBr(CN), and CH₂P(CN)₂ were determined by integration of the areas under the ¹H nmr absorptions.
(12) R. Schmutzler, *Inorg. Chem.*, **3**, 410 (1964).

 ⁽¹³⁾ L. Maier, Helv. Chim. Acta, 46, 2026 (1963); K. Moedritzer, L. Maier, and L. C. D. Groenweghe, Chem. Eng. Data, 7, 307 (1962).

⁽¹⁴⁾ L. Maier, Helv. Chim. Acta, 46, 2667 (1963).

 ⁽¹⁵⁾ H. H. Anderson, J. Am. Chem. Soc., 75, 1576 (1953); K. Moedritzei and J. R. Van Wazer, J. Organometal. Chem. (Amsterdam), 6, 242 (1966); M. L. Nielson, Develop. Inorg. Nitrogen Chem., 1, 307 (1966), and references therein.