an approximately tetrahedral coordination with two hydrogen-bond acceptors (Cl⁻ ions) and two hydrogenbond donors (ammonia molecules). The coordination about the chloride ions is rather irregular. Each has a hydrogen-bonded water molecule as closest neighbor, with distances 3.18 Å for Cl(1)–O(3) and 3.16 Å for Cl(2f)–O(4).

It is interesting to note that neither of the bridging NO_2 and NH_2 groups of the cation is involved in hydrogen bonding.

Thermal Motion.—The ellipsoids of thermal motion for the atoms of the cation are shown in Figure 2. The rms amplitudes along the principal directions range from 0.13 to 0.26 Å. The smallest and most isotropic movements are associated with the Co atoms. The atoms at the periphery of the cation have somewhat more pronounced movements than the atoms of the central ring. The largest thermal vibrations in the structure are displayed by the water molecules and chloride ions, with rms amplitudes up to 0.31 Å; their ellipsoids are described in Table VII. No attempt was made to correct the bond lengths for the effects of thermal vibration.

Acknowledgments.—This research was supported in part by the National Science Foundation under Grant No. GP-5768. We wish to thank Dr. Sten Samson for his assistance with the data collection. We also wish to acknowledge the help of Miss Lillian Casler in the preparation of the drawings.

> Contribution from the Department of Chemistry, Tulane University, New Orleans, Louisiana 70118

The Crystal and Molecular Structure of Chlorobis(triphenylstibine)tetrakis(trifluoromethyl)rhodiacyclopentadiene–Dichloromethane Solvate, RhCl(Sb(C_6H_5)_3)_2C_4(CF_3)_4 \cdot CH_2Cl_2^1

By JOEL T. MAGUE

Received December 8, 1969

The structure of chlorobis(triphenylstibine)tetrakis(trifluoromethyl)rhodiacyclopentadiene-dichloromethane solvate, RhCl(Sb(C₆H₃)₃)₂C₄(CF₃)₄·CH₂Cl₂, has been determined from three-dimensional X-ray data collected by counter methods. The final conventional and weighted *R* factors obtained from a block-diagonal least-squares refinement for 2537 reflections are both 0.044. The material crystallizes in the monoclinic system with space group P2₁/c and a unit cell of dimensions a = 13.250 (1), b = 25.496 (2), c = 16.852 (1) Å; $\beta = 125.4$ (2)°. The calculated density of 1.805 g/cm³ for four formula units agrees well with the experimental value, 1.80 (2) g/cm³, determined by flotation. The crystal consists of discrete monomeric molecules interspersed with solvent molecules which do not interact significantly with the metal atoms. The coordination about rhodium is in the form of a slightly distorted trigonal bipyramid with Sb atoms in axial positions and a Cl atom and the 1 and 4 C atoms of the C₄(CF₈)₄ moiety occupying equatorial positions. The RhC₄ portion constitutes a fivemembered ring which is planar. The chlorine atom and the carbon atoms of the trifluoromethyl groups are also very nearly in the same plane. The average Rh–C distance is 1.98 (1) Å, suggesting Rh–C π bonding. The C–C distances in the ring vary to some extent but are consistent with a considerable degree of delocalization over the four carbon atoms. Distortions from the idealized C_{2v} symmetry are attributed to packing requirements while all other dimensions in the molecule appear normal.

Introduction

In recent years, the search for efficient transition metal catalysts for the polymerization of unsaturated organic molecules has led to the production of a wide variety of novel organometallic complexes.^{2,3} During studies on the triphenylstibine analog of the versatile hydrogenation catalyst chlorotris(triphenylphosphine)-rhodium(I), the reaction with hexafluorobutyne-2 was attempted and a yellow crystalline compound of formula RhCl(Sb(C_6H_5)₃)₂(C_8F_{12}) was obtained.⁴ Chemical and spectroscopic data for this complex were most

(3) W. Hubel in "Organic Synthesis via Metal Carbonyls," Vol. 1, P. Pino and I. Wender, Ed., Wiley-Interscience, New York, N. Y., 1968, p 273.
(4) J. T. Mague and G. Wilkinson, *Inorg. Chem.*, 7, 542 (1968).

consistent with the presence of a tetrakis(trifluoromethyl)rhodiacyclopentadiene moiety, but unequivocal proof was not possible. More recently, $IrCl(N_2)(P(C_6-H_5)_8)_2^5$ and $Rh(C_6H_4)P(C_6H_5)_2(P(C_6H_5)_8)_2^6$ have been shown to undergo reactions with acetylenes containing electronegative substituents and similar metallocyclic products were postulated. In addition, $Rh(CO)Cl-(P(C_6H_5)_8)_2$ was observed to trimerize these same acetylenes, but no intermediate metallocycles could be isolated.⁷

Although such metallocycles have been known for some time,⁸ only a limited amount of structural data is

⁽¹⁾ Supported by National Science Foundation Grant GP-8066.

⁽²⁾ G. E. Coates, M. L. H. Green, and K. Wade, "Organometallic Compounds," Vol. 2, Methuen, London, 1968, Chapters 8 and 9.

⁽⁵⁾ J. P. Collman, J. W. Kang, W. F. Little, and M. F. Sullivan, *ibid.*, 7, 1298 (1968).

⁽⁶⁾ W. Keim, J. Organometal. Chem., 16, 191 (1969).

⁽⁷⁾ J. P. Collman and J. W. Kang, J. Amer. Chem. Soc., 89, 844 (1967).

⁽⁸⁾ W. Hubel and E. H. Braye, J. Inorg. Nucl. Chem., 10, 250 (1959).

available⁹⁻¹³ and that only on species containing at least two metal atoms. The structure of the present complex was thus of interest, not only to confirm the postulated structure but also to investigate the nature of the bonding in the heterocyclic ring in an instance where there would be no interaction of the ring with a second metal atom. A preliminary report of this structure determination has appeared.¹⁴

Unit Cell Data and Collection of Intensities

Vellow crystals of RhCl(Sb(C₆H₅)₃)₂C₄(CF₃)₄·CH₂-Cl₂⁴ were grown by the slow diffusion of petroleum ether (bp $30-60^{\circ}$) into a dichloromethane solution of the complex. Equiinclination Weissenberg photographs of the 0kl-2kl zones and precession photographs of the h0l and hk0 zones (Ni-filtered Cu K α radiation) established that the crystal belongs to the monoclinic The observed systematic absences (h0l forsystem. l = 2n + 1 and 0k0 for k = 2n + 1) uniquely determine the space group to be $P2_1/c$ (C_{2h} ,⁵ no. 14¹⁵). The experimental density of 1.80 (2) g/cm³ as measured by flotation in aqueous zinc iodide is in good agreement with the value of 1.805 g/cm^3 calculated on the basis of Z = 4. The molecules thus occupy general positions in this space group and no crystallographic symmetry need be imposed.

It was initially decided to employ copper radiation to collect the intensity data despite a large absorption coefficient ($\mu = 137.2 \text{ cm}^{-1}$) in order to avoid overlap problems. However, the combined effects of crystal decomposition and an inadequate absorption correction for the rather large crystal ultimately prevented satisfactory refinement even though all the nonhydrogen atoms were easily located. The data were therefore recollected using molybdenum radiation and a smaller crystal. In the following discussion all references will be to operations performed using the latter data set with the exception of those involving the location of the nonhydrogen atoms which utilized the data set collected with copper radiation.

The final values for the cell dimensions were obtained by a least-squares analysis¹⁶ of the setting angles of 39 high-order reflections which had been carefully centered on a Picker four-circle diffractometer using Zr-filtered, Mo K α radiation (λ 0.7107 Å). These parameters are a = 13.250 (1), b = 25.496 (2), c = $16.852 (1) \text{ Å}; \beta = 125.4 (2)^{\circ}.$

The crystal used for the collection of the final inten-

(9) A. A. Hock and O. S. Mills, Acta Crystallogr., 14, 139 (1961).

(10) R. P. Dodge, O. S. Mills, and V. Schomaker, Proc. Chem. Soc., 380 (1963)

(13) Y. Degreve, J. Meunier-Piret, M. van Meersche, and P. Piret, Acta Crystallogr., 23, 119 (1967).

 (14) J. T. Mague, J. Amer. Chem. Soc., 91, 3983 (1969).
 (15) "International Tables for X-Ray Crystallography," Vol. 1, Kynoch Press, Birmingham, England, 1962.

sity data was a column of length 0.3 mm elongated along a. The ten prismatic faces of the crystal were identified by optical goniometry as all members of the forms $\{010\}$, $\{021\}$, and $\{011\}$. They ranged in width from 0.03 to 0.1 mm. The ends of the crystal were somewhat irregular and were assumed to be members of the form $\{100\}$ for the purposes of the absorption correction. The crystal was sealed in a nitrogen-filled, thin-walled glass capillary since preliminary observations showed a tendency toward decomposition presumably through loss of solvent of crystallization. It was mounted such that the crystallographic a axis was parallel to the ϕ axis of the goniostat. The data were collected at room temperature on a card-controlled, Picker four-circle diffractometer using Zr-filtered, Mo $K\alpha$ radiation and a takeoff angle of 5.3°. The integrated intensities were measured with a scintillation counter employing a pulse-height analyzer set to admit about 90% of the Mo K α pulse distribution. The moving-crystal, moving-counter scan technique¹⁷ was employed with a 2θ scan of 2° centered about $2\theta_{calcd}$. The scan rate was 1°/min and background counts of 20 sec were made at each scan limit. Three standard reflections were monitored approximately every 4 hr throughout the course of the data collection and showed evidence for crystal decomposition. This decomposition did not result in more than a 10% diminution in the intensities of the standards and could be adequately treated by a linear correction based on the successive values found for the integrated intensities of the standards. Coincidence losses were found to affect only three reflections for which the counting rate exceeded 10,000 cps. These were remeasured at reduced power and scaled to the remaining data using the same standard reflections.

The unique quadrant having $h \ge 0$ and $(\sin \theta)/\lambda \le$ 0.52 was scanned to yield 4558 independent reflections. Inspection of the recorder trace showed that overlap affected the intensities of about 150 reflections, and since it did not prove feasible to eliminate this problem, these reflections were omitted. It was also apparent at this point that owing to the rather small size of the crystal there were relatively few useful data beyond $(\sin \theta)/\lambda = 0.45$. Therefore only the 3329 unique reflections within this smaller sphere were considered further. Raw intensities, I, were obtained from the diffractometer output with the formula I = CT - $0.5(t_{\rm c}/t_{\rm b})(B_1 + B_2)$ where CT is the total integrated count obtained in time t_c and B_1 and B_2 are the background counts, each obtained in time $t_{\rm b}$. The standard deviation of the raw intensity, $\sigma(I)$, was estimated as $\sigma(I) = (CT + 0.25(t_c/t_b)^2(B_1 + B_2) + (pI)^2)^{1/2}$ with p^{18} taken as 0.02. Using the criterion $I \leq 2\sigma(I)$, 934 reflections were rejected as statistically insignificant and were treated as unobserved. Each of these reflections was assigned a threshold value given by $I_{\rm th} =$ $2\sigma(I)$. The reflections were then corrected for Lorentz,

⁽¹¹⁾ R. P. Dodge and V. Schomaker, J. Organometal. Chem., 3, 274 (1963). (12) P. B. Hitchcock and R. Mason, Chem. Commun., 242 (1967).

⁽¹⁶⁾ All computations were performed on an IBM 7044 computer at the Tulane University Computer Laboratory. Local programs were used except for those noted here: GSET-4, C. T. Prewitt (diffractometer settings); CELL, B. L. Trus (refinement of unit cell dimensions); ORION (data reduction), BLSA-H (modification of the Gantzel-Sparks-Trueblood UCALS-1 (ACA Program No. 317) for block-diagonal least-squares refinement and distanceangle calculation), C. J. Fritchie Jr.; ORABS, W. R. Busing (absorption corrections); ORTEP, C. K. Johnson (graphical illustrations).

⁽¹⁷⁾ T. C. Furnas, "Single Crystal Orienter Instruction Manual," General Electric Co., Milwaukee, Wis., 1957.

⁽¹⁸⁾ W. R. Busing and H. A. Levy, J. Chem. Phys., 26, 563 (1967)

polarization, and absorption effects. The linear absorption coefficient for the compound is 17.8 cm⁻¹ for Mo K α radiation which results in transmission factors ranging from 0.767 to 0.781.¹⁶

Solution and Refinement of the Structure

The structure was refined by a block-diagonal, leastsquares process. Scattering factors for neutral Rh, Sb, Cl, C, and F were those tabulated by Cromer and Waber¹⁹ while the values given by Stewart, et al.,²⁰ were used for hydrogen. The scattering factors for Rh, Sb, and Cl included both the real and imaginary parts of the correction for the effects of anomalous dispersion.²¹ The function minimized was $\Sigma w \Delta^2$ where $\Delta = K |F_o|$ – $G|F_{\rm c}|, |F_{\rm o}|$ and $|F_{\rm c}|$ are, respectively, the observed and calculated structure factors, K and G are scale factors (G = 1.0), and $w = 1/\sigma^2(|F_o|)$. The standard deviation in $|F_o|$, $\sigma(|F_o|)$, was taken as $\sigma(|F_o|^2)/$ $2|F_{o}|$. Unobserved reflections were included in the refinement if $|F_{\rm c}|$ exceeded $|F_{\rm th}|^{.22}$ In the final stages of refinement, 142 reflections met this criterion and of these, and only five had $|F_{\rm c}| > 1.5 |F_{\rm th}|$. The conventional and weighted residuals, R_1 and R_2 , are defined as $R_1 = \Sigma |\Delta| / \Sigma |F_0|$ and $R_2 = (\Sigma w \Delta^2 / \Sigma w F_0^2)^{1/2}$.

A three-dimensional, unsharpened Patterson function was calculated (Cu data) which provided coordinates for the rhodium and antimony atoms. The remainder of the nonhydrogen atoms were subsequently located by the successive application of least-squares refinement of the positional parameters followed by a difference Fourier synthesis. It soon became apparent that a molecule of dichloromethane of solvation was also present in the crystal. With all of the nonhydrogen atoms in the calculation, refinement of positional and isotropic thermal parameters led to $R_1 = 0.131$. A difference Fourier map calculated at this point revealed pronounced anisotropy in the motions of the heavy atoms, the trifluoromethyl groups, and the solvent molecule. Refinement was therefore continued with the introduction of anisotropic thermal parameters of the form $\exp[-(B_{11}h^2 + B_{22}k^2 + B_{33}l^2 + B_{12}hk + B_{13}hl]$ $+ B_{23}kl$] for these atoms. Several more cycles of refinement led to convergence at $R_1 = 0.101$. In addition to high standard deviations in the calculated bond lengths, the thermal ellipsoids for some of the fluorine atoms had assumed quite unrealistic dimensions. Difference Fourier syntheses calculated in the planes of the fluorine atoms of each trifluoromethyl group using structure factors which did not contain contributions from these atoms clearly showed a considerable degree of anisotropic motion for all the fluorine atoms. However it did not prove possible to account adequately for this in terms of any feasible librational, hindered rotational, or oscillatory motion of the CF₃ group as a whole.

At this point it was evident that no further informa-

tion could be gained from the copper data, and a new set of intensities was collected as mentioned above. Using the molybdenum data, refinement was continued with the unrealistic fluorine thermal parameters being manually reset to more reasonable values on the assumption that, despite the considerable motion apparent from the difference maps, the refined thermal parameters were probably in error at this point due to the poor quality of the original data. After 12 cycles, R_1 had dropped to 0.059. Difference Fourier syntheses computed in the planes of the phenyl groups revealed reasonable positions for most of the hydrogen atoms (peak heights $0.4-0.6 \text{ e}^{-}/\text{Å}^{3}$) as well as some equally large features attributable to uncorrected thermal motion. It was therefore decided to include the contributions of the hydrogen atoms to the scattering as fixed quantities using their calculated positions (C-H) =1.0 Å). Isotropic temperature factors equal to 1.1 times that of the attached carbon atom were used and the positional and thermal parameters were recalculated and manually reset after each cycle. Following this R_1 and R_2 were 0.055 and 0.056 and after 14 more cycles converged at the common value of 0.044.

The use of the new data set did not significantly improve the appearance of the thermal ellipsoids of the fluorine atoms and we can only conclude that the ellipsoidal model is not an adequate description of the actual motion of these atoms. Again, attempts at treating the thermal motion in terms of a movement of the CF_3 group as a whole were unsuccessful. However as can be seen from Figures 1 and 2, the *relative* sizes of the

Figure 1.—A perspective view of the $RhCl(Sb(C_8H_5)_3)_2C_4(CF_3)_4$ molecule with the phenyl groups omitted for clarity.

Figure 2.—Schematic representation of the F---F contacts around the rhodiacyclopentadiene ring.

derived ellipsoids parallel the number of intramolecular F---F contacts even though the actual magnitudes have little physical significance. A final difference map showed no features other than those attributable to

⁽¹⁹⁾ D. T. Cromer and J. T. Waber, Acta Crystallogr., 18, 104 (1965).

⁽²⁰⁾ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42, 3175 (1965).

⁽²¹⁾ D. T. Cromer, Acta Crystallogr., 18, 17 (1965).

⁽²²⁾ J. T. Mague, Inorg. Chem., 8, 1957 (1969).

uncorrected thermal motion in the vicinity of the phenyl and trifluoromethyl groups.

An analysis of the weights over ranges of $|F_o|$ and $(\sin \theta)/\lambda$ indicated that the absolute weights were too large, a fact also reflected in the final value of 1.71 obtained for the standard deviation of an observation of unit weight. In addition, the strong reflections were being somewhat downweighted but neither factor was judged to be serious enough to justify alteration of the weighting scheme. The final values of $|F_o|$ and F_c are presented in Table I. The positional and thermal parameters obtained from the last cycle of least-squares refinement are listed in Table II together with their associated standard deviations as estimated from the inverse least-squares matrix.

Description of the Structure

The structure consists of discrete, monomeric molecules of the rhodiacyclopentadiene complex interspersed with molecules of dichloromethane. A perspective view of the molecule with the phenyl groups omitted for clarity is given in Figure 1 and the molecular packing in Figure 3. Tables III and IV list interatomic disin covalent radius between the two elements ($\sim 0.2 \text{ Å}^{24}$). Likewise, the Rh-Cl distance compares favorably with previously reported values.²² The data in Table IV show that the Sb₁-Rh-Sb₂ unit is not quite linear. Although this deviation from linearity is significant, it appears to be simply the result of intramolecular packing. Both Sb1 and Sb2 are displaced toward Cl1 and one phenyl group on each (rings 2 and 4) lies almost directly over the fluorocarbon portion. Moreover, for both of these phenyl groups, the line joining the two ortho-carbon atoms is roughly parallel to the mean plane of the rhodiacyclopentadiene ring. Whenever possible, the triphenyl pnictides seem to exhibit a staggered or "propeller-like" arrangement of the phenyl groups. Here, such a conformation would occasion either severe interaction between the phenyl and trifluoromethyl groups or a large bending of the Sb₁-Rh-Sb₂ unit. On the other hand, the rotation of one phenyl group so that the ortho-carbon line is exactly parallel to the plane of the ring would result in significant interaction between ortho-hydrogen atoms of this and the other two phenyl groups on the same antimony. Apparently, here, the conformation adopted is one

Figure 3.—Packing within the $RhCl(Sb(C_6H_5)_3)_2C_4(CF_3)_4 \cdot CH_2Cl_2$ crystal viewed perpendicular to [001].

tances and interbond angles, respectively. From Figures 1 and 3, it is clear that the coordination about rhodium is that of a distorted trigonal bipyramid and that the solvent molecules do not interact significantly with the metal atoms as has been suggested for other five-coordinate rhodium complexes.23 The closest approach of a solvent molecule to a metal atom, 5.86 Å, occurs between Cl₂ and the Rh at (1 - x, 1/2 - x) $y_1 \frac{1}{2} + z$). No other intermolecular distances are tabulated as none is shorter than normal van der Waals contacts. The coordination about rhodium has very nearly C_{2v} symmetry with the antimony atoms of the two triphenylstibine groups occupying axial positions and a chlorine atom (Cl₁) and the 1 and 4 carbon atoms of the cis-1,2,3,4-tetratrifluoromethyl-1,3-butadienylene moiety occupying equatorial positions. The two independent Rh-Sb distances (Table III) are equal within experimental error. Although there appear to be no data available for a direct comparison, they agree well with the value of ~ 2.6 Å predicted from previously observed Rh-As distances²² in similar compounds after correcting for the difference

(23) J. T. Mague and G. Wilkinson, J. Chem. Soc., A, 1736 (1966).

which minimizes both types of contacts as well as the bending of the heavy-atom unit.

Although some preliminary studies have previously been made on triarylstibines and triarylstibine sulfides,25 this appears to be the first instance of a complete structural determination involving one of these species. Unfortunately the constraints placed upon the orientations of the phenyl rings render inappropriate a detailed analysis of the geometry of the triphenylstibine molecule. Nevertheless, the angles about antimony (Table IV) are comparable to those found previously in $(C_6H_5)_3P$ (average value, 103.0 (2)°)²⁶ and $(p-CH_3C_6H_4)_3As$ (average value, 102 (2)°).²⁷ The six Sb-C distances are equal within experimental error, the average value being 2.113 (10) Å. This compares favorably with the value of 2.13 Å found for the Sn--C bond in $(p-CH_3C_6H_4)_4Sn^{28}$ and with the value of 1.96 (5) Å found for the As-C bond in (p-CH₃C₆H₄)₃As²⁷

- gevers Mij Utrecht, 1953, Vol. 17, p 726.
 - (26) J. J. Daly, J. Chem. Soc., 3799 (1964).
- (27) J. Trotter, Can. J. Chem., 41, 14 (1963).
- (28) I. G. Ismailzade and G. S. Zdanov, Zh. Fiz. Khim., 27, 550 (1953).

⁽²⁴⁾ L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960, Table 7-2.
(25) W. B. Pearson, Ed., "Structure Reports," N.V.A. Oosthoek's Vit-

TABLE I

Observed and Calculated Structure Amplitudes (\times 10, in electrons) for RhCl(Sb(C₆H₃)₈)₂C₄(CF₃)₄·CH₂Cl₂^a

L \$20 FC	L FG FC	L FO FC	L FN FC	L FO FC	(F-)	FL L FO	FC	L FD FC	L FO FC	L FO I	C L F	0 FC	L FO	۶C
0 0 2 4618 - 4654 4 1425 1439 6 1393 1436 8 1354 - 1398 10 2314 2259	1 341 386 C 14 0 1090 1093 2 749 -720 4 443 442 5 700 757	0 1664 1649 -1 2501 -2421 -2 1942 1785 -3 3736 3540 -4 -190 -215 -5 3377 -3331 -6 514 507 -7 2005 1937	8 357 176 7 245 220 6 1073 -1048 5 589 636 4 1041 1089 3 1375 -1355 2 1217 -1357 1 1757 1767	-10 864 -836 -8 1087 1107 -7 697 -686 -6 904 -852 -3 950 955 -3 2363 -2285 0 521 -619 1 367 -132	2 -1+4 3 614 4 605 5 434 7 317 2	214 1 271 -637 0 232 -785 -1 802 -231 -2 2965 -160 -3 320 -4 239 6 -5 739 -6 292	210 183 -794 2801 316 315 -643 325	-4 1655 1719 -1 677 -433 C 473 502 1 133C 1304 2 950 982 3 1411 -1497 4 728 -714 5 654 725	-5 732 728 -4 1382 1446 -3 359 -543 2 875 -841 376 280 2 972 860 4 20	-1 2065 -20 0 992 94 1 1804 174 2 -232 2 3 549 -64 4 2379 -12 6 1112 111 7 478 51	15 -6 26 6 -5 100 8 -4 126 13 -3 26 4 -2 141 7 -2 119 16 0 118 1 207	7 -205 2 989 6 1237 7 -328 8 -1428 9 -1209 2 1174 5 2121	5 6 1073 6 1435 7 1707 0 971 -1 580	7 - 1141 1422 - 1763 1008 - 564
12 749 -794 0 1 10 496 623 9 841 -852 8 1541 -1495 7 1629 1614	7 689 -686 C 15 8 478 495 6 -234 -255 5 594 -693 4 255 -354	-8 981 -965 -10 552 592 -11 1104 -1110 -12 -274 -380 1 6 -12 728 -802	-1 1513 -1445 -2 218 257 -3 239 108 -4 418 -449 -6 424 387 -7 725 -549 -9 376 424	2 1034 1020 3 334 321 4 521 -564 5 -257 344 7 1112 -1139 2 14	6 (30 5 ~211 6 4/1 3 1094 1 587 0 272 -1 341 -2 2533	-823 -8 658 -282 -9 714 442 -10 675 1047 -11 1203 -597 +14 306 -257 -314 3 2377	-708 754 723 -1178 289 2	6 739 735 7 412 463 8 482 -511 3 11 8 946 945 7 268 384	-2 394 397 -3 464 396 -4 693 -641 -5 703 719 4 19	4 8 7 689 -7 6 1122 -11 5 338 4 4 1576 15 3 461 4	2 128 3 187 4 103 9 5 9 6 4 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 -1300 8 -1849 1 1065 2 895 0 6 1773	-2 232 -3 /48 -4 1224 -5 426 -6 1632 -7 401 -8 2212 -10 1231	228 -850 -1178 -431 8665 -424 -2219 1182
6 2293 2288 5 3602 - 3604 4 3366 - 3305 3 1055 1055 2 1210 1176 1 1326 - 1272 0 2	2 327 341 U 16 0 394 490 2 306 -323 4 637 733 5 -250 278	-11 563 607 -10 1523 1469 -9 1337 -1298 -8 830 -872 -7 1350 1304 -6 334 -356 -5 2016 -2024 -3 764 740	1 14 -9 271 -387 -7 739 771 -6 -232 292 -5 881 -840 -4 823 -873 -3 3382 -388	8 -267 -284 6 1062 1053 5 544 -654 4 1752 -1745 3 923 934 2 1717 1765 1 1797 -1742 1 1797 -482	-3 644 -4 1746 -5 1235 -4 897 -9 222 -10 1256 -11 745 -12 739	-690 -13 482 -1701 -12 303 1226 -9 317 451 -8 366 -230 -7 1062 -1178 -0 1076 800 -5 1699 741 -4 777	406 411 -408 -401 1014 1092 -1594 725	6 1263 -1251 5 1024 -1051 4 447 464 3 1340 1375 2 457 431 1 753 +817 C 1688 -1680 -1 257 217	-8 408 394 -7 552 -633 -1 285 -413 4 18 0 580 655 -4 552 -564	2 1963 -20 1 1043 -9 0 1115 120 -1 1365 131 -2 526 -4 -3 1080 -11 -4 732 -7 -5 524 5	19 6 201 17 4 93 13 0 117 16 -2 216 17 -4 258 19 -4 258 19 -12 59 12 59 -14	2 -2049 2 597 8 -1182 0 2211 9 -2000 6 -735 4 -545 0 595	-11 848 -22 327 -13 1407 5 -14 823 -13 672	748 -+50 -1+56 8 815 711
1 5209 -334) 2 341 -359 3 2110 2124 4 1038 -1072 3 798 -817 6 345 394 7 2364 -2248	6 443 -485 7 514 -498 C 27 7 331 105 6 433 511 5 -250 -306	-2 3222 -3147 -1 855 -827 0 2262 2208 1 2726 -2753 2 711 590 3 1852 1854 5 1579 -1532 6 -211 266	-2 484 521 -1 537 -728 1 1027 1029 2 640 -607 4 1249 1313 5 707 -687 6 960 -954 7 1045 1020	-3 494 -502 -4 1199 1197 -5 -232 272 -6 1052 -1052 -8 939 924 -9 781 -830 -11 587 614	-13 1010 2 -13 885 -12 -255 -11 830 -10 938	-745 -3 630 -2 2639 5 0 1407 - 862 -901 3 478 279 4 591 419 8 383 -945	625 -2623 1395 -907 +59 540 -392	-4 1182 -1181 -5 433 -439 -6 229 -148 -7 420 412 -8 454 454 -10 447 -464 -11 563 570	-5 492 553 -6 429 527 -7 320 -327 -8 521 -521 -4 17 -10 1284 -1250	-6 1807 15 -8 1899 -19 -10 1284 12 -11 725 7 -12 957 -9 -(3 714 -7 4 7	-8 96 -6 194	0 5 -1762 2 1398 1 -989 7 -1865	-11 883 -10 324 -9 1555 -8 1541 -6 489 -5 1136 -4 848 -3 1316	-892 -314 1529 1530 -479 -1111 856 1351
8 960 -941 9 1910 1906 10 450 396 11 1534 -1465 0 3 12 295 297	4 654 -672 2 457 381 C L8 0 703 -783 2 433 514 3 317 361	7 1403 1368 8 971 -931 9 883 -651 10 651 616 1 7 10 623 702	1 15 8 665 -610 7 637 750 5 806 -753 4 1189 1079 3 616 657	7 13 -11 936 887 -9 1477 -1437 -6 528 634 -7 1527 1409 -6 1034 -599 -6 1034 -599 -6 471 -525	-9 -229 -# 2324 -7 505 -6 1723 -8 521 -3 224 -2 1597 -1 1224	277/ 3 2327 ->0K 7 415 -1527 5 535 461 4 317 -742 3 929 1555 2 482 -1144 1 946	3 - 539 - 304 886 - 480 - 883	-12 eC1 619 3 12 -12 281 375 -11 338 398 -9 544 694 -7 1038 -1048	-8 1252 1276 -6 732 -654 -3 911 965 -1 651 -702 4 16 + 365 291	-13 606 8 -12 436 4 -11 742 -7 -10 246 -3 -6 1010 9 -7 1541 15 -5 2160 -21	-4 250 -2 351 10 0 370 15 2 168 31 6 14 28 14	2 2930 5 -3642 6 3774 9 -1741 9 -544 6 1909	-2 760 -1 1646 0 988 1 267 4 288 5 450 6 303	-162
10 528 481 9 1228 1203 8 1340 -1371 7 1400 -1376 8 2487 2533 5 1414 1384 4 3447 -3545 2 2420 2450	+ 422 -279 6 429 -432 C 19 6 306 361 5 482 512 4 495 -534	9 478 486 A 960 -971 7 -229 272 5 566 578 5 1776 -1721 3 2277 2295 1 2526 -2452 0 2621 2525	2 2058 -2044 -7 422 -369 -3 456 352 -6 -229 -297 -6 264 55 -8 450 -507 1 16	-4 1055 1020 -3 802 - H25 -2 999 -1017 0 1H25 1830 1 1395 -1391 3 784 780 4 352 -382 5 1255 1250	0 503 1 1122 2 7204 4 575 5 821 6 507 7 540 4 471	4H5 0 1221 1044 -1 528 2141 -2 1175 -745 -3 851 -H24 -4 1020 396 -5 802 624 -4 436 -534 -7 236	1280 -523 -1167 830 1021 -612 -514 222	-6 -239 -247 -5 2056 2145 -4 981 964 -3 936 -902 -1 257 295 0 1534 1549 1 492 478 2 672 -721	3 324 -374 2 429 -544 1 604 764 0 827 811 -1 -253 -300 -3 454 -494 -5 1312 1293 -7 1393 -1435	-4 313 -2 -3 2729 27 -7 1287 13 -1 1766 -17 0 1291 -12 1 798 8 2 1736 17 3 961 10	97 7 70 50 5 96 51 5 160 18 4 130 15 3 281 58 2 190 21 1 240	719 4 954 7 -1630 1 -1240 7 2802 6 1930 6 -2443	5 988 6 285 3 1104 2 331 1 700 -1 464	9 336 100 -38 -756 514
0 4 0 3242 -3175 1 1840 -1831 2 2149 2097 3 1611 1609	3 718 -724 2 524 621 C 20 0 957 -959 2 510 603	-1 2000 2555 -2 788 771 -3 -183 -180 -4 2339 2365 -5 1441 -1428 -6 1973 -1978 -7 1450 1406 -8 -243 252	-8 348 367 -6 549 -559 -4 869 877 -3 770 809 -2 665 -658 -1 524 -659 3 484 546	7 640 -602 8 711 -734 2 12 7 647 645 5 1189 -1705 3 1618 1562	2 5 1019 5 171 4 545 3 243	-8 478 -9 408 -10 1097 -012 -12 471 -723 -13 338 493 528 3 -305	-509 882 1062 -567 -295	3 1418 -1427 4 686 477 5 1287 1262 7 514 -536 3 23 7 883 897	-8 415 -472 -9 656 771 -10 447 485 4 15 -11 915 900 -10 647 -778	4 672 -6 5 1178 -11 6 -257 8 7 893 8 4 6 8 992 -9	-5 0 100 -1 7 -0 -2 2 -1 7 -2 2 -3 2 -4 20 -5 31 -6 130 26 -7 252	6 -1076 8 734 3 285 4 2120 1 1983 17 -3186 1 -1343 2 2488	-7 556 -3 313 -4 1020 -5 742 -6 1449 -7 1133 -8 573 -9 1161	-32 -102 -71 139 113 -56
4 2592 -2520 7 851 -903 8 770 729 9 1460 1430 10 1530 -1426 11 594 -640 12 746 779	L 0 -12 1474 1472 -10 2427 -2400 -8 2839 2784 -6 2810 -2734 -4 1245 1211 -2 2751 2424	-4 964 -970 -10 647 631 -11 257 241 -12 1380 -1049 1 8 -11 967 940	4 278 -246 5 992 -968 6 -253 278 7 753 754 8 749 -752 L 17	2 524 -559 L 1797 -1722 0 1287 1296 -2 1720 -1734 -3 1815 1847 -4 1245 1303 -5 1494 -1492 -0 584 -559	2 682 1 1477 0 3032 -1 1161 -2 1182 -3 3169 -4 455 -5 672	-645 -13 -240 -1416 -11 -243 2966 -8 [031 1196 -7 605 -1052 -6 [706 -2956 -5 1038 -914 -4 521 -644 -2 310	-247 1035 578 -1681 -972 570 296	5 074 -334 4 565 -696 3 369 359 2 1403 1385 1 405 371 0 1857 -1833 -1 1122 -1150 -3 749 733	-9 1041 -1079 -7 992 1078 -6 777 666 -5 1010 -1077 -6 1667 -1660 -2 1449 1453 -1 373 355 0 795 -776	7 1214 -11 5 855 9 5 1034 10 4 317 3 3 1354 -13 2 693 -7 1 1182 11 0 1168 13		10 -1276 12 -964 12 594 17 509	-11 528 -12 1157 -13 696 -13 373 -12 605	115 -72 -10 -42 -62
0 5 10 834 -848 9 1161 1174 8 1442 1501 7 3036 -2990 5 3222 3205 4 1017 -1043	0 4098 -4125 2 1073 1041 4 2547 -2434 6 916 -893 1 1 10 335 -385	-8 [45] -[45] -8 [185] [17] -7 612 576 -6 2258 -2219 -5 886 868 -4 2522 2460 -3 1020 -989 -2 1664 -1675	6 644 647 5 528 -548 4 257 -236 3 658 639 1 665 -645 -1 324 353 -3 260 -354 -5 -246 -256	-7 791 878 -8 485 -486 -9 749 -700 -10 1126 1077 -11 1126 1077 -12 696 -715	-6 802 -8 768 -9 735 -11 609 -12 362 -13 471 2	-177 -1 1073 772 0 437 -702 1 411 -702 1 411 -713 3 1136 -185 7 563 -547 9 471 3 3	1094 -973 1139 -570 564	-4 -224 -285 -6 386 -385 -7 436 -385 -8 742 692 -9 661 664 -10 1108 -1148 -11 700 -703	4 422 440 4 14 5 -267 297 4 366 -385 3 651 -685 2 457 499	-1 1224 -12 -2 1358 -13 -3 658 -6 -4 609 6 -5 796 7 -6 345 2 -7 2392 -23 -8 665 -6	00 -14 3 45 -13 13 74 -17 2 16 -11 12 16 -11 12 15 -10 5 71 -9 15 81 -8 5 91 -5 27	16 -1392 1 -252 1 -252 1 1274 13 -1528 16 -582 10 2805	-11 331 -9 1389 -8 355 -7 1513 -6 324 -5 355 -4 271	38 1420 -30 -145 -36 -36
2 345 -515 1 556 584 0 5 0 2761 -2714 1 2170 2170 2 760 724	5 1266 1287 4 591 577 3 10C6 -19(6 2 1386 -1306 (317 -310 0 1857 -1837 -1 2519 2165 -2 1973 1824	i 686 -706 2 1407 1354 3 858 849 4 2030 -2025 5 -204 -222 6 1892 1912 7 1090 -1089 8 127 -1264	1 18 -7 433 -370 -5 654 611 -4 494 568 -3 348 -261 2 271 262 4 20 -262	-10 1119 1019 -9 767 -772 -8 1695 -1747 -7 1305 1351 -6 707 746 -5 1555 -1634 -4 278 -309	-13 245 -12 654 -11 904 -9 1063 -8 760 -7 1941 -5 879	-325 8 708 -760 6 802 867 5 510 -1041 4 1432 702 3 475 1907 3 728 -920 1 1076 -9359	-735 816 485 -1536 -457 765 -1078	-9 324 382 -8 1446 -1428 -7 -250 -280 -6 2289 2086 -5 929 887 -4 2255 -2221 -3 1182 -1186	0 686 -848 -1 1326 -1287 -4 641 808 -6 1460 -1459 -7 1031 -1001 -6 957 933 -9 1259 1289	-10 1090 10 -11 725 -7 -12 623 -6 -14 376 -3 -13 392 -2	79 -2 73 79 -2 73 17 -1 32 94 0 11 1 24 2 3 3 4 92 4 -2 11 5 9		-2 1706 -1 672 0 1052 1 352 2 419 3 292 6 443	-173
3 1312 -1341 4 689 583 5 503 522 8 1442 1445 9 763 -805 10 1375 -1375 11 672 741	-3 2212 -2078 -4 2355 -2319 -5 2828 2759 -6 1801 1791 -7 1351 -1310 -9 -229 243 -10 440 -394 -11 1090 1060	9 559 638 10 485 442 1 9 10 422 -489 9 640 633 7 594 -612	5 324 -287 6 700 666 1 19 5 394 451 2 -243 -249 -1 257 -120	-2 1047 -1054 0 1741 1792 2 1333 -1323 3 573 576 5 584 -590 6 732 740 7 802 752 8 816 -848	-3 774 -2 703 -1 299 0 471 1 369 2 816 3 1189 5 218	771 -1 2153 669 -2 963 248 -6 654 449 -5 1446 437 -7 841 615 -8 485 1132 -10 313 181 -11 278	2077 -893 591 -1390 648 -453 375 213	-1 1294 1374 1 552 -531 2 1572 -1613 3 253 132 4 1316 1335 5 563 534 6 728 -694 7 654 -649	4 13 ~11 1205 1180 -10 580 707 -9 526 -519 -8 834 -807 -7 -250 -375	-12 791 8 -10 436 -4 -9 376 -3 -8 -211 2 -6 1534 14 -5 862 -8 -4 2395 -23 -3 359 -3	01 6 6 50 7 15 88 51 54 54 7 8 32 6 15 5 5	3 418 5 -1501 5 3 20 -817 59 1512 73 598	3 295 2 380 -3 489 -5 886 -7 292 -8 791	31 46 48 -93 24
<i>9</i> 7 11 971 1020 10 707 -731 9 742 -744 8 1734 1753 6 1734 7-1713 5 1330 1304	-12 845 890 i 2 -12 451 468 -11 1759 -1732 -10 559 -542 -9 2438 2403	8 405 495 5 -215 275 4 1674 -1663 3 236 261 2 2044 1945 1 1713 -1721 0 1636 -1574 -1 2701 2622	-2 425 484 -5 -253 -302 1 20 1 -250 278 3 383 -373 4 661 -653	9 369 -375 2 10 8 -257 245 7 -243 272 6 -239 -250 4 1449 1445	6 569 7 397 8 711 10 531 2 8 496	-990 383 3 761 -617 -12 482 -10 -236 2 -8 257 -5 295 -475 -4 247	5 -458 370 198 -314 223	3 15 6 718 716 5 -264 268 3 781 -797 1 2132 2059 0 239 257	-6 1534 1601 -5 925 945 -4 1491 -1510 -3 1520 -1559 -1 1801 1833 1 352 -385 2 672 -683 5 777 760	-2 2663 26 -1 485 5 0 1600 -15 1 184C -19 3 1516 14 4 774 7 5 1277 -12 6 711 -7	27 4 20 01 3 70 49 2 300 01 2 30 01 2 30 0 10 10 0 10 0 10 10 0 10 10 0 10 10 0 10 10 0 100	19 -1961 13 -690 14 -1313 12 -763 10 -205 17 -661 1 -2215	-10 848 -11 552 -12 953 -13 739 5 -10 939	-87 -52 96 77 12 98
4 2385 2343 3 239 314 2 1104	-8 436 500 -7 3057 -2995 -6 356 -383 -4 654 -660 -3 367 -368 +2 1214 124 1 2621 -2394 D -141 226	-3 680 -647 -4 1404 1692 -5 700 703 -6 2121 -2056 -7 514 526 -8 1548 1574 -10 499 -555 -11 475 536	2 20 4 1562 1543 3 2002 873 2 1379 -1399 1 640 -633 -4 700 -658	3 770 748 2 1301 -1322 1 946 936 0 1217 1183 -1 2005 -1956 -2 278 -256 -3 3335 3187 -4 507 -502	7 689 6 239 5 1396 3 514 2 967 1 2016 0 -151 -2 376	-676 -1 293 734 -2 345 1396 -1 510 -543 2 447 -925 3 651 2035 - 707 -102 6 -239 -419 8 781	-264 -350 486 422 647 -784 -265 793	-1 1956 -1918 -2 669 -870 -5 1456 1434 -4 693 662 -7 700 -760 -8 281 -244 -9 1527 1478 -10 443 526	5 267 -220 4 12 5 367 413 5 352 -389 4 918 -944 2 1622 1606 0 102 -2162	8 288 4 4 4 8 1361 - 13 7 862 8 6 1766 17 5 433 -4	-5 31 -6 191 -7 11 -8 26 31 -9 16 38 -10 17 22 -11 12 39 -13 5	430 10 -1898 10 -1182 18 2621 19 1723 14 -1734 11 -1150 17 551	-9 253 -8 995 -6 1301 -4 707 -3 510 -1 461 -4 352	-10 -96 134 -66 -47 52 -37
2 1224 -1251 3 1562 -1580 4 1066 1092 5 637 617 6 1150 -1136 7 1235 1242 9 1231 -1190	2 2652 2610 3 2881 -2879 4 200 141 5 208 359 6 579 -706 7 -215 -228 8 781 778	L 10 -10 767 -841 -8 679 688 -7 1069 -1387 -6 538 -497 -5 1618 1598 -4 862 -823	-5 437 807 -7 285 263 2 19 -6 426 458 -5 1122 -1123	-6 406 802 -8 1245 -1304 -9 1097 1045 -10 594 590 -11 1002 -1015 -12 355 -356	-6 412 -7 27H -A 383 -10 383 -11 348 -12 359	355 243 3 -273 489 9 524 261 8 570 -405 7 1119 5 1414 3 1446	7 -555 -1164 1459 -1428	3 1e -10 376 452 -9 661 -725 -8 827 -858 -7 1555 1542 -6 1097 1066	-1 960 -977 -2 732 737 -3 865 948 -5 1344 -1349 -6 820 -832 -7 306 360 -6 1801 1856	3 334 -4 2 915 9 1 1379 14 0 253 3 -1 2765 -27 -3 2016 20 -4 1530 15 -6 1217 -13	21 21 20 20 -14 11 42 -13 5 43 -12 11 02 -11 7 70	1 -1102 1 -590 18 1155 3 705	-2 767 -3 383 -4 236 -5 587 -8 -243 -9 436	-77 38 22 -52 -28 36
0 9 11 285 212 10 556 475 9 1041 -1058 8 549 -536 7 806 789	1 3 11 594 617 9 940 -993 8 274 282 6 672 -716 5 749 696 4 1826 1804	-3 2740 -2639 -2 855 856 -1 1773 1714 0 2191 -2174 2 637 646 3 1646 -1563 4 1277 -1278 5 1801 1804	-3 1541 1461 -2 -264 265 -1 1773 -1779 1 1586 1602 2 549 587 5 718 -739 2 18	-11 387 -426 -10 711 756 -4 1059 1080 -8 2075 -2146 -7 1435 -1502 -6 1548 1515 -4 1695 -1644	-13 387 -12 703 -8 858 -7 834 -6 976 -6 1812 -3 960	1 528 357 0 795 -734 -1 106 -637 -2 440 -d02 -3 1161 -942 -5 573 -1661 -6 369 -963 -7 355	507 -821 1037 -410 -1147 -594 -463 -393	-5 2061 -2043 -4 1403 -1409 -3 949 939 0 450 -517 1 1045 -1088 2 355 -335 3 1217 1220 4 707 707	-10 1692 -1631 +12 760 836 4 11 -12 1020 -999 -10 507 496 -9 489 484	-7 1351 -12 -8 1372 13 -9 946 9 -11 397 -4 -12 -257 2 4 3	76 -9 13 73 -7 9 65 -6 11 79 -4 24 87 -3 16 -2 23 -1 12 0 19	17 - 1342 18 948 15 1143 10 - 2389 14 - 1618 14 - 1618 15 2342 16 1316 1977	-12 274 -12 274 5 -9 714 -8 292 -7 1038	-291 14 -681 -341 100
5 1083 -1125 4 415 354 3 1126 1091 7 672 -703 1 -186 218 0 10	3 1731 -1722 2 1822 -1804 1 1688 1637 9 419 -437 -1 2406 -2165 -2 2103 2003 -3 517 558 -4 3141 -3014	6 -225 226 7 2244 -2250 8 -253 314 9 1013 1069 10 447 -463 1 11	5 1161 1224 4 1140 1128 3 1291 -1164 2 904 -592 1 1421 1398 -2 -238 366 -4 637 -667	-1 1287 -1281 0 193 184 1 1491 1482 2 1734 -1762 3 841 -814 5 496 -516 7 457 408 8 359 375	-1 142h C 179 1 1543 3 585 5 367 5 367 6 556 7 457 8 359	1394 -8 658 -105 -9 401 -1682 -10 292 711 -12 401 379 -13 517 -615 -469 3 305	679 423 314 -410 521 8	5 LD27 -985 6 756 -782 3 L7 5 450 472 4 9C0 856 3 359 -321	-7 1389 -1345 -6 911 -942 -5 2121 2118 -4 1333 1368 -3 2153 -2124 -2 2082 -2040 -1 872 837 0 1294 1282	-13 503 -4 -12 559 5 -11 397 3 -10 331 -2 -9 369 -3 -8 791 -8 -7 535 -5 -6 992 10	94 1 14 53 2 5 41 5 6 75 6 9 10 7 7 38 11 7	59 - 1481 87 608 82 680 50 - 959 99 - 723 5 5	-5 623 D -253 5 3 260 1 313 -1 257	-78 35 15 -261
0 2409 2339 2 1418 -1403 3 1034 1023 4 478 516 5 1090 -1050 6 257 235 7 707 576 8 545 -505	-5 2582 -2544 +6 1878 1782 -8 478 -4824 -10 755 -824 -11 570 -518 -12 985 1020 1 4	9 285 -323 8 640 696 7 770 -758 5 1189 1207 4 492 -518 3 2059 -2037 2 1034 1052 1 2504 2517	-5 929 887 -6 922 564 -7 908 -994 -8 457 +565 2 LT -9 394 382	9 373 -446 2 5 7 -243 -315 6 -225 -264 5 225 267 9 253 244	9 656 10 426 7 8 647 8 647 8 1657	659 -12 320 -372 -11 253 -10 -239 0 -9 510 -531 -3 675 -556 0 1206 1891 L 728	-420 227 253 -455 -736 -693 -1214 721	2 1112 -1091 1 496 552 0 1991 1916 -2 1850 -1843 -3 -207 -337 -4 908 920 -6 1076 -1147	1 201 401 2 521 455 3 834 -836 5 430 580 6 774 765 4 10	-5 1074 10 -4 420 -4 -3 2765 -27 -2 880 -6 -1 1762 18 0 805 8 1 825 -6 2 2016 -20	61 7 9 06 6 3 22 5 18 58 3 16 36 2 3 38 1 20 22 -1 6 32 -2 6	71 -924 90 -442 92 1866 71 -1059 91 -398 95 2014 99 -853 94 -633	-2 267 -4 385 -5 -243 -8 591 -9 408 -10 805 -11 376	-22 50 -26 -58 -34 32
9 408 - 665 10 530 574 0 11 10 450 542 9 739 789 8 908 - 923 2 939 - 10	-12 857 -926 -11 755 -754 -10 1549 1488 -9 1442 1409 -8 1442 1409 -8 1456 1376 -4 956 -890	0 2244 -2144 -1 464 -463 -2 2191 2157 -3 665 -634 -4 1104 -1069 -5 306 339 -6 -232 -367 -7 951 -813	-7 285 -456 -6 609 606 -5 454 446 -4 625 -1715 -2 1618 1544 0 1869 -1833 1 281 304 2 916 937 + 1203 -1191	3 288 -272 2 521 523 1 626 637 0 1931 -1870 -1 1071 -1080 -2 1850 1809 -3 1034 1042 -4 2610 -2540	4 865 2 865 0 1161 -2 1449 -4 2782 -6 807 -8 306 -10 266	-622 2 1473 658 3 222 -1135 4 1133 -1372 5 -236 -2575 7 728 179 8 623 357 -779 3	202 -1089 -275 248 793	3 18 -9 848 -918 -8 985 948 -7 1505 1407 -5 1544 -1403 -5 1938 -1875 -4 1273 1276	7 -271 335 6 542 -528 5 1066 -1044 3 2365 2379 1 1790 -1859 0 994 -1010 -1 553 549 -2 988 962 -1 1004	3 338 -3 4 1569 15 6 711 -7 7 352 -2 9 2 8 -271 3	26 -4 [1] 54 -5 28 34 -6 5 72 -1 26 -8 7 -9 22 -10 7 30 -11 6	19 (185 2842 14 -565 13 -2521 25 -686 76 2268 10 673 14 -625	-9 376 -7 317 -6 295 -4 538 -2 -253 -1 644	16 -35 -34 -34 -35 -35
6 236 - 334 5 471 -523 4 556 -516 3 1006 1044 0 12 0 1225 -1105	-2 281 -290 -1 1572 -1455 0 457 455 1 1175 1165 3 253 -244 4 925 937 5 236 -279	-9 426 360 -10 288 -325 1 12 -8 313 -359 -7 -239 -331 -5 025 1025	2 16 7 795 -806 5 728 757 5 1337 1338 4 1210 -1152 2 1252 -1252	-0 1007 1015 -7 1195 -1191 -8 280 242 -9 1298 1353 -10 893 -648 -11 877 -617 -12 1112 1168	-14 633 -12 784 -10 -229 -9 1435	-430 8 879 0 7 1041 8 1396 -620 5 630 824 4 1826 229 2 939 -1192 1 703	851 -1046 -1269 634 1837 -936 -701	1 369 -336 2 855 872 3 651 712 4 848 -616 3 19	-5 605 -586 -6 586 587 -7 1674 1677 -8 454 414 -9 1491 -1479 -11 1551 1611 -12 665 674	6 503 -4 5 1495 -15 3 1242 12 2 476 4 1 303 2 0 1101 -11 -1 1393 -13 -2 1002	94 -12 7 69 -11 3 26 -14 8 50 64 5 96 25 -14 4 50 -13 8 13 -13 8 13 -13 8 13 -13 8 13 -13 8 13 -13 8 13 -14 8 14 8 15 -14 8 16 -14 8 16 -14 8 17 -14	1 -837 17 -370 12 805 6 6 15 -440 1 827	0 303 1 412 2 -264 5 -9 285 -6 288	-38: -38: -38: -36:
1 564 -551 3 -215 282 4 1646 -1622 6 735 750 8 1013 -992 0 13	1 721 782 8 584 614 9 700 -706 1 5 10 1069 1078	-5 823 794 -5 823 794 -4 1164 -1203 -3 837 -846 -2 1945 1887 -1 352 -187 1 1516 1537 3 556 -548	2 1425 1351 1 1178 1167 0 1337 -1421 -2 619 707 -3 457 -461 -4 -246 341 -5 1231 1252 -6 303 -3**	2 7 -12 55 51 -10 1020 -982 -9 1685 1672 -8 251 247 -12 592 -2573 -5 555 -555	-6 2845 -2 679 0 367 2 -197 4 601 6 292 8 -257	-2736 -1 858 1003 -5 443 -426 -8 348 281 -9 387 190 -11 656 -328 -12 274 -325	841 385 -408 -409 592 -379	2 -264 -273 1 1590 -1562 0 714 770 -1 1847 1883 -2 -285 -403 -3 1319 -1315 -4 -271 123 -5 417	+ 9 -13 505 521 -12 597 -927 -11 682 -716 -10 352 316	-c 1000 9 -3 1351 12 -4 419 4 -6 1185 -11 -8 858 9 -9 419 -4 -10 517 -5 -11 429 4		-275 -1810 -1810 -1044 -11279 -1359 -1064 -1359	0 482 2 549 3 1 594 0 422	-55 58 18 -62 -41
10 345 -475 9 915 905 8 700 863 7 456 -532 8 -239 -290 4 584 -556 3 295 362	8 317 - 404 7 732 694 5 654 - 645 5 42459 2458 3 1189 1173 2 2610 -2497 1 1238 1182	5 376 374 6 1460 -1395 8 1326 1364 1 13 9 943 -901	-7 922 -934 -8 879 875 -9 334 421 -10 830 -591 2 15	-5 2385 2296 -6 274 297 -3 929 -963 -2 253 -243 -1 -163 194 0 267 -320 1 394 385	7 -246 6 347 5 383 5 679 2 1263	1 -252-10 313 -375 -8 746 369 -7 264 645 -6 457 -1763 -5 373	248 -286 707 -377 -331 360	-7 548 -625 -6 1699 -1127	-8 837 877 -7 281 240 -6 1745 -1710 -5 457 -408 -4 2427 2374 -3 954 951 -2 1555 -1554	4 1 -13 -250 -2 -11 739 7 -9 236 2 -7 387 3	-2 19 -1 13 0 15 90 2 7 23 3 3 39 4 -2 94 6 8	1977 1977	-7 303 -5 640 -4 295 +2 -271	19 -34 -56 -31

after correction for the difference in covalent radius between arsenic and antimony. All six phenyl rings are planar within experimental error. The C–C distances within the rings range from 1.443 (21) (C_{24} – C_{25}) to 1.340 (19) Å (C_{23} – C_{24}) with the average value

being 1.383 (16) Å. The root-mean-square deviation from the average is 0.023 Å indicating that the estimated standard deviations are reasonably accurate. The average C–C–C angle for the rings is 120.0 (11)° with the range being from 122.4 (12) $(C_{41}-C_{42}-C_{43})$ to

L 90 FC 0 30 304 - 21 3765 30 - 21 37			111161 14111111-1	10 10 <td< th=""><th>L 10 TC 4</th><th></th><th>1 1</th><th></th><th>L 22 · · · · · · · · · · · · · · · · · ·</th><th>L 73 7 1 75 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</th><th>L 1.1 T 1.1</th></td<>	L 10 TC 4		1 1		L 22 · · · · · · · · · · · · · · · · · ·	L 73 7 1 75 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	L 1.1 T 1.1
-8 2008 -1903 -9 363 -372 -0 786 787 11 601 -599 -13 711 672 -14 572 -1553 6 4 -14 974 960 -13 830 827 -14 974 960 -13 830 827 -12 777 -1728 -10 9217 -953 -10 9217 -953 -10 9217 -202 -10 9217 -202 -10 925 828 -10 925 828	$\begin{array}{c} -4 & 16C6 & 1575 \\ -3 & 1101 & -1134 \\ -2 & 869 & -916 \\ 0 & 957 & -325 \\ 0 & 957 & -325 \\ 0 & 957 & -325 \\ 2 & 1667 & -325 \\ 2 & 1667 & -325 \\ 2 & 1667 & -325 \\ 2 & 1667 & -325 \\ 2 & 1667 & -325 \\ 3 & 1365 & -1375 \\ 4 & 9 \\ 4 & 9 \\ 4 & 9 \\ 4 & 9 \\ 4 & 9 \\ 4 & 9 \\ 1 & 1057 & -1617 \\ -1 & 1052 & 1077 \\ -1 & 1052 & 1077 \\ -2 & 1642 & 1834 \\ -3 & 1305 & -1288 \\ \end{array}$	2 552 -553 3 359 471 6 15 2 809 -442 0 735 738 -2 707 -721 -3 373 -321 -4 295 357 10 -247 287 6 16 -10 507 -499 -9 280 44 -9 33 574 -3 33 -774 -3 33 -774 -3 33 -774	-11 872 900 -10 714 -745 -9 1108 -1115 -9 715 857 -9 755 857 -9 854 -745 -9 755 857 -3 855 -756 -3 855 -756 -3 855 -756 -3 855 -756 -3 855 -756 -3 855 -757 -3 855 -757 -3 12 1 1294 -1316 0 -271 351 -1 49 556 -2 1106 -1137	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 557 -564 -2 216 -103 -8 412 186 -10 742 -511 -10 742 -511 -11 900 411 -12 656 -669 -13 551 -618 -14 567 551 -14 647 -551 -13 946 -551 -13 946 -551 -12 946 -551 -12 946 -551 -12 946 -551 -12 946 -555 -6 -215 -556	-11 -253 -300 -10 -244 -347 -9 -239 -271 -9 -239 -271 -9 -239 -271 -2 -250 -349 -1 -272 -349 -2 -250 -349 -2 -247 -345 -2 -247 -345 -2 -247 -345 -3 -247 -345 -3 -348 -3 -	-1 - 274 - 377 0 339 453 # 13 -1 566 - 516 -2 1231 1215 -3 844 - 801 -4 - 281 - 107 -5 726 - 730 -7 - 287 309 -10 313 - 533 -11 489 - 788 # 14 -11 5C3 - 522	-7 95) -887 -5 599 -806 -5 811 804 -4 911 914 -3 538 -481 -2 900 -911 -1 1182 103 -1 1182 103 -4 711 550 -6 647 592 -6 647 592 -7 66 -7 7 656 -7 7 7 656 -7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 10 73 1124 10 3 -1 612 -550 -2 324 40 -3 387 351 -4 1266 -1157 -8 1505 1571 -9 434 839 -10 1516 -1474 -11 964 -932 -12 644 627 -13 426 598 10 4 -13 577 -562	-4 429 488 10 11 -5 577 -035 -6 362 293 -7 563 524 -10 -310 -448 10 12 -8 578 -061 -6 415 494

TABLE I (Continued)

^a The data are separated into groups having the common values of h and k listed above each one. Unobserved reflections for which $|F_e| > |F_{th}|$ (see text) are indicated by a negative F_o .

116.8 (13)° (C_{42} - C_{43} - C_{44}). The root-mean-square deviation from the average is 1.0°.

The C–Cl distances in the dichloromethane molecule are equal and compare well with tabulated values.²⁹ The $Cl_2-C_9-Cl_8$ angle here is slightly smaller than has been reported previously²⁹ but the difference is probably not significant. The hydrogen atoms could not be unequivocally located, presumably as a result of large amplitudes of vibration.

The most interesting feature of the present molecule is the rhodiacyclopentadiene ring. As mentioned earlier, this is the first structural characterization of this type of compound which does not have a second metal atom associated with the ring. In the previous determinations, the M-C bonds in the MC₄ moiety were found to be equal as were the C-C bonds but it was not possible to determine whether this was an inherent feature of this moiety or was due to the postulated π bonding between the other metal atom(s) present and the ring.

The ring consisting of Rh, C₁, C₂, C₃, and C₄ is essentially planar with the distances (Å) of the various atoms from the weighted least-squares plane³⁰ (σ_{plane} = 0.02 Å) being Rh, 0.001 (1); C₁, 0.003 (11); C₂, -0.013 (12); C₃, 0.020 (12); C₄, -0.016 (11). Although the deviations from planarity appear statistically significant,³¹ they are unlikely to be significant chemically and can be accounted for by packing considerations (*vide infra*). The distances (Å) of other atoms of interest from the mean plane of the ring are: Cl₁, 0.022 (3); C₅, 0.011 (13); C₆, 0.007 (18); C₇, -0.016 (17); C₈, -0.078 (14). It is thus apparent that this whole portion of the molecule is very nearly planar as would be expected.

The Rh-C₁ (2.000 (10) Å) and Rh-C₄ (1.964 (11) Å) distances are different to an extent which is only marginally significant ($\Delta/\sigma = 3.3$) and there does not appear to be any compelling reason to consider it to be real. The average value of 1.98 (1) Å is essentially the same as that found for the Rh-C(carbonyl) distance in π -C₅H₅Rh(CO)(C₂F₅)I (1.97 (3) Å)³² even before correction for the difference in radius between sp² and sp carbon atoms (\sim 0.03 Å). It is also possibly shorter than the Rh-C(perfluoroethyl) distance in π -C₅H₅Rh(CO)(C₂F₅)I (2.08 (3) Å) after correction for the difference in radius between sp² and sp³ carbon atoms (\sim 0.03 Å). Although this latter Rh-C bond is

^{(29) &}quot;Tables of Interatomic Distances and Configuration in Molecules and Ions," Special Publication No. 11, The Chemical Society, London, 1958, p M108.

⁽³⁰⁾ The equation of the plane is: -0.964X + 0.255Y - 0.082Z + 2.171 = 0, where X, Y, and Z are orthogonal coordinates (in Å). The transformations from fractional monoclinic coordinates (x, y, z) are: $X = ax + cz \cos \beta$; Y = by; $Z = cz \sin \beta$.

⁽³¹⁾ The results of a χ^2 test show that rigorous planarity is only significant at an 0.02 confidence level: G. H. Stout and L. H. Jensen, "X-Ray Structure Determination: A Practical Guide," Macmillan, New York, N. Y., 1968, Section 18-7.

⁽³²⁾ M. R. Churchill, Inorg. Chem., 4, 1734 (1965).

TABLE II						
FINAL POSITIONAL AND THERMAN	PARAMETERS ^a FOR	RhCl(Sh(C,H ₂) ₂) ₂ C ₄ (CF ₂) ₂ ·CH ₂ Cl ₂				

		TIME LOSITION	AD AND THERM	1. I MAMELI	mo ron n	11C1(00(0013)8	/2 = 4 = 3/4 = 11	2012	
$Atom^b$	x	У	z	B_{11}^c	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Sh	0.21900(6)	0.12769(3)	0.28364(5)	5 74 (6)	1 19 (2) 3.71(4)	0.46(5)	5 38 (6)	0.02(4)
Rh	0.41720(7)	0.10382(4)	0.29561(6)	5.64(6)	1 04 (2	353(4)	0.20(6)	5,14(7)	-0.05(4)
CL CL	0.41720(7) 0.61452(6)	0.10002(1) 0.07705(2)	0.20001(0)	5.82 (5)	1 17 (2	30.00(1)	0.18(5)	5.96(6)	0.00(1)
SD2	0.01400(0)	0.01703(3)	0.30007(3)	0.02(0)	1.17(2	7 5 (0)	0.10(0)	11 2 (0)	11(9)
	0.4014(2)	0.0174(1)	0.3411(2)	9.2(2)	1.3(1)	(.0(2))	0.4(2)	11.3(2)	1, 1(2)
F_{51}	0.2486(7)	0.0694(3)	0.0960(5)	25.6(9)	3.6(2)	6.6(4)	-12.7(6)	14.6(8)	-0.3(0)
${ m F}_{52}$	0.3404(7)	0.1011(4)	0.0448(5)	24.4(7)	5.1(2)	11.1(4)	-9.5(7)	26.5(7)	-7.3(5)
\mathbf{F}_{53}	0.1820(9)	0.1375(4)	0.0160(6)	22.4(12)	5.3(3)	7.4(6)	12.0(9)	-7.7(14)	-4.1(6)
\mathbf{F}_{61}	0.3726(8)	0.2052(4)	0.0388(5)	36.3(11)	4.6(3)	13.0(4)	8.3(9)	31.7(9)	8.2(6)
\mathbf{F}_{62}	0.4542(10)	0.2623(4)	0.1266(6)	69.0(14)	3.0(2)	23.7(5)	0.1(10)	67.1(10)	4.1(6)
Fea	0.2542(9)	0.2491(5)	0.0549(7)	44.9(10)	13.5(4)	29.8(7)	42.2(10)	59.6(12)	34.1(8)
F	0.6094(8)	0.2793(4)	0.3307(10)	37.9(9)	2.8(2)	66.3(13)	-13.8(8)	84.3 (14)	-16.3(9)
F.,	0.5112(11)	0.2834(4)	0.3891(7)	46.3(16)	22(2)	19 1 (8)	-9.2(10)	32.7(16)	-5.5(7)
1.72	0.0112(11)	0.2001(1)	0.2533 (8)	48.4(15)	1.5(2)	23.7(8)	4 7 (9)	04.4(14)	9.7(6)
Г 78 Г	0.4174(10)	0.3009(4)	0.2000(8)	10.9(9)	1.0(2)	20.1(8)	1 0 (8)	$G_{4}(14)$	2.7(0)
F'81	0.5833(6)	0.1326(3)	0.4990(4)	19.2(8)	2.4(2)	3.2(3)	-1.0(6)	0.4(7)	-0.4(4)
F_{82}	0.6755(7)	0.1983(4)	0.4987(5)	16.8(8)	6.8(3)	6.4(4)	-13.0(8)	7.0(9)	-2.9(6)
F_{83}	0.5080(7)	0.2047(4)	0.4893(5)	23.7(8)	4.4(2)	7.3(4)	6.9(7)	16.1(7)	-1.4(5)
C_5	0.2824(10)	0.1141(5)	0.0839(8)	9.8(11)	2.2(3)	5.0(6)	-2.0(10)	6.7(11)	-1.2(7)
C_6	0.3542(13)	0.2343(8)	0.0995 (9)	30.3(15)	5.1(5)	12.8(7)	-8.0(12)	33.2(13)	-6.6(10)
C ₇	0.5153(15)	0.2710(7)	0.3134(10)	29.4(19)	3.2(4)	9.4(9)	6.8(15)	18.9(17)	0.0(10)
C.	0.5670(10)	0.1779(5)	0.4567(9)	11.9(11)	2.2(3)	6.4(6)	0.4(10)	10.4(11)	-0.6(8)
C.	0.7450(14)	0.3790 (8)	0.2562(11)	17.7(16)	5 3 (6)	10, 1, (10)	1.9(17)	$14 \ 4 \ (17)$	-1.9(12)
	0.7400(14)	0.3073(3)	0.2002(11) 0.2743(4)	30.8(5)	5.8(2)	21.2(3)	-5.2(5)	30 0 (5)	-6.1(4)
Cl_2	0.7933(4)	0.3973(3)	0.3743(4)	00.0(J)	$\frac{1}{4} \frac{1}{4} \frac{1}$	21.2(0)	-0.2(0)	33.3(0)	-0.1(4)
CI_3	0.8780(0)	0.3578(2)	0.2000(4)	30 .2(0)	4.4(2)	21.1(3)	=0.2(0)	41.0(0)	-2.1(4)
Atom	x	У	z	B, A^2	Atom	x	У	z	B, A^2
C_1	0.3591(8)	0.1454(4)	0.1753(6)	3.0(3)	C_{62}	0.8864(9)	0.0587(5)	0.4814(7)	4.1(3)
C_2	0.3947(9)	0.1953(5)	0.1889(7)	4.3(3)	C_{63}	0.9831(10)	0.0434(5)	0.5750(8)	4.9(3)
C ₃	0.4643(9)	0.2131(5)	0.2850(7)	3.8(3)	C_{64}	0.9589(9)	0.0253(5)	0.6401(7)	4.5(3)
C,	0.4888(8)	0.1734(4)	0.3487(6)	3.1(3)	C 65	0.8388(9)	0.0228(5)	0.6110(7)	4.4(3)
C	0.2379 (8)	0.1207(5)	0.4171(7)	33(3)	Cee	0.7408(9)	0,0379(5)	0.5158(7)	3.6(3)
	0.2010(0)	0.1207 (0)	0.4975(7)	4.2(3)	Ud	0.4100	0.0845	0.4949	4 7
C ₁₂	0.0414(9)	0.0000(5)	0. 4010 (7)	= 0 (2)	1112	0.4204	0.0716	0.4010	I.1 5 5
C_{13}	0.3475(10)	0.0902(5)	0.5850(8)	5.0(3)	1118 11	0.4204	0.0710	0.0400	0.0
C_{14}	0.2550(10)	0.1088(5)	0.5879(8)	0.0(3)	H ₁₄	0.2626	0.1053	0.6503	5.5
C_{15}	0.1540(10)	0.1316(5)	0.5101(8)	4.8(3)	H_{13}	0.0852	0.1436	0.5141	5.2
C_{16}	0.1435(9)	0.1390(5)	0.4221(7)	4.4(3)	H_{16}	0.0693	0.1571	0.3648	4.8
C_{21}	0.1449(9)	0.2041(5)	0.2361(7)	3.8(3)	H_{22}	0.2536	0.2378	0.3732	6.8
C_{22}	0.1868(11)	0.2444(6)	0.3023(8)	6.2(4)	H_{23}	0.1661	0.3239	0.3194	8.3
C ₂₃	0.1366(12)	0.2947(6)	0.2710(10)	7.6(4)	H_{24}	0.0113	0.3399	0.1511	8.2
Ca	0.0466(12)	0.3088(6)	0.1735(10)	7.5(4)	H_{25}	-0.0610	0.2721	0.0371	8.6
C	0.0054(12)	0.2649(6)	0 1079 (10)	7.8(4)	H	0.0277	0 1838	0.0902	6.1
C_{25}	0.0565(10)	0.2010(0)	0.1380 (8)	5.6(4)	н.,	0 1488	0.0218	0.1675	43
C26	0.0505(10)	0.2128(0)	0.1935(3)	$0.0(\pm)$	1132	0.0240	0.0210	0.0650	4.5
C_{31}	0.0591 (9)	0.0813(3)	0.1677(7)	3.0(3)	LI 33	-0.0340	-0.0009	0.0052	4.J 5 4
C_{32}	0.0669(9)	0.0340(5)	0.1511(7)	3.9(3)	H ₃₄	-0.2270	-0.0023	0.0259	D.4
C_{33}	-0.0399(9)	0.0033(5)	0.0913(7)	4.1(3)	H_{35}	-0.2420	0.0789	0.0875	6.4
C_{34}	-0.1510(10)	0.0197(5)	0.0687(8)	5.0(3)	H_{36}	-0.0606	0.1319	0.1908	5.0
C_{35}	-0.1596(11)	0.0669(6)	0.1046(8)	5.9(4)	H_{42}	0.8035	0.1676	0.4039	5.6
C ₃₆	-0.0541(10)	0.0979(5)	0.1646(8)	4.6(3)	H_{43}	0.8898	0.2354	0.3583	6.8
Ca	0.6918(8)	0.1342(4)	0.2688(7)	3.3(3)	H_{44}	0.8110	0.2422	0.1900	6.3
C.	0.7757(10)	0.1698(5)	0.3346(8)	5.1(3)	H_{45}	0.6707	0.1813	0.0758	5.9
C42	0.8255(11)	0.2103 (6)	0.3085 (8)	62(4)	H	0.5866	0 1141	0 1202	56
C ₄₃	0.3200(11)	0.2100(0)	0.2115 (8)	5.8(4)	н.,	0.7676	0.0252	0.2437	4.6
C44	0.7609(11)	0.2100(0)	0.2110(8)	$5.5(\pm)$	11.02	0.7406	0.0500	0.1500	5.7
C_{45}	0.0983(10)	0.1780(5)	0.1400(8)	0.4(4) 5 1 (0)	1153	0.1480		0.1000	U.(
C_{46}	0.6502(10)	0.1390(5)	0.1709(8)	ə,1(3)	H_{54}	0.5819	-0.1088	0.0857	ə.8
$C_{\bar{a}1}$	0.5973(9)	0.0122(5)	0.2236(7)	3.6(3)	H_{55}	0.4188	-0.0901	0.1036	5.7
C_{52}	0.6935(9)	0.0016(5	0.2134(7)	4.2(3)	${ m H}_{56}$	0.4318	-0.0155	0.1925	3.9
C_{53}	0.6835(10)	-0.0430(5)	0.1600(8)	4.9(3)	\mathbf{H}_{62}	0.9048	0.0717	0.4351	4.5
C ₅₄	0.5860(10)	-0.0767(5)	0.1216(8)	5.2(3)	H_{63}	1.0709	0.0455	0.5959	5.3
Cas	0.4919(10)	-0.0660(5)	0.1328(8)	5.2(3)	H_{64}	1.0289	0.0141	0.7077	4.9
Cie	0.4992(9)	-0.0223(5)	0.1840(7)	3.6(3)	H_{65}	0.8206	0.0101	0.6576	4.8
 C	0.7652(8)	0.0561(4)	0.4516(6)	3.1 (3)	H_{BB}	0.6529	0.0354	0.4944	3.9

^a The estimated standard deviation in the least significant figure(s) is given in parentheses following the value of each parameter. None is given for the hydrogen atoms as these were not refined. ^b The numbering system corresponds to that shown in Figure 1. The dichloromethane molecule consists of the atoms C_0 , Cl_2 , and Cl_3 . The subscripts attached to the remaining carbon atoms give the number of the phenyl ring of which it is a part (first digit) followed by the number of the atom in the ring. Rings 1–3 are attached to Sb₁ while rings 4–6 are attached to Sb₂. The atoms in each ring are numbered sequentially around the ring with atom 1 being the one bound to antimony (*i.e.*, C_{21} is the carbon atom of ring 2 which is attached to Sb₁). The phenyl hydrogens are numbered to correspond to the carbon to which they are attached. ^c Anisotropic thermal parameters (×10³). ^d Hydrogen atom positions as calculated on the assumption of a C–H distance of 1.0 Å. No esd's are given as these parameters were not refined.

TABLE III Interatomic Distances $(Å)^a$

2.586(1)	$C_{6} - F_{62}$	1.329(20)
2.584(1)	$C_{6}-F_{63}$	1.138(18)
2.381(3)	$C_{7}-F_{71}$	1.122(18)
2.000(10)	$C_{7}-F_{72}$	1.346(17)
1.330(16)	$C_{7}-F_{73}$	1.324(19)
1.388(14)	$C_{8}-F_{81}$	1.307(15)
1.367(15)	$C_8 - F_{82}$	1.283(14)
1.964(11)	C8-F83	1.372(14)
1.486(15)	$Sb_1 - C_{11}^{b}$	2.120(9)
1.611(19)	$Sb_1 - C_{21}$	2.116(12)
1.577(22)	$Sb_{1} - C_{31}$	2.118(10)
1.481(14)	Sb_2-C_{41}	2.106(10)
1.284(15)	$Sb_2 - C_{51}$	2.111(11)
1.314(13)	$Sb_{2}-C_{61}$	2.106(9)
1.285(15)	C_9-Cl_2	1.757(16)
1.396(18)	C_9-Cl_3	1.765(16)
	$\begin{array}{c} 2.586 \ (1) \\ 2.584 \ (1) \\ 2.584 \ (1) \\ 2.381 \ (3) \\ 2.000 \ (10) \\ 1.330 \ (16) \\ 1.388 \ (14) \\ 1.367 \ (15) \\ 1.964 \ (11) \\ 1.486 \ (15) \\ 1.611 \ (19) \\ 1.577 \ (22) \\ 1.481 \ (14) \\ 1.284 \ (15) \\ 1.314 \ (13) \\ 1.285 \ (15) \\ 1.396 \ (18) \end{array}$	$\begin{array}{c c} 2.586 (1) & C_6-F_{62} \\ 2.584 (1) & C_6-F_{63} \\ 2.381 (3) & C_7-F_{71} \\ 2.000 (10) & C_7-F_{72} \\ 1.330 (16) & C_7-F_{73} \\ 1.388 (14) & C_8-F_{81} \\ 1.367 (15) & C_8-F_{82} \\ 1.964 (11) & C_8-F_{83} \\ 1.486 (15) & Sb_1-C_{11}^{b} \\ 1.611 (19) & Sb_1-C_{21} \\ 1.577 (22) & Sb_1-C_{31} \\ 1.481 (14) & Sb_2-C_{41} \\ 1.284 (15) & Sb_2-C_{61} \\ 1.314 (13) & Sb_2-C_{61} \\ 1.285 (15) & C_9-C_{12} \\ 1.396 (18) & C_9-C_{13} \end{array}$

^a Estimated standard deviation in least significant figure(s) given in parentheses after each value. ^b See Table II, footnote b, for explanation of numbering system for this and subsequent entries.

TABLE IV

	INTERBOND AN	VGLES $(DEG)^a$	
Sb ₁ -Rh-Sb ₂	178.25(4)	$C_2 - C_6 - F_{63}$	116.4(3)
Sb ₁ -RhC ₄	91.2(3)	$F_{61} - C_6 - C_{62}$	88.3 (12)
Sb ₁ -Rh-C ₁	91.5(3)	$F_{61} - C_6 - F_{63}$	109.2(16)
Sb ₁ -Rh-Cl ₁	88.08(7)	$F_{62}-C_{6}-F_{63}$	126.1(18)
$Sb_2-Rh-Cl_1$	90.18(7)	C ₃ -C ₇ -F ₇₁	118.0(13)
Sb ₂ -Rh-C ₄	90.3(3)	$C_3 - C_7 - F_{72}$	105.2(11)
Sb ₂ -Rh-C ₁	89.8(3)	C ₃ -C ₇ -F ₇₃	104.7(12)
Cl ₁ -Rh-C ₁	139.7(3)	$F_{71} - C_7 - F_{72}$	111.3(15)
Cl ₁ -Rh-C ₄	143.1(3)	$F_{71}-C_7-F_{73}$	122.1(16)
C ₁ -Rh-C ₄	77.2(4)	F72-C7-F73	91.3(12)
$Rh-C_1-C_2$	116.4(7)	$C_4 - C_8 - F_{81}$	112.0(9)
$Rh-C_1-C_5$	112.9(7)	$C_4 - C_8 - F_{82}$	117.4(11)
$C_{5}-C_{1}-C_{2}$	130.7(9)	$C_4 - C_8 - F_{83}$	112.2(9)
$C_1 - C_2 - C_3$	116.1(9)	$F_{81}-C_8-F_{82}$	106.5(10)
$C_1 - C_2 - C_6$	122.5(11)	$F_{81}-C_8-F_{83}$	100.0(8)
$C_{6}-C_{2}-C_{3}$	121.4(12)	F_{82} - C_{8} - F_{83}	107.0(9)
$C_2 - C_3 - C_4$	111.4(10)	$Rh-Sb_1-C_{11}b$	114.5(3)
$C_2 - C_3 - C_7$	122.2(10)	$Rh-Sb_1-C_{21}$	118.1(3)
$C_7 - C_3 - C_4$	126.2(9)	$Rh-Sb_1-C_{31}$	116.4(3)
C₃C₄Rh	118.8(7)	C_{11} -Sb ₁ - C_{21}	102.6(7)
$C_3 - C_4 - C_8$	125.6(10)	C_{11} -Sb ₁ - C_{31}	102.0(6)
C ₈ -C ₄ -Rh	115.6(7)	C_{21} -Sb ₁ -C ₃₁	100.9(7)
$C_1 - C_5 - F_{51}$	113.8(10)	$Rh-Sb_2-C_{41}$	116.6(3)
$C_1 - C_5 - F_{52}$	114.2(9)	$Rh-Sb_2-C_{51}$	116.6(2)
$C_1 - C_5 - F_{53}$	113.3(10)	$Rh-Sb_2-C_{61}$	113.5(3)
$F_{51}-C_5-F_{52}$	102.5(8)	$C_{41} - Sb_2 - C_{51}$	101.8(6)
$F_{51} - C_5 - F_{53}$	106.1(9)	C_{41} -Sb ₂ -C ₆₁	103.2(7)
$F_{52} - C_5 - F_{53}$	106.0(11)	$C_{51} - Sb_2 - C_{61}$	103.4(6)
$C_2 - C_6 - F_{61}$	104.6(12)	$Cl_2 - C_9 - Cl_3$	107.1 (8)
$C_2 - C_6 - F_{62}$	106.8(13)		

^a The estimated standard deviation of the least significant figure(s) is given in parentheses. ^b See Table II, footnote b, for explanation of the numbering system for this and subsequent entries.

formally a simple σ bond involving an sp³ carbon atom, it has been suggested that the observed bond length is shorter than would be expected on this basis. Support for a degree of rehybridization of the carbon atom to accommodate Rh-C multiple bonding is found in the pattern of angles about this carbon atom. However it was also pointed out that the shortening of the bond could be due to orbital contraction on the metal, and in the absence of a reliable value for the radius of Rh(III) in these situations no firm conclusion as to the amount of π character (if any) in the bond could be made.³² Essentially the same conclusion was reached by Churchill and Mason in a subsequent discussion of transition metal-perfluoroalkyl bonds.33 In the present case, on the other hand, there is a π system present in the fluorocarbon portion of the molecule which is ideally oriented for $d\pi - p\pi$ overlap and the short Rh-C distances are certainly in accord with this. Further support for Rh-C multiple bonding is based on a comparison of the carbonyl stretching frequencies observed for $Rh(CO)Cl(Sb(C_6H_5)_3)_2C_4(CF_3)_4^4$ and the similar complexes $RhCl_2(CO)(P(C_6H_5)_5)_2R$ (R = C₆-H₅, C₂H₅, CH₃).³⁴ In the latter series, $\nu_{C=0}$ is 2072 cm^{-1} for the phenyl complex whereas for the methyl and ethyl analogs it occurs at 2062 and 2060 cm^{-1} , respectively. Thus, the complex with the organic group capable of π -back-bonding shows the higher carbonyl stretching frequency. For the carbonyl derivative of the fluorocarbon complex, $\nu_{C=0}$ is 2096 cm⁻¹ indicating an even greater competition by the organic group for metal $d\pi$ electrons. The same conclusion is also reached when the ¹⁹F nmr spectra of the metallocycle and its carbonyl derivative⁴ are compared. In the former a single complex resonance is observed for the two trifluoromethyl groups closest to the rhodium while in the latter, these groups, having become nonequivalent, give rise to two complex resonances which are both at lower fields than in the parent complex. Again, π interaction between the metal and the remainder of the ring is consistent with these observations.

An inspection of the C-C bond lengths in the remainder of the ring (Table III) shows that a considerable degree of π delocalization occurs over the fourcarbon portion. The C_1-C_2 and C_2-C_3 distances are significantly different (Δ/σ = 3.8) whereas the distances C_1 - C_2 and C_3 - C_4 as well as C_2 - C_3 and C_3 - C_4 are equivalent at our level of accuracy. There does not appear to be any reasonable chemical explanation for the asymmetry of the ring and it may arise simply from packing considerations. (One explanation which could eliminate both this problem and that of the difference in the Rh–C distances is that C_1 is slightly misplaced but there is no evidence from either difference maps or thermal parameters that this is the case.) We conclude, therefore, that the C-C distances in the ring are substantially equal, and in view of our earlier remarks concerning the metal \rightarrow ring π donation, the actual electronic structure is probably somewhere between the extremes

A similar conclusion has been reached in discussions of the electronic structures of a variety of metal com-(33) M. R. Churchill and R. Mason, *Adv. Organometal. Chem.*, **5**, 93 (1967).

⁽³⁴⁾ M. C. Baird, J. T. Mague, J. A. Osborn, and G. Wilkinson, J. Chem. Soc., A, 1347 (1967).

plexes of "butadiene-like" moieties.³³ Certainly, the C₂-C₃ distance is significantly shorter than the corresponding C-C distance in butadiene (1.483 (10) Å)³⁵ and cyclopentadiene (1.46 (4) Å)³⁶ indicating that the true description is closer to the latter extreme.

An examination of the C(ring)-C(trifluoromethyl)distances shows that C_1 - C_5 and C_4 - C_8 are equivalent with an average length of 1.484 (15) Å. Likewise C_2 - C_6 and C_3 - C_7 are equivalent, but their average length, 1.594 (21) Å, is significantly longer. The primary reason for this difference is most likely to be the considerably higher uncertainty in the positions of C_6 and C_7 as compared to C_5 and C_8 (Table II). Similar difficulty in accurately locating the carbon atoms of trifluoromethyl groups has been experienced previously with the result that the reported distances involving these atoms vary widely.37-39 In the compound π -C₅H₅RhC₆(CF₃)₆, the C(ring)-C(trifluoromethyl) distances vary from 1.482 (25) to 1.550 (31) Å and within the limits of error of that determination³⁷ are the same as those found in the present case.

Figure 2 presents a schematic representation of the F---F contacts in the molecule. Within the trifluoromethyl groups containing C₅ and C₈ these are all ~ 2.1 Å, which is less than a normal van der Waals contact but comparable to values found in other cases.^{33,38,39} Within the other two trifluoromethyl groups, the range is considerably greater with some being as low as 1.9 Å. However this is mainly a result of large uncertainties of position due to the extremely large amplitudes of vibration for the fluorine atoms in these two groups. The F---F contacts between adjacent groups are, on the average, somewhat shorter than observed previously in similar compounds,^{37–39} but none is substantially shorter than normal van der Waals contacts. As mentioned earlier, one can correlate the relative sizes of the derived thermal ellipsoids for the fluorine atoms (Figure 1) with these contacts. Thus F_{63} and F_{71} are seen to be the most unrestricted and in fact are those with the largest thermal ellipsoids. Further, the deviations of the atoms C_1 -- C_8 from the mean plane of the metallocycle can be regarded as the result of the minimization of F---F contacts between trifluoromethyl groups.

The ¹⁹F spectrum of the complex which has been referred to above shows two broad and complex resonances at -9.8 and -12.7 ppm (benzotrifluoride, internal standard). The one at lower field has been assigned to the pair of trifluoromethyl groups adjacent to the metal (on C_1 and C_4) while the other is due to the pair on the outer end of the ring. The present study shows that the two groups in each pair are in fact very nearly equivalent. The broad, complex appearance of the signals suggests that the "interlocking" of the four CF₃ groups around the ring persists in solution thus rendering the fluorines within each group nonequivalent. By contrast the complex $[Rh(vdiars)_2(C_4F_6)]$ - BF_4^{40} (vdiars = cis-(C₆H₅)₂AsCH=CHAs(C₆H₅)₂) which contains one molecule of coordinated hexafluorobut-2-yne and which could be expected not to contain similarly hindered trifluoromethyl groups shows a single sharp signal for these fluorine atoms in its ¹⁹F nmr spectrum.

Acknowledgment.—We are especially grateful to Dr. Charles J. Fritchie, Jr., of this department for the use of the diffractometer and for much helpful advice and discussion.

⁽³⁵⁾ See ref 29, p M164.
(36) See ref 29, p M180.

⁽³⁷⁾ M. R. Churchill and R. Mason, Proc. Roy. Soc., Ser. A, 292, 71 (1966).

⁽³⁸⁾ M. Gerloch and R. Mason, *ibid.*, Ser. A, 279, 170 (1964).

⁽³⁹⁾ N. A. Bailey and R. Mason, Acta Crystallogr., 21, 652 (1966).

⁽⁴⁰⁾ J. T. Mague and J. P. Mitchener, Chem. Commun., 911 (1968).