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an approximately tetrahedral coordination with two
hydrogen-bond acceptors (Cl~ ions) and two hydrogen-
bond donors (ammonia molecules). The coordination
about the chloride ions is rather irregular. Each has a
hydrogen-bonded water molecule as closest neighbor,
with distances 3.18 A for CI(1)-O(3) and 3.16 A for
Cl21)-0(4).

It is interesting to note that neither of the bridging
NO; and NH; groups of the cation is involved in
hydrogen bonding.

Thermal Motion.—The ellipsoids of thermal motion
for the atoms of the cation are shown in Figure 2. The
rms amplitudes along the principal directions range
from 0.13 to 0.26 A. The smallest and most isotropic
movements are associated with the Co atoms. The
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atoms at the periphery of the cation have somewhat
more pronouniced movements than the atoms of the
central ring. The largest thermal vibrations in thc
structure are displayed by the water molecules and
chloride ions, with rms amplitudes up to 0.31 A ; their
ellipsoids are described in Table VII. No attempt
was made to correct the bond lengths for the effects
of thermal vibration.
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The structure of

chlorobis(triphenylstibine)tetrakis(trifiuoromethyl)rhodiacyclopentadiene-dichloromethane

solvate,

RhCI(Sh(CgH;)3):Cs(CF;3)s- CH1Cly, has been determined from three-dimensional X-ray data collected by counter methods.
The final conventional and weighted R factors obtained from a block-diagonal least-squares refinement for 2537 reflections
are both 0.044. The material crystallizes in the monoclinic system with space group P2./c and a unit cell of dimensions
a = 13.250 (1), b = 25.496 (2), ¢ = 16.852 (1) A: 8 =1254(2)°. The calculated density of 1.805 g/cm?® for four formula
units agrees well with the experimental value, 1.80 (2) g/cm?, determined by flotation. The crystal consists of discrete
monomeric molecules interspersed with solvent molecules which do not interact significantly with the metal atoms. The
coordination about rhodium is in the form of a slightly distorted trigonal bipyramid with Sb atoms in axial positions and a Cl
atom and the 1 and 4 C atoms of the C4(CF3); moiety occupying equatorial positions. The RhC, portion constitutes a five-
membered ring which is planar. The chlorine atom and the carbon atoms of the trifluoromethyl groups are also very nearly
in the same plane. The average Rh—C distance is 1.98 (1) A&, suggesting Rh—~C = bonding. The C-C distances in the ring
vary to some extent but are consistent with a considerable degree of delocalization over the four carbon atoms. Distortions
from the idealized Ca. symmetry are attributed to packing requirements while all other dimensions in the molecule appear

normal.

Introduction

In recent years, the search for efficient transition
metal catalysts for the polymerization of unsaturated
organic molecules has led to the production of a wide
variety of novel organometallic complexes.?® During
studies on the triphenylstibine analog of the versatile
hydrogenation catalyst chlorotris(triphenylphosphine)-
rhodium(I), the reaction with hexafluorobutyne-2 was
attempted and a yellow crystalline compound of for-
mula RhCI(Sb(CeH;)3)s(CsF12) was obtained.* Chem-
ical and spectroscopic data for this complex were most

(1) Supported by National Science Foundation Grant GP-80686.

(2) G. E. Coates, M., L. H. Green, and X. Wade, “Organometallic Com-
pounds,” Vol. 2, Methuen, London, 1968, Chapters 8. and 9.

(3) W. Hubel in “Organic Synthesis vi¢ Metal Carbonyls,”” Vol. 1, P.
Pino and I. Wender, Ed., Wiley-Interscience, New York, N. Y., 1968, p 273.

(4) J. T. Mague and G. Wilkinson, Incrg. Chem., T, 542 (1968).

consistent with the presence of a tetrakis(trifluoro-
methyl)rhodiacyclopentadiene moiety, but unequivocal
proof was not possible. More recently, IrCI(Ny) (P (Cs-
H;)a)2® and Rh(CeHy)P(CeHs)(P(CeHj)s)® have been
shown to undergo reactions with acetylenes containing
electronegative substituents and similar metallocyclic
products were postulated. In addition, Rh{CO)Cl-
(P(CsHs)s)2 was observed to trimerize these same acetyl-
enes, but no intermediate metallocycles could be iso-
lated.”

Although such metallocycles have been known for
some time,’ only a limited amount of structural data is

(3) J. P. Collman, J. W. Kang, W. F. Little, and M. F. Sullivan, bid., T,
1298 (1968).

(6) W.Keim, J. Organometal. Chem., 16, 191 (1969).

(7) J.P. Collman and J. W. Kang, J. Amer. Chem. Soc., 89, 844 (1967).

(8) W. Hubel and E. H. Braye, J. [norg. Nucl. Chem., 10, 250 (1959).
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available®=!? and that only on species containing at
least two metal atoms. The structure of the present
complex was thus of interest, not only to confirm the
postulated structure but also to investigate the nature
of the bonding in the heterocyclic ring in an instance
where there would be no interaction of the ring with a
second metal atom. A preliminary report of this struec-
ture determination has appeared.!4

Unit Cell Data and Collection of Intensities

Yellow crystals of RhCI(Sb(CeHs)s)sCs(CFs)s- CHo-
Cly* were grown by the slow diffusion of petroleum
ether (bp 30-60°) into a dichloromethane solution of
the complex. Equiinclination Weissenberg photo-
graphs of the 0k/—2k! zones and precession photographs
of the 40l and hk0 zones (Ni-filtered Cu Ka radiation)
established that the crystal belongs to the monoclinic
system. The observed systematic absences (A0l for
I = 2n + 1and 0kO for & = 2n 4 1) uniquely determine
the space group to be P2;/c (Con.® no. 14%). The ex-
perimental density of 1.80 (2) g/cm? as measured by
flotation in aqueous zinc iodide is in good agreement
with the value of 1.805 g/cm? calculated on the basis of
Z = 4. The molecules thus occupy general positions
in this space group and no crystallographic symmetry
need be imposed.

It was initially decided to employ copper radiation
to collect the intensity data despite a large absorption
coefficient (u = 137.2 ecm™}) in order to avoid overlap
problems, However, the combined effects of crystal
decomposition and an inadequate absorption correc-
tion for the rather large crystal ultimately prevented
satisfactory refinement even though all the nonhydro-
gen atoms were easily located. The data were there-
fore recollected using molybdenum radiation and a
smaller crystal. In the following discussion all refer-
ences will be to operations performed using the latter
data set with the exception of those involving the loca-
tion of the nonhydrogen atoms which utilized the data
set collected with copper radiation.

The final values for the cell dimensions were obtained
by a least-squares analysis® of the setting angles of
39 high-order reflections which had been carefully
centered on a Picker four-circle diffractometer using
Zr-filtered, Mo Ka radiation (A 0.7107 A). These
parameters are ¢ = 13.250 (1), b = 25496 (2), ¢ =
16.852 (1) A8 = 125.4 (2)°.

The crystal used for the collection of the final inten-

(9) A.A. Hock and O. S. Mills, Acta Crystallogr., 14, 139 (1861).

(10) R. P. Dodge, O. 8. Mills, and V. Schomaker, Proc. Chem. Soc., 380
(1963)

{11) R.P. Dodge and V. Schomaker, J. Organometal. Chem., 8, 274 (1063).

(12) P. B. Hitchcock and R. Mason, Chem. Commun., 242 (1967).

(18) Y. Degreve, J. Meunjer-Piret, M. van Meersche, and P. Piret, Acia
Crystallogr., 28, 119 (1967).

(14) J. T. Mague, J. Amer. Chem. Soc., 91, 3983 (1969).

(15) “‘International Tables for X-Ray Crystallography,” Vol. 1, Kynoch
Press, Birmingham, England, 1962,

(16) All computations were performed on an IBM 7044 computer at the
Tulane University Computer Laboratory. Local programs were used ex-
cept for those noted here: GseT-4, C. T. Prewitt (diffractometer settings);
ceLL, B. L. Trus (refinement of unit cell dimensions); ORION (data reduction),
BLSA-H (modification of the Gantzel-Sparks—Trueblood uvcars-1 (ACA Pro-
gram No. 317) for block-diagonal least-squares refinement and distance—
angle caleulation), C. J. Fritchie Jr.; orams, W. R. Busing (absorption cor-
rections); orTEP, C. K. Johnson (graphical illustrations).
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sity data was a column of length 0.3 mm elongated
along a. The ten prismatic faces of the crystal were
identified by optical goniometry as all members of the
forms {010}, {021}, and {011}. They ranged in width
from 0.03 to 0.1 mm. The ends of the crystal were
somewhat irregular and were assumed to be members
of the form {100} for the purposes of the absorption
correction. The crystal was sealed in a nitrogen-filled,
thin-walled glass capillary since preliminary observa-
tions showed a tendency toward decomposition pre-
sumably through loss of solvent of crystallization. It
was mounted such that the crystallographic ¢ axis was
parallel to the ¢ axis of the goniostat. The data were
collected at rcom temperature on a card-controlled,
Picker four-circle diffractometer using Zr-filtered, Mo
Ko« radiation and a takeoff angle of 5.3°. The inte-
grated intensities were measured with a scintillation
counter employing a pulse-height analyzer set to admit
about 909, of the Mo Xa pulse distribution. The
moving-crystal, moving-counter scan technique was
employed with a 28 scan of 2° centered about 26.1cq.
The scan rate was 1°/min and background counts of
20 sec were made at each scan limit. Three standard
reflections were monitored approximately every 4 hr
throughout the course of the data collection and showed
evidence for crystal decomposition. This decomposi-
tion did not result in more than a 109, diminution in
the intensities of the standards and could be adequately
treated by a linear correction based on the successive
values found for the integrated intensities of the stan-
dards. Coincidence losses were found to affect only
three reflections for which the counting rate exceeded
10,000 cps. These were remeasured at reduced power
and scaled to the remaining data using the same stan-
dard reflections.

The unique quadrant having » > O and (sin §)/x <
0.52 was scanned to yield 4558 independent reflections,
Inspection of the recorder trace showed that overlap
affected the intensities of about 150 reflections, and
since it did not prove feasible to eliminate this problem,
these reflections were omitted. It was also apparent
at this point that owing to the rather small size of the
crystal there were relatively few useful data beyond
(sin 6)/N = 0.45. Therefore only the 3329 unique
reflections within this smaller sphere were considered
further. Raw intensities, I, were obtained from the
diffractometer output with the formula I = CT —
0.5(te/ty)(B1 + Bs) where CT is the total integrated
count obtained in time £, and B; and B, are the back-
ground counts, each obtained in time #,. The stan-
dard deviation of the raw intensity, ¢(/), was estimated
as c(I) = (CT + 0.25(t/t)*(B1 + By + (p)D)"
with p® taken as 0.02. Using the criterion 7 < 2a(J),
034 reflections were rejected as statistically insignificant
and were treated as unobserved. FEach of these re-
flections was assigned a threshold value given by Iy, =
2¢(I). The reflections were then corrected for Lorentz,

(17) T. C. Furnas, ‘Single Crystal Orienter Instruction Manual,” General
Electric Co., Milwaukee, Wis., 1957.
(18) W. R, Busing and H. A, Levy, J. Chem. Phys., 26, 563 (1967)
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polarization, and absorption effects. The linear absorp-
tion coefficient for the compound is 17.8 cm~! for Mo
K« radiation which results in transmission factors
ranging from 0.767 to 0.781.16

Solution and Refinement of the Structure

The structure was refined by a block-diagonal, least-
squares process. Scattering factors for neutral Rh,
Sbh, Cl, C, and F were those tabulated by Cromer and
Waber!® while the values given by Stewart, ef a/.,% were
used for hydrogen. The scattering factors for Rh, Sb,
and Cl included both the real and imaginary parts of
the correction for the effects of anomalous dispersion.2!
The function minimized was ZwA? where A = K‘Fof —
G|F., |Fo| and |F. are, respectively, the observed
and calculated structure factors, K and G are scale
factors (G = 1.0), and w = 1/02(‘Fo’). The standard
deviation in EFO , a(|F|), was taken as a(iFoP)/
2‘F0|. Unobserved reflections were included in the
refinement if Fci exceeded \Fthl.” In the final stages
of refinement, 142 reflections met this criterion and of
these, and only five had |F.] > 1.5/Fw|. The con-
ventional and weighted residuals, R; and R, are de-
fined as Ry = Z:A|/Z|F,| and Ry = (SwA?/SwF.2)"

A three-dimensional, unsharpened Patterson fumnc-
tion was calculated (Cu data) which provided coor-
dinates for the rhodium and antimony atoms. The
remainder of the nonhydrogen atoms were subsequently
located Wy the successive application of least-squares
refinement of the positional parameters followed by a
difference Fourier synthesis. It soon became apparent
that a molecule of dichloromethane of solvation was also
present in the crystal. With all of the nonhydrogen
atoms in the calculation, refinement of positional and
isotropic thermal parameters led to Ry = 0.131. A
difference Fourier map calculated at this point revealed
pronounced amnisotropy in the motions of the heavy
atoms, the trifluoromethyl groups, and the solvent
molecule. Refinement was therefore continued with
the introduction of anisotropic thermal parameters of
the form exp[——(Bnhz + Bzgkz + 333[2 + Blzhk + Blahl
—+ Bgskl) }for these atoms. Several more cycles of refine-
ment led to convergence at Ry = 0.101. In addition
to high standard deviations in the calculated bond
lengths, the thermal ellipsoids for some of the fluorine
atoms had assumed quite unrealistic dimensions. Dif-
ference Fourier syntheses calculated in the planes of the
fluorine atoms of each trifluoromethyl group using
structure factors which did not contain contributions
from these atoms clearly showed a considerable degree
of anisotropic motion for all the fluorine atoms. How-
ever it did not prove possible to account adequately for
this in terms of any feasible librational, hindered rota-
tional, or oscillatory motion of the CF; group as a
whole.

At this point it was evident that no further informa-

(19) D. T. Cromer and J. T. Waber, Acta Crystallogr., 18, 104 (1965).

(20) R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys.,
42, 3175 (1965).

(21) D. T. Cromer, Acta Crystallogr., 18, 17 (1965).

(22) J. T. Mague, Inorg. Chem., 8, 1957 (1969).
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tion could be gained from the copper data, and a new
set of intensities was collected as mentioned above.
Using the molybdenum data, refinement was continued
with the unrealistic fluorine thermal parameters being
manually reset to more redsonable values on the as-
sumption that, despite the considerable motion appar-
ent from the difference maps, the refined thermal pa-
rameters were probably in error at this point due to the
poor quality of the original data. After 12 cycles, R,
had dropped to 0.059. Difference Fourier syntheses
computed in the planes of the phenyl groups revealed
reasonable positions for most of the hydrogen atoms
(peak heights 0.4-0.6 e—/A%) as well as some equally
large features attributable to uncorrected thermal mo-
tion. It was therefore decided to include the contribu-
tions of the hydrogen atoms to the scattering as fixed
quantities using their calculated positions (C-H =
1.0 A). TIsotropic temperature factors equal to 1.1
times that of the attached carbon atom were used and
the positional and thermal parameters were recalculated
and manually reset after each cycle. Following this
R; and R, were 0.055 and 0.056 and after 14 more cycles
converged at the common value of 0.044.

The use of the new data set did not significantly
improve the appearance of the thermal ellipsoids of the
fluorine atoms and we can only conclude that the ellip-
soidal model is not an adequate description of the actual
motion of these atoms. Again, attempts at treating the
thermal motion in terms of a movement of the CF;
group as a whole were unsuccessful. However as can
be seen from Figures 1 and 2, the relative sizes of the

Figure 1.-—A perspective view of the RhCI(Sb(CsH;)3):Cs(CF;)e
molecule with the phenyl groups omitted for clarity.

Figure 2.—Schematic representation of the F---F contacts
around the rhodiacyclopentadiene ring.

derived ellipsoids parallel the number of intramolecular
F---F contacts even though the actual magnitudes have
little physical significance. A final difference map
showed no features other than those attributable to
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uncorrected thermal motion in the vicinity of the phenyl
and trifluoromethyl groups.

An analysis of the weights over ranges of |F,| and
(sin 8)/X indicated that the absolute weights were too
large, a fact also reflected in the final value of 1.71 ob-
tained for the standard deviation of an observation of
unit weight. In addition, the strong reflections were
being somewhat downweighted but neither factor was
judged to be serious enough to justify alteration of the
weighting scheme. The final values of 'F(,| and F, are
presented in Table I. The positional and thermal
parameters obtained from the Jast cycle of least-squares
refinement are listed in Table IT together with their
associated standard deviations as estimated from the
inverse least-squares matrix.

Description of the Structure

The structure consists of discrete, monomeric mole-
cules of the rhodiacyclopentadiene complex interspersed
with molecules of dichloromethane. A perspective
view of the molecule with the phenyl groups omitted
for clarity is given in Figure 1 and the molecular pack-
ing in Figure 3. Tables ITII and IV list interatomic dis-
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in covalent radius between the two elements (~0.2 A24).
Likewise, the Rh—Cl distance compares favorably with
previously reported values.?> The data in Table IV
show that the Sh;-Rh~Sh: unit is not quite linear.
Although this deviation from linearity is significant,
it appears to be simply the result of intramolecular
packing. Both Sb; and Sb, are displaced toward Cl;
and one phenyl group on each (rings 2 and 4) lies almost
directly over the fluorocarbon portion. Moreover,
for both of these phenyl groups, the line joining the
two ortho-carbon atoms is roughly parallel to the mean
plane of the rhodiacyclopentadiene ring. Whenever
possible, the triphenyl pnictides seem to exhibit a
staggered or ‘‘propeller-like’”’ arrangement of the phenyl
groups. Here, such a conformation would occasion
either severe interaction between the phenyl and tri-
fluoromethyl groups or a large bending of the Sh,-Rh-
Sbe unit. On the other hand, the rotation of one phe-
nyl group so that the ortho-carbon line is exactly par-
allel to the plane of the ring would result in significant
interaction between ortho-hydrogen atoms of this and
the other two phenyl groups on the same antimony.
Apparently, here, the conformation adopted is one

Figure 3.—Packing within the RhCI(Sb(CeHs)3):C4(CFy)y - CHeCly crystal viewed perpendicular to [001].

tances and interbond angles, respectively. From
Figures 1 and 3, it is clear that the coordination about
rhodium is that of a distorted trigonal bipyramid
and that the solvent molecules do not interact signifi-
cantly with the metal atoms as has been suggested for
other five-coordinate rhodium complexes.?® The clos-
est approach of a solvent molecule to a metal atom,
5.86 A, occurs between Cl, and the Rhat (1 — x, 1/, —
v, /2 + 2). No other intermolecular distances are
tabulated as none is shorter than normal van der
Waals contacts. The coordination about rhodium
has very nearly C,y symimetry with the antimony atoms
of the two triphenylstibine groups occupying axial
positions and a chlorine atom (Cl;) and the 1 and 4
carbon atoms of the cis-1,2,3,4-tetratrifluoromethyl-
1,3-butadienylene moiety occupying equatorial posi-
tions. The two independent Rh-Sb distances (Table
II1) are equal within experimental error. Although
there appear to be no data available for a direct com-
parison, they agree well with the value of ~2.6 A pre-
dicted from previously observed Rh-As distances®
in similar compounds after correcting for the difference

(23) J. T. Mague and G. Wilkinson, J. Chem. Soc., A, 1736 (1966),

which minimizes both types of contacts as well as the
bending of the heavy-atom unit.

Although some preliminary studies have previously
been made on triarylstibines and triarylstibine sul-
fides,® this appears to be the first instance of a com-
plete structural determination involving one of these
species. Unfortunately the constraints placed upon
the orientations of the phenyl rings render inappro-
priate a detailed analysis of the geometry of the tri-
phenylstibine molecule. Nevertheless, the angles about
antimony (Table IV) are comparable to those found
previously in (C¢Hs)sP (average value, 103.0 (2)°)2
and (p-CH;sCsH,)sAs (average value, 102 (2)°).2 The
six Sb—C distances are equal within experimental error,
the average value being 2.113 (10) A. This compares
favorably with the value of 2.13 A found for the Sn—~C
bond in (p-CH3CeH,4)sSn?® and with the value of 1.96
(5) A found for the As—C bond in (p-CH;CsH,);As?

(24) L. Pauling, “The Nature of the Chemical Bond,” 3rd ed, Cornell
University Press, [thaca, N. Y., 1960, Table 7-2.

(25) W. B. Pearson, Ed., “‘Structure Reports,” N.V,A. Oosthoek’s Vit-
gevers Mij Utrecht, 1953, Vol. 17, p 726.

(26) J.J. Daly, J. Chem. Soc., 3799 (1964).

(27) J. Trotter, Can. J. Chem., 41, 14 (1063).

(28) 1. G. Ismailzade and G. 8. Zdanov, Zk. Fiz. Khim., 27, 550 (1953),
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OBSERVED AND CALCULATED STRUCTURE AMPLITUDES (X 10,
IN ELECTRONS) FOR RhCI(Sb(CeH;)3):Ca(CFy)y CH.Cly*
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after correction for the difference in covalent radius being 1.383 (16) A. The root-mean-square deviation
between arsenic and antimony. All six phenyl rings from the average is 0.023 A indicating that the esti-
are planar within experimental error. The C-C dis- mated standard deviations are reasonably accurate.
tances within the rings range from 1.443 (21) (Car The average C~C-C angle for the rings is 120.0 (11)°
Cp;) to 1.340 (19) A (Cy—Ca) with the average value  with the range being from 122.4 (12) (Cy~Cyu-Cy) to
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e The data are separated into groups having the
‘Fc! > [Fthl (see text) are indicated by a negative F.

116.8 (13)° (C4~Cy—Cu). The root-mean-square devi-
ation from the averageis 1.0°.

The C-Cl distances in the dichloromethane molecule
are equal and compare well with tabulated values.?®
The Cl;-Cy-Cl; angle here is slightly smaller than has
been reported previously?® but the difference is prob-
ably not significant. The hydrogen atoms could not
be unequivocally located, presumably as a result of
large amplitudes of vibration.

The most interesting feature of the present molecule
is the rhodiacyclopentadiene ring. As mentioned ear-
lier, this is the first structural characterization of this
type of compound which does not have a second metal
atom associated with the ring. In the previous deter-
minations, the M-C bonds in the MC, moiety were
found to be equal as were the C~-C bonds but it was
not possible to determine whether this was an inherent
feature of this moiety or was due to the postulated =
bonding between the other metal atom(s) present and
thering.

The ring consisting of Rh, Ci;, C; Cs and G is
essentially planar with the distances (A) of the various
atoms from the weighted least-squares plane® (oplane

(29) ‘““Tables of Interatomic Distances and Configuration in Molecules
and Ions,” Special Publication No. 11, The Chemical Society, London, 1958,
p M108.

(30) The equation of the plane is:
2.171 = 0, where X, ¥, and Z are orthogonal coordinates (in A).
formations from fractional monoclinic coordinates (x, v, 3) are:
cgcosB; ¥V =by; Z = ¢zsing.
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h and E listed above each one. Unobserved reflections for which

0.02 A) being Rh, 0.001 (1); Ci, 0.003 (11); C,
—0.013 (12); Cs 0.020 (12); Cs —0.016 (11). Al-
though the deviations from planarity appear statisti-
cally significant,? they are unlikely to be significant
chemically and can be accounted for by packing con-
siderations (vide infra). The distances (A) of other
atoms of interest from the mean plane of the ring are:
Cly, 0.022 (3); Cs, 0.011 (13); Cs, 0.007 (18); C;, —0.016
(17); Cs, —0.078 (14). It is thus apparent that this
whole portion of the molecule is very nearly planar as
would be expected.

The Rh-C; (2.000 (10) A) and Rh—~C,4 (1.964 (11) A)
distances are different to an extent which is only mar-
ginally significant (A/¢ 3.3) and there does mnot
appear to be any compelling reason to consider it to be
real, The average value of 1.98 (1) A is essentially
the same as that found for the Rh—C(carbonyl) dis-
tance in mC;Hz;Rh(CO)(CoF:)I (1.97 (3) A)® even
before correction for the difference in radius between
sp? and sp carbon atoms (~0.03 A). It is also possibly
shorter than the Rh-C(perfluoroethyl) distance in
r-C:H:Rh(CO)(CaF5)I (2.08 (3) A) after correction
for the difference in radius between sp? and sp® carbon
atoms (~0.03 A). Although this latter Rh—~C bond is

(31) The results of a x? test show that rigorous planarity is only significant
at an 0.02 confidence level: G. H. Stout and L. H. Jensen, “X-Ray Struec-
ture Determination: A Practical Guide,” Macmillan, New Vork, N. V.,
1968, Section 18-7.

(32) M. R. Churchill, Inorg. Chem., 4, 1734 (1965).
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TaBLE 11
FinaL PosiTioNAL AND THERMAL PARAMETERS® FOR RhCI(Sb(C¢H;)3).Ca(CF;3)y- CH,Cl,
Atom” x ¥ z Bn® B Bss Biz B Bas
Sby 0.21900 (6) 0.12769 (3) 0.28364 (5) 5.74 (6) 1.19(2) 3.71(4) 0.46 (5) 5.38(6) 0.024)
Rh 0.41720 (7) 0.10382 (4) 0.29561 (6) 5.64 (6) 1.04(2) 3.53(4) 0.20(6) 5.14(7) —0.05(4)
Sb, 0.61453 (6) 0.07705(3) 0.30867 (5) 5.82(5) 1.17(2y 3.90(3) 0.18(5) 5.86 (6) 0.11 (4)
Cl 0.4014 (2) 0.0174 (1) 0.3411 (2) 9.2(2) 1.3(1) 7.5(2) 0.4 (2) 11.3(2) 1.1(2)
Fs 0.2486 (7) 0.0694 (3) 0.0960 (5) 25.6(9) 3.6(2) 6.6 (4) —12.7 (8) 14.6 (8) —5.3(5)
Fi 0.3404 (7) 0.1011 (4) 0.0448 (5) 24 .4 (7) 5.1(2) 11.1(4) —9.5(7) 26.5(7) —7.3(5)
Fis 0.1820 (9) 0.1375 (4) 0.0160 (6) 22.4 (12) 5.3 (3) 7.4(8) 12.0(9) —7.7(14) —4.1(8)
Fer 0.3726 (8) 0.2052 (4) 0.0388 (5) 36.3 (11) 4.6(3) 13.0(4) 8.3(9) 31.7(9) 8.2(6)
Fg 0.4542 (10) 0.2623 (4) 0.1266 (6) 69.0 (14) 3.0(2) 23.7(5) 0.1(10) 67.100) 4.1(6)
Fes 0.2542 (9) 0.2491 (5) 0.0649 (7) 44.9 (10) 13.56(4) 29.8(7) 42.2(10)  59.6 (12) 34.1(8)
Fn 0.6094 (8) 0.2793 (4) 0.3307 (10) 37.9(9) 2.8(2) 66.3(13) ~—13.8(8) 84.3 (14) —16.3(9)
Fr 0.5112 (11) 0.2834 (4) 0.3891 (7) 46.3 (16) 2.2(2) 19.1(8) —9.2(10) 32.7(16) —5.5(7)
Fu 0.4174 (10) 0.3009 (4) 0.2533 (8) 48.4 (15) 1.5(2) 23.7(8) 4.7(9) 94 .4 (14) 2.7(6)
Fy 0.5833 (6) 0.1326 (3) 0.4990 (4) 19.2 (8) 2.4 (2) 3.2(3) —1.0(8) 6.4 (7) —0.44)
Fs» 0.6755 (7) 0.1983 (4) 0.4987 (5) 16.8 (8) 6.8(3) 6.4 (4) —13.0(8) 7.0(9) —2.9(8)
Fes 0.5080 (7) 0.2047 (4) 0.4893 (5) 23.7(8) 4.4(2) 7.3(4) 6.9 (7) 16.1 (7) —1.4(5)
Cs 0.2824 (10) 0.1141 (5) 0.0839 (8) 9.8(11) 2.2(3) 5.0(6) —2.0(10) 6.7 (11) —-1.2(7)
Cs 0.3542 (13) 0.2343 (8) 0.0995 (9) 30.3 (158) 5.1(6) 12.8(7) —8.0(12) 33.2(13) —6.6(10)
Cy 0.5153 (13) 0.2710 (7) 0.3134 (10) 29.4 (19) 3.2 (4) 9.4 (9) 6.8 (15) 18.9(17) 0.0 (10)
Cs 0.5670 (10) 0.1779 (5) 0.4567 (9) 11.9 (11) 2.2(3) 6.4 (6) 0.4 (10) 10.4(11) —0.6 (8)
Cy 0.7450 (14) 0.3790 (8) 0.2562 (11) 17.7 (16) 5.3(6) 10.1(10) 1.9(17) 14.4Q17) —-1.9(12)
Cly 0.7935 (4) 0.3973 (3) 0.3743 (4) 30.8(5) 5.8(2) 21.2(3) —5.2(8) 39.9 (5) —6.1(4)
Cl; 0.8786 (5) 0.3578 (2) 0.2660 (4) 36.2 (6) 4.4(2) 21.1(3) —0.2(5) 41.6 (5) —2.1(4)
Atom x kY 2 B, Az Atom x ¥ z B, Az
G 0.3591 (8) 0.1454 (4) 0.1753 (6) 3.0(3) Ce 0.8864 (9) 0.0587 (5) 0.4814 (7) 4.1(3)
C. 0.3947 (9) 0.1953 (5) 0.1889 (7) 4.3(3) Ces 0.9831 (10) 0.0434 (5) 0.5750 (8) 4.9 (3)
Cs 0.4643 (9) 0.2131 (5) 0.2850 (7) 3.8(3) Cos 0.9589 (9) 0.0253 (5) 0.6401 (7) 4.5(3)
Cy 0.4888 (8) 0.1734 (4) 0.3487 (6) 3.1(3) Ces 0.8388 (9) 0.0228 (5) 0.6110 (7) 4.4 (3)
Cu 0.2379 (8) 0.1207 (5) 0.4171 (7) 3.3(3) Ces 0.7408 (9) 0.0379 (5) 0.5158 (7) 3.6(3)
Ciz 0.3414 (9) 0.0968 (5) 0.4975 (7) 4.2(3) Hipd 0.4109 0.0845 0.4949 4.7
Cis 0.3475 (10) 0.0902 (5) 0.5830 (8) 5.0(3) His 0.4204 0.0716 0.6406 5.5
Cis 0.2550 (10) 0.1088 (5) 0.5879 (8) 5.0 (3) Hy, 0.2626 0.1053 0.6503 5.5
Cis 0.1540 (10) 0.1316 (5) 0.5101 (8) 4.8(3) His 0.0852 0.1436 0.5141 5.2
Cis 0.1435 (9) 0.1390 (5) 0.4221 (7) 4.4 (3) Hie 0.0693 0.1571 0.3648 4.8
Cy 0.1449 (9) 0.2041 (3) 0.2361 (7) 3.8(3) H,, 0.2536 0.2378 0.3732 6.8
Cae 0.1868 (11) 0.2444 (6) 0.3023 (8) 6.2 (4) Hos 0.1661 0.3239 0.3194 8.3
Cos 0.1366 (12) 0.2947 (6) 0.2710 (10) 7.64) Hos 0.0113 0.3399 0.1511 8.2
Cay 0.0466 (12) 0.3088 (6) 0.1735 (10) 7.5(4) Hos —0.0610 0.2721 0.0371 8.6
Cos 0.0054 (12) 0.2649 (6) 0.1079 (10) 7.8(4) Haye 0.0277 0.1838 0.0902 6.1
Cas 0.05865 (10) 0.2128 (6) 0.1389 (8) 5.6 (4) Hje 0.1488 0.0218 0.1675 4.3
Ca 0.0591 (9) 0.0813 (5) 0.1877(7) 3.6(3) Hay —0.0340 —0.0309 0.0652 4.5
Cae 0.0669 (9) 0.0340 (3) 0.1511 (7) 3.9(3) Has —0.2270 —0.0023 0.0259 5.4
Css —0.0399 (9) 0.0033 (5) 0.0913 (7) 4.1(3) Hss —0.2420 0.0789 0.0875 6.4
Ca —0.1510 (10) 0.0197 (5) 0.0687 (8) 5.0(3) Hjs —0.0606 0.1319 0.1908 5.0
Css —0.1596 (11) 0.0669 (6) 0.1046 (8) 5.9 (4) Ha, 0.8035 0.1676 0.4039 5.6
Cas —0.0541 (10) 0.0979 () 0.1646 (8) 4.6(3) Has 0.8898 0.2354 0.3583 6.8
Ca 0.6918 (8) 0.1342 (4) 0.2688 (7) 3.3(3) Hag 0.8110 0.2422 0.1900 6.3
Ce 0.7757 (10) 0.1698 (5) 0.3346 (8) 5.1(3) Hys 0.6707 0.1813 0.0758 5.9
Cus 0.8255 (11) 0.2103 (6) 0.3085 (8) 6.2 (4) Hy 0.5866 0.1141 0.1202 5.6
Cus 0.7809 (11) 0.2133 (8) 0.2115(8) 5.8 (4) H;, 0.7676 0.0252 0.2437 4.6
Cy 0.6983 (10) 0.1786 (5) 0.1450 (8) 5.4 (4) H;s 0.7496 —0.0500 0.1500 5.7
Cus 0.6502 (10) 0.1390 (5) 0.1709 (8) 5.1(3) Hiq 0.5819 —0.1088 0.0857 5.8
Cs 0.5973 (9) 0.0122 (5) 0.2236 (7) 3.6(3) H;s 0.4188 —0.0901 0.1036 5.7
Cse 0.6935 (9) 0.0016 (5 0.2134 (7) 4.2(3) H;g 0.4318 —0.0155 0.1925 3.9
Css 0.6835 (10) —0.0430 (5) 0.1600 (8) 4.9(3) Hg 0.9048 0.0717 0.4351 4.5
Css 0.5860 (10) —~0.0767 (5) 0.1216 (8) 5.2(3) Hags 1.0709 0.04565 0.5959 5.3
Css 0.4919 (10) —0.0860 (5) 0.1328 (8) 5.2(3) Hes 1.0289 0.0141 0.7077 4.9
Css 0.4992 (9) —0.0223 (5) 0.1840 (7) 3.6(@3) He; 0.8206 0.0101 0.6576 4.8
Ca 0.7652 (8) 0.0561 (4) 0.4516 (6) 3.1(3) Hes 0.6529 0.0354 0.4944 3.9

e The estimated standard deviation in the least significant figure(s) is given in parentheses following the value of each parameter.
None is given for the hydrogen atoms as these were not refined. ° The numbering system corresponds to that shown in Figure 1.
The dichloromethane molecule consists of the atoms Cy, Cly, and Cl;. The subscripts attached to the remaining carbon atoms give the
number of the phenyl ring of which it is a part (first digit) followed by the number of the atom in the ring. Rings 1-3 are attached to
Sb; while rings 4-6 are attached to Sby. The atoms in each ring are numbered sequentially around the ring with atom 1 being the one
bound to antimony (4i.e., Ca is the carbon atom of ring 2 which is attached to Shy). The phenyl hydrogens are numbered to correspond
to the carbon to which they are attached. ¢ Anisotropic thermal parameters (X 10%). ¢ Hydrogen atom positions as calculated on the
assumption of a C—H distance of 1.0 A. Noesd'sare given as these parameters were not refined.



A RHODIACYCLOPENTADIENE COMPLEX

TABLE III
INTERATOMIC DISTANCES (A)

Rh-8b, 2.586 (1) Cs—Fez 1.329 (20)
Rh-8b, 2.584 (1) Cg-Fes 1.138 (18)
Rh-Cl; 2,381 (3) Co-Fnt 1.122 (18)
Rh~C, 2.000 (10) Cr—Fyy 1.346 (17)
C-C, 1.330 (16) Co-Frs 1.324 (19)
Co-Cy 1.388 (14) Cs—Fs1 1.307 (15)
Cs-Cy 1.367 (15) Cys—Fs, 1.283 (14)
Rh-C, 1.964 (11) Cys—Fgs 1.372 (14)
Ci-Cs 1.486 (15) Sb—Cii® 2.120 (9)

Co—C 1.611 (19) Sbi~Cyy 2.116 (12)
Cs-Cr 1.577 (22) Sbi—Ca 2.118 (10)
Cy—Cy 1.481 (14) Sby-Cyy 2.106 (10)
CsFa 1.284 (15) Sby—Cay 2.111 (11)
Cs—Fey 1.314 (13) Sby-Cqy 2.106 (9)

Cs~Fs3 1.285 (15) Co—Cl 1.757 (16)
Cs—Fa 1.396 (18) Cy—Cly 1.765 (16)

@ Estimated standard deviation in least significant figure(s)
given in parentheses after each value. ? See Table II, footnote b,
for explanation of numbering system for this and subsequent
entries.

TaBLE 1V
INTERBOND ANGLES (DEG )*

Sbi~-Rh-Sby 178.25(4) Cy—Ce—Fos 116.4 (3)
Sbi-Rh~C4 91.2(3) Fg—CeCe2 88.3 (12)
Sbi-Rh-C, 91.5(3) Fou~Ce—Fes 109.2 (16)
Sb~Rh-Cl; 88.08 (7) Feo—Cs~Foz 126.1 (18)
Sb,~Rh~Cly 90.18 (7) Cy—Cr-Fr; 118.0(13)
Sby~Rh-C4 90.3 (3) Ci—Ci-Fr 105.2 (11)
Shy-Rh-C, 89.8(3) Cs—Cr-Frs 104.7 (12)
Cl,-Rh~C, 139.7 (3) Fu—Cr-Fn 111.3 (15)
ChL-Rh-C, 143.1 (3) Fuy~Cr-Frs 122.1 (16)
C~Rh-C, 77.2 (4) Fro-Cr—Fu3 91.3 (12)
Rh-C-C, 116.4 (7) Cy—Cs~Fy 112.0(9)
Rh~-C—-Cs 112.9(7) Cy—Cy—Fs, 117.4 (11)
C:—Ci—-C, 130.7 (9) C4—Cs—Fis 112.2(9)
Ci—Co—Cs 116.1 (9) Fa~Cs—Fae 106.5 (10)
C—Co-Cs 122.5 (11) Fg—Cs-Fs 100.0 (8)
Ce—Cr—Cs 121.4 (12) Fy-Cs—Fas 107.0(9)
C—-Cs-Cy 111.4 (10) Rh-Sb;—Cyi? 114.5(3)
Cy—C3-C4 122.2 (10) Rh-Sb;—Cy 118.1(3)
Cr~Cs~Cy 126.2 (9) Rh-8b;~Ca 116.4 3)
Cs—-Csi—Rh 118.8 (7) Cy—Shi—-Cy 102.6 (7)
Ci—Ci-Cs 125.6 (10) Cu—Sbi—Ca 102.0 (6)
Cs-Cs-Rh 115.6 (7) Cy—Sbi—Ca 100.9 (7)
C—Cs~Fs 113.8 (10) Rh-Sbp—Cyu 116.6 (3)
C~C:—Fse 114.2 (9) Rh-Shy-Cs; 116.6 (2)
Ci—-C:-Fss 113.3 (10) Rh-Sby—Cq 113.5(3)
Fsu-Cs~Fi 102.5 (8) Cyu—Sbh—Cs 101.8 (6)
F3;—Cs—Fss 106.1 (9) C41~Sbe-Car 103.2 (7)
Fer—Cs—Fss 106.0 (11) Cot—Sb~Ca 103.4 (6)
Cy—Ce¢~Fa 104.6 (12) Cl;-Cy¢—Cls 107.1(8)
Cy—Cs-Fgo 106.8 (13)

o The estimated standard deviation of the least significant
figure(s) is given in parentheses. ® See Table II, footnote b,
for explanation of the numbering system for this and subsequent
entries.

formally a simple ¢ bond involving an sp® carbon
atom, it has been suggested that the observed bond
length is shorter than would be expected on this
basis. Support for a degree of rehybridization of the
carbon atom to accommodate Rh—C multiple bonding
is found in the pattern of angles about this carbon atom.
However it was also pointed out that the shortening of
the bond could be due to orbital contraction on the
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metal, and in the absence of a reliable value for the
radius of Rh(III) in these situations no firm conclusion
as to the amount of = character (if any) in the bond
could be made.®? Essentially the same conclusion was
reached by Churchill and Mason in a subsequent dis-
cussion of transition metal-perfluoroalkyl bonds.??
In the present case, on the other hand, there is a =
system present in the fluorocarbon portion of the mole-
cule which is ideally oriented for d7—p= overlap and the
short Rh—C distances are certainly in accord with this.
Further support for Rh~C multiple bonding is based
on a comparison of the carbonyl stretching frequencies
observed for Rh(CO)CI(Sb(CsHs)s)2Cs(CF3)s* and the
similar complexes RhCL(CO)(P(CsH;),):R (R = Ce-
H;, CH;, CHj).% In the latter series, vg=o is 2072
cm™? for the phenyl complex whereas for the methyl
and ethyl analogs it occurs at 2062 and 2060 cm™,
respectively. Thus, the complex with the organic
group capable of w-back-bonding shows the higher
carbonyl stretching frequency. For the carbonyl
derivative of the fluorocarbon complex, rvo=0 is 2096
em™! indicating an even greater competition by the
organic group for metal dr= electrons. The same con-
clusion is also reached when the °F nmr spectra of the
metallocycle and its carbonyl derivative* are compared.
In the former a single complex resonance is observed
for the two trifluoromethyl groups closest to the rho-
dium while in the latter, these groups, having become
nonequivalent, give rise to two complex resonances
which are both at lower fields than in the parent com-
plex. Again, = interaction between the metal and the
remainder of the ring is consistent with these observa-
tions.

An inspection of the C-C bond lengths in the re-
mainder of the ring (Table IIT) shows that a considera-
ble degree of = delocalization occurs over the four-
carbon portion. The Ci—C; and C,-C; distances are
significantly different (A/¢ = 3.8) whereas the dis-
tances C;—C, and C3—C,4 as well as Cp-Cy and Cy~Cy are
equivalent at our level of accuracy. There does not
appear to be any reasonable chemical explanation for
the asymmetry of the ring and it may arise simply from
packing considerations. (One explanation which could
eliminate both this problem and that of the difference
in the Rh-C distances is that C, is slightly misplaced
but there is no evidence from either difference maps or
thermal parameters that this is the case.) We con-
clude, therefore, that the C-C distances in the ring are
substantially equal, and in view of our earlier remarks
concerning the metal—ring = donation, the actual
electronic structure is probably somewhere between the
extremes

RE ¢ T and Rh’g'jj;.T

Cc=C Koo
A similar conclusion has been reached in discussions
of the electronic structures of a variety of metal com-

(33) M. R. Churchill and R. Mason, 4dv. Organometal. Chem., B, 93
(1967).

(34) M. C. Baird, J. T. Mague, J. A. Osborn, and G, Wilkinson, J. Chen.
Soc., 4, 1347 (1967).
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plexes of ‘‘butadiene-like”’ moieties.?® Certainly, the
Co—C; distance is significantly shorter than the corre-
sponding C-C distance in butadiene (1.483 (10) A)#
and cyclopentadiene (1.46 (4) A)® indicating that the
true description is closer to the latter extreme.

An examination of the C(ring)-C(trifluoromethyl)
distances shows that Ci-C; and Cy—Cs are equivalent
with an average length of 1.484 (15) A. Likewise
Cy-Cs and C3~C; are equivalent, but their average
length, 1.594 (21) A, is significantly longer. The pri-
mary reason for this difference is most likely to be the
considerably higher uncertainty in the positions of Cs
and C; as compared to C; and Cs (Table 1I). Similar
difficulty in accurately locating the carbon atoms of
trifluoromethyl groups has been experienced previ-
ously with the result that the reported distances in-
volving these atoms vary widely. =% In the com-
pound 7-C;H;RhCs(CFj)s, the C(ring)-C(trifluoro-
methyl) distances vary from 1.482 (25) to 1.550 (31) A
and within the limits of error of that determination®
are the same as those found in the present case.

Figure 2 presents a schematic representation of the
F---F contacts in the molecule. Within the trifluoro-
methyl groups containing C; and Cs these are all ~2.1
A, which is less than a normal van der Waals contact
but comparable to values found in other cases.®? .3
Within the other two trifluoromethyl groups, the range
is considerably greater with some being as low as 1.9 A.
However this is mainly a result of large uncertainties of
position due to the extremely large amplitudes of vi-
bration for the fluorine atoms in these two groups.
The F---F contacts between adjacent groups are, on
the average, somewhat shorter than observed previ-
ously in similar compounds,¥~3% but none is substan-

(35) Seeref 29, p M164.

(36) Seeref 29, p M180.

(37) M. R. Churchill and R. Mason, Proc. Roy. Soc., Ser. A, 292, 71
(1966).
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tially shorter than normal van der Waals contacts.
As mentioned earlier, one can correlate the relative
sizes of the derived thermal ellipsoids for the fluorine
atoms (Figure 1) with these contacts. Thus Fe and
Fyy are seen to be the most unrestricted and in fact are
those with the largest thermal ellipsoids. Further, the
deviations of the atoms C—C;s from the mean plane of
the metallocycle can be regarded as the result of the
minimization of F---F contacts between trifluoromethyl
groups.

The YF spectrum of the complex which has been
referred to above shows two broad and complex reso-
nances at —9.8 and —12.7 ppm (benzotrifluoride, in-
ternal standard). The one at lower field has been
assigned to the pair of trifluoromethyl groups adjacent
to the metal (on C; and C;) while the other is due to the
pair on the outer end of the ring. The present study
shows that the two groups in each pair are in fact very
nearly equivalent. The broad, complex appearance
of the signals suggests that the “‘interlocking’’ of the
four CF; groups around the ring persists in solution thus
rendering the fluorines within each group nonequiva-
lent. By contrast the complex [Rh(vdiars):(C4Fs)]-
BF#  (vdiars = cis-(CsH;)AsCH=CHAs(CsH;)2)
which contains one molecule of coordinated hexafluoro-
but-2-yne and which could be expected not to contain
similarly hindered trifluoromethyl groups shows a single
sharp signal for these fluorine atoms in its F nmr spec-
trum.
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