Contribution from the Department of Chemistry, University of Colorado, Boulder, Colorado 80302

The Preparation and Properties of 2- and μ -(Halosilyl)pentaboranes(9)

BY THOMAS C. GEISLER AND ARLAN D. NORMAN

Received March 16, 1970

The reactions of 2-SiH₃B₅H₈ and μ -SiH₃B₅H₈ with BCl₃ and BBr₃ produce 2-(ClSiH₂)B₅H₈, μ -(ClSiH₂)B₅H₈, and 2-(BrSiH₂)B₅H₈, in high yield. The 2-(ClSiH₂)B₅H₈ and 2-(BrSiH₂)B₅H₈ can also be prepared from the aluminum halide catalyzed reactions of 2-SiH₃B₅H₈ with HCl and HBr, respectively. In all cases, halogenation occurs exclusively at the silicon atom. The new compounds have been characterized by elemental analyses and infrared, ¹¹B nmr, ¹H nmr, and mass spectral data. Deuterium exchange between DCl and 2-SiH₃B₅H₈ or 2-(ClSiH₂)B₅H₈, catalyzed by aluminum chloride, occurs at the apical, B(1), terminal position.

Introduction

Several examples of compounds containing boranes bonded to a silane or alkylsilane moiety have appeared.¹⁻³ However, very little chemistry of these compounds has been reported. Our interest in preparing silylboranes which have reactive functional groups on the silicon atom and in determining the effect of borane substitution on the reactivity of the SiH₃ moiety has led us to examine reactions of 2-SiH₃B₃H₈ and μ -SiH₃B₅H₈ with a variety of halogenating agents. During this study we have prepared and characterized the first examples of (halosilyl)pentaboranes: 2-(ClSiH₂)B₅H₈, 2-(BrSiH₂)B₅H₈, and μ -(ClSiH₂)B₅H₈. The results of this work are given below.

Experimental Section

Apparatus and Techniques .--- All work was carried out in a standard high-vacuum system.^{4,5} Vapor pressure vs. temperature data were obtained using an all-glass immersible tensimeter which had been predried with SiH3Br for a period of 12 hr. Samples were frozen to -196° between pressure measurements to minimize decomposition. Melting points were obtained by the Stock magnetic plunger technique. Infrared spectra were obtained with Beckman IR-12 and Perkin-Elmer Model 21 spectrometers on gaseous samples in a 10-cm cell fitted with KBr windows. Proton nuclear magnetic resonance spectra were recorded at 60 MHz using a Varian Associates A-60A spectrometer. Proton chemical shifts are reported relative to internal $(CH_3)_4Si$. Boron-11 spectra were obtained with a Varian HA-100 spectrometer equipped with standard probe and radiofrequency unit accessories. Boron-11 chemical shifts were measured relative to external $B(OCH_3)_3$ ($\delta - 18.1$ ppm from $BF_3 \cdot O(C_2H_5)_2$). Chemical shifts are reported relative to $BF_3 \cdot O(C_2H_5)_2$. Mass spectra were obtained on Varian MAT CH-5 and CH-5 and CH-7 spectrometers. Samples were introduced into the instrument in sealed glass capillaries.

Materials.—Bridge $(\mu$ -) and 2-SiH₈B₅H₈ were prepared as described previously.² Hydrogen bromide and BCl₃ were purified by fractional condensation. Deuterium chloride was prepared by the hydrolysis of SiCl₄ with D₂O.⁶ Aluminum chloride and AlBr₈ (Matheson Coleman and Bell) were sublimed directly into the reaction vessel prior to use. Boron tribromide (Alfa Inorganics) was used without further purification.

Syntheses of (Halosilyl)pentaboranes. (A) $2-(ClSiH_2)B_5H_8$.

(1) D. F. Gaines and T. V. Iorns, J. Amer. Chem. Soc., 89, 4249 (1967).

(2) D. F Gaines and T. V. Iorns, *ibid.*, **90**, 6617 (1968).

—Boron trichloride (0.97 mmol) and 2-SiH₃B₅H₈ (3.34 mmol) were condensed at -196° into a Pyrex tube and allowed to react at 0° for 30 min with occasional shaking. Volatile materials from the reaction were removed and passed through a -95° trap into a -196° trap. The -196° trap collected B₂H₈ containing traces of BHCl₂ and B₂H₅Cl (0.53 mmol total; confirmed by ir spectrum).^{7,8} High-vacuum column distillation⁹ of the products in the -95° trap yielded 2-SiH₃B₅H₈ (0.59 mmol) and 2-(ClSiH₂)B₅H₈ (2.62 mmol). The melting point of 2-(ClSiH₂)B₅H₈ was found to be $-60.1 \pm 0.3^{\circ}$. The solution molecular weight in pentane was 130; calcd, 127.7. A sharp cutoff in its mass spectrum was observed at m/e 132; calcd for ³⁷Cl³⁰Si¹¹B₅H₁₀, 132. The vapor pressures, given in Table I,

TABLE I

- V	APOR	PRESSURE	vs.	1 EMPERATURE	DATA

$2-(ClSiH_2)B_5H_8$						
<i>—-P</i> , mm—			P, mm			
Temp, °C	Obsd	Calcd	Temp, °C	Obsd	Calcd	
0.0	0.6	0.7	0.0	1.0	1.0	
5.7	1.1	1.0	5.6	1,6	1.6	
11.8	1.6	1.6	11.1	2.4	2.3	
16.8	2.1	2.3	18.0	3.8	3.7	
23.1	3.4	3.5	23.8	5.4	5.5	
29.6	5.4	5.3	30.1^a	8.0	8.1	
35.9^{a}	7.5	7.7				
31.8^{b}	6.0	6.0				
26.2^{b}	4.4	4.2				
9.5^{b}	1.5	1.4				
0.0 ^b	0.7	0.7				

^{*a*} Above this temperature the rate of decomposition was appreciable. ^{*b*} Pressure observed while decreasing the temperature.

conform to the equation log P = (-2493.3/T) + 8.9576. The extrapolated boiling point is 137°, the molar heat of vaporization is 11.4 kcal, and Trouton's constant is 27.8 cal mol⁻¹ deg⁻¹. Infrared spectrum (cm⁻¹): 2610 (s), 2180 (s), 1845 (w), 1460 (sh), 1400 (m), 1345 (sh), 1105 (w), 940 (m), 855 (m), 830 (vs), 705 (w), 670 (w), 610 (w), 530 (m).

(B) 2-(BrSiH₂)B₈H₈. BBr₃ Method.—Boron tribromide (2.55 mmol) and 2-SiH₃B₆H₈ (10.62 mmol) were condensed at -196° into a tube and slowly warmed to 0°. A rapid reaction occurred as the mixture melted (*ca.* -50°) as evidenced by frothing. The mixture was allowed to react at 0° for 2.5 hr. Diborane (1.28 mmol; confirmed by ir spectrum;⁸ vapor tension at -112°: found, 220 mm; lit.,¹⁰ 225 mm) was separated from the product mixture by fractional condensation through a -95° trap into a -196° trap. The material in the -95° trap was separated by high-vacuum fractional distillation and found to

(10) A. B. Burg, J. Amer. Chem. Soc., 74, 1340 (1952).

⁽³⁾ E. Amberger, Angew. Chem., 18, 345 (1969).

⁽⁴⁾ A. Stock, "Hydrides of Boron and Silicon," Cornell University Press, Ithaca, N. Y., 1933.

 ⁽⁵⁾ R. T. Sanderson, "High Vacuum Manipulation of Volatile Compounds," Wiley, New York, N. Y., 1948.

⁽⁶⁾ K. Clusius and G. Wolf, Z. Naturforsch. A, 2a, 495 (1947).

⁽⁷⁾ J. V. Kerrigan, Inorg. Chem., 8, 908 (1964).

⁽⁸⁾ R. C. Lord and E. Nielson, J. Chem. Phys., 19, 1 (1951).

⁽⁹⁾ J. Dobson and R. Schaeffer, Inorg. Chem., 9, 2183 (1970).

consist of $2-SiH_3B_5H_8$ (5.45 mmol), $2-(BrSiH_2)B_5H_8$ (1.60 mmol, 31% yield based on $2-SiH_3B_5H_8$ reacted), and an incompletely characterized product of low volatility (685 mg; vapor tension at 20° less than 0.3 mm).

In another experiment, BBr₃ (1.65 mmol) was condensed during a 30-min period onto stirred 2-SiH₃B₆H₈ (5.99 mmol) maintained at -45° . This mixture was then allowed to react at 0° for an additional 1.5 hr. Separation of the products as above yielded B₂H₆ (0.83 mmol), 2-SiH₃B₃H₈ (1.64 mmol), 2-(Br-SiH₂)B₅H₈ (2.52 mmol; 58% yield), and the low volatility fraction (332 mg). The melting point of 2-(BrSiH₂)B₅H₈ was found to be $-51.6 \pm 0.1^{\circ}$. A sharp cutoff in its mass spectrum occurred at m/e 176 (calcd for ^{\$1B}T²⁰Si¹¹B₃H₁₀, 176) This compound had a vapor pressure of 1.2 ± 0.3 mm at 20°. Attempts at obtaining accurate vapor pressure w. temperature data resulted in decomposition of the sample during transfer to the tensimeter. Infrared spectrum (cm⁻¹): 2610 (s), 2180 (s), 1845 (w, b), 1460 (sh), 1400 (m), 1105 (w), 940 (m), 855 (m), 835 (vs), 830 (vs), 675 (w), 535 (m).

(C) 2-(BrSiH₂)B₅H₃. HBr(AlBr₃) Method.—Hydrogen bromide (1.53 mmol) and 2-SiH₃B₅H₈ (1.26 mmol) were condensed at -196° into a 1-l. flask containing AlBr₃. As the flask warmed, the 2-SiH₃B₅H₈ melted and frothed for about 30 sec. The mixture was allowed to react at room temperature for 15 min. Hydrogen (1.48 mmol) was removed from the reaction flask, and the volatile products passed through a -95° trap into a -196° trap. High-vacuum fractional distillation of the products condensing in the -95° trap yielded 2-SiH₃B₅H₈ (0.35 mmol), 2-(BrSiH₂)B₅H₈ (0.22 mmol; 24% yield based on 2-SiH₃B₅H₈ consumed), and intractable products of low volatility which were not characterized.

(D) μ -(ClSiH₂)B₅H₈.—Boron trichloride (ca. 3.5 mmol) and μ -SiH₃B₅H₈ (2.29 mmol) were allowed to react with stirring for 4.5 hr at room temperature. High-vacuum fractional distillation of the products which condensed in a -95° trap yielded μ -SiH₃- B_5H_8 (0.46 mmol) and μ -(ClSiH₂) B_5H_8 (1.59 mmol). A trace of H₂ was detected in the reaction mixture and a small amount of uncharacterized nonvolatile yellow liquid remained in the reaction tube. The μ -(ClSiH₂)B₅H₈ melted at $-77.1 \pm 0.1^{\circ}$. The mass spectrum exhibited a sharp cutoff at m/e 132 (calcd for ³⁷Cl³⁰Si¹¹B₅H₁₀, 132). Vapor pressures are given in Table I and conform to the equation log P = (-2452.9/T) + 8.9985. The extrapolated boiling point is 128°, the molar heat of vaporization is 11.2 kcal, and Trouton's constant is 28.0 cal mol⁻¹ deg⁻¹. Infrared spectrum (cm⁻¹): 2165 (vs), 2215 (sh), 2180 (s), 1845 (w), 1400 (m), 1105 (w), 930 (m), 910 (sh), 900 (sh), 860 (s), 835 (vs), 810 (sh), 745 (w), 675 (w), 615 (m), 530 (m), 460 (w).

In another experiment, boron trichloride (0.24 mmol) and μ -SiH₃B₅H₈ (1.02 mmol) were allowed to react for 20 min at 0°. The reaction mixture was passed through a -112° trap into a -196° trap. Condensed in the -112° trap was BCl₃ containing only traces of BHCl₂ and B₂H₅Cl (confirmed by ir spectrum), indicating only slight reduction of the BCl₃.

Exchange of 2-SiH₃B₅H₈ with DCl(AlCl₃).—Deuterium chloride (2.69 mmol) and 2-SiH₃B₅H₈ (1.24 mmol) were allowed to react in a 1-l. flask for 3.5 hr at room temperature. The DCl and 2-SiH₃B₅H₈ were recovered quantitatively and separated by passage through a -112° trap into a -196° trap. No detectable deuterium exchange had occurred as evidenced by the lack of B-D¹¹ and Si-D¹² stretching absorptions in the infrared spectrum of the recovered 2-SiH₃B₈H₈. The DCl and 2-SiH₃B₅H₈ were then condensed into a 1-l. flask containing a small amount of AlCl₃. The contents of the flask were allowed to react for 1 hr at room temperature. The reaction materials were separated by successive passage into -45, -78, -112, and -196° traps. An unmeasured amount of hydrogen was obtained. The -45° trap contained 2-(ClSiH₂)B₅H₈ (0.45 mmol) which had undergone appreciable deuterium exchange at terminal boron-hydrogen position(s) as evidenced by an absorption at 1980 cm⁻¹ in its infrared spectrum.¹¹ The -78° trap contained 2-SiH₃B₃H₈ which also exhibited the B-D ir stretching absorption. Terminally deuterated pentaborane (0.01 mmol; confirmed by ir spectrum¹¹) condensed in the -112° trap. The -196° trap contained DCl (HCl) and traces of SiH₄ and SiH₃Cl (2.42 mmol; confirmed by lack of ir absorption). The deuterated 2-SiH₃B₅H₈ (0.87 mmol) was again treated with DCl (6.77 mmol) in the presence of AlCl₃ at room temperature for 2 min. Fractional condensation of the products yielded additional deuterated 2-(ClSiH₂)B₅H₈ (0.36 mmol).

Elemental Analyses.—The decomposition of weighed samples of $(XSiH_2)B_{\delta}H_s$ (where X = Cl or Br) for elemental analysis was effected by hydrolysis for 12 hr at 95° with 2 ml of 2 N KOH followed by the addition of 1 ml of 6 N HNO₃ and an additional 12-hr hydrolysis at 95°. Hydrolytic hydrogen was calculated according to the equation

 $(\mathrm{XSiH_2})\mathrm{B_5H_8} + 17\mathrm{H_2O} \longrightarrow \mathrm{SiO_2} + 5\mathrm{B(OH)_8} + \mathrm{HX} + 14\mathrm{H_2}$

Anal. Calcd for 2-(ClSiH₂)B₃H₈: Cl, 27.8%; H₂, 110 mmol/g. Found: Cl, 28.4%; H₂, 111 mmol/g. Calcd for μ -(ClSiH₂)-B₃H₈: Cl, 27.8%; H₂, 110 mmol/g. Found: Cl, 28.4%; H₂, 113 mmol/g. Calcd for 2-(BrSiH₂)B₃H₈: B, 31.4%; Br, 46.4%; H₂, 81.4 mmol/g. Found: B, 32.5%; Br, 46.4%; H₂, 82.0 mmol/g.

Results and Discussion

Halogenation Reactions.—Halogenation of the SiH₃ group in 2-SiH₃B₅H₈ occurs smoothly upon reaction with BCl₃ and BBr₃, respectively (eq 1), or upon reaction with hydrogen halides in the presence of aluminum halide catalysts (eq 2) (X = Cl or Br; m = 2 or μ). Similarly, μ -SiH₃B₅H₈ is chlorinated in reactions with BCl₃ (eq 1). Halogenation occurred exclusively at the 2BX₃ + 6 m-SiH₃B₅H₈ \longrightarrow B₂H₆ + 6 m-(XSiH₂)B₅H₈ (1) AlX₈

$$HX + 2-SiH_3B_5H_8 \longrightarrow H_2 + 2-(XSiH_2)B_3H_8$$
(2)

silicon atom in all reactions studied. No evidence for halogenation of the pentaborane unit was obtained. When boron trihalides were used as the halogenating agents, no cleavage or decomposition products were detected. Chlorination of 2-SiH₃B₅H₈ with BCl₃ occurred quantitatively (within 5%) under the conditions studied. However, the reaction of DCl–AlCl₃ with 2-SiH₃B₅H₈ yielded traces of SiH₄, SiH₃Cl, and B₅H₉, presumably as a result of cleavage of the Si–B bond. Likewise, when a mixture of 2-SiH₃B₅H₈, HBr, and AlBr₃ was allowed to stand at room temperature for several hours, large amounts of SiH₄, SiH₃Br, SiH₂Br₂, SiHBr₃, and B₅H₉ were recovered, and only a trace of 2-(BrSiH₂)B₅H₈ was found.

Under reaction conditions in which quantities of BCl₃ equal to or slightly greater than that required for monohalogenation were used, there was no evidence for the formation of di- or trichlorinated products of either μ -SiH₃B₅H₈ or 2-SiH₃B₅H₈. However, in the BBr₃ bromination of 2-SiH₃B₅H₈ large amounts of a low-volatility compound were obtained. Only limited data were obtained to characterize this compound because of its extremely low volatility. This species exhibited an ¹¹B nmr spectrum consistent with that expected for a 2-substituted pentaborane. Its ir spectrum exhibited strong Si-H and B-H stretching absorptions plus several peaks characteristic of a B₅ species.¹¹ From these data and the fact that it is formed along with 2-SiH₃-

⁽¹¹⁾ H. J. Hrostowski and G. C. Pimente J. Amer. Chem. Soc., 76, 998 (1954).

⁽¹²⁾ S. R. Polo and M. K. Wilson, J. Chem. Phys., 22, 1559 (1954).

 $B_{b}H_{8}$ upon the disproportionation of 2-(BrSiH₂) $B_{b}H_{8}$, the compound is presumed to be 2-(Br₂SiH) $B_{5}H_{8}$.

Insufficient data are available to allow a detailed assessment of the effect of pentaboranyl-group substitution on the rate of boron trihalide or hydrogen chloride-aluminum chloride chlorination of silane to be made. However, tentative conclusions concerning the BCl₃ chlorinations can be stated. The 2-SiH₃B₅H₈ reacts quantitatively within 30 min at 0° . In contrast, μ -SiH₃B₅H₈ is incompletely reacted after 4.5 hr at room temperature. Monosilane (SiH₄) reportedly undergoes no reaction with BCl₃ at $0^{\circ}, {}^{13}$ although, in the presence of a free-radical initiator reaction does occur.¹⁴ These data suggest that pentaboranyl-group substitution markedly enhances the reactivity of the SiH₃ moiety toward BCl₃. The increased effectiveness of a $2-B_5H_8$ group over a μ -B₅H₈ group is apparent also. However, until more data are available speculation into the basis of the reactivity differences seems unjustified.

Characterization of (Halosilyl)pentaboranes.—The 2-(ClSiH₂)B₅H₈ and μ -(ClSiH₂)B₅H₈ were characterized on the basis of elemental analyses, solution molecular weights, and infrared, ¹H nmr, ¹¹B nmr, and mass spectral data. Where possible, vapor tension data were obtained.

The mass spectra of the new compounds exhibited fragmentation patterns consistent with those expected for (halosilyl)pentaboranes. In each case a weak molecular ion was observed, providing confirmation of the molecular weight and compound stoichiometry.

The infrared spectra show characteristic Si–H, B–H (terminal), and B–H(bridge) stretching absorptions at 2180, 2610–2615, and 1845 cm⁻¹, respectively.^{11,15,18} In addition, absorptions at 930 cm⁻¹ in μ -(ClSiH₂)-B₅H₈ and 940 cm⁻¹ in 2-(ClSiH₂)B₅H₈ and 2-(BrSiH₂)-B₅H₈ attributable to the SiH₂ bending vibration were observed.¹⁵ Owing to the complexity of the spectra, no attempt was made to assign the remaining absorptions.

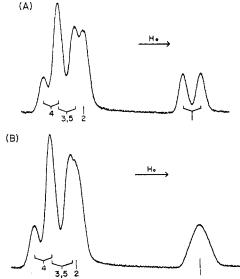
The nmr spectral parameters are given in Table II.

TABLE II ¹¹B and ¹H Nmr Spectral Results⁴

		~1Hc			
Compound	B(1)(J)	B(2)	B(3, 5)(J)	B(4)(J)	$\delta(\mathrm{SiH}_2)(J)$
$2-(ClSiH_2)B_{b}H_{8}$	50.4 (178)	15.2	11.2 (184)	6.1 (150)	-4.67 (11.4)
$2-(BrSiH_2)B_{\delta}H_8$	40.3 (172)	16.5	11.4 (170)	6.5 (145)	-4.28(8.4)
			$\mathrm{B}(25)(J)$		
$\mu \cdot (\text{ClSiH}_2) \operatorname{B}_{\delta} \operatorname{H}_{\delta}$	44.7 (178)		9.5 (160)		-5.40

^a Obtained on 20-50% (by volume) solutions in CS₂. ^b Chemical shifts in ppm relative to $BF_3 \cdot O(C_2H_5)_2$; coupling constants in Hz. ^c Chemical shifts in ppm relative to internal $(CH_3)_4Si$; apparent coupling constants in Hz.

The ¹¹B nmr spectrum of $2-(BrSiH_2)B_5H_8$, shown in Figure 1A, is representative of that observed for $2-(BrSiH_2)B_5H_8$ and $2-(ClSiH_2)B_5H_8$. The upfield dou-


(13) C. H. Van Dyke and A. G. MacDiarmid, J. Inorg. Nucl. Chem., 25, 1503 (1963).

(14) R. Schaeffer and L. Ross, J. Amer. Chem. Soc., 81, 3486 (1959).

Compounds," Wiley, New York, N. Y., 1963.

(15) L. J. Bellamy, "The Infrared Spectra of Complex Molecules," 2nd ed, Wiley, New York, N. Y., 1958.
(16) K. Nakamoto, "Infrared Spectra of Inorganic and Coordination

Inorganic Chemistry, Vol. 9, No. 9, 1970 2169

 $\begin{array}{l} \mbox{Figure 1.---The 32.1-MHz 11B nmr spectra of $2-(BrSiH_2)B_{b}H_8$ (A) $$ and apically deuterated (B(1)) $2-(ClSiH_2)B_{b}H_7D$ (B). $ \end{array}$

blet (area 1) occurs in the region typical for the apical boron of a pentaborane derivative. The group of peaks in the low-field region of the spectra (area 4) consists of an overlapped doublet of intensity 1, B(4), a doublet of intensity 2, B(3,5), and a singlet of intensity 1, B(2). The peak at highest field in the group for both spectra was assigned to the boron bonded to the halosilyl group, B(2). This assignment agrees with that made for the 2-SiH₈B₆H₈ spectrum in which the B(2) resonance is at highest field in the group.² This assignment also gives a reasonable value for the B-H coupling constant for the doublet assigned to the borons in the 3,5 positions.¹⁷

The ¹¹B nmr spectrum of μ -(ClSiH₂)B₅H₈ is similar to that of B₅H₉¹⁸ and μ -SiH₃B₅H₈.² The spectrum consists of a high-field doublet of intensity 1 (apical boron) and a low-field doublet of intensity 4 (basal borons). Thus, although the B(2)–B(3) borons are bridged by the SiH₂Cl group and the B(4)–B(5) borons are bridged by a proton, all four basal borons appear magnetically equivalent.

The ¹H nmr spectra of 2-(CISiH₂)B₆H₈, 2-(BrSiH₂)-B₆H₈, and μ -(CISiH₂)B₆H₈ are particularly interesting because the resonance arising from the SiH₂ protons is temperature dependent. Representative ¹H nmr data obtained for 2-(BrSiH₂)B₆H₈ are shown in Figure 2. At ambient probe temperature (34°) the SiH₂ resonance appears as a broad, poorly resolved doublet (Figure 2A). The line width at half-peak intensity ($\nu_{1/2}$) is 27 Hz. At -13°, the doublet collapses to a broad singlet of $\nu_{1/2} = 19$ Hz (Figure 2B). Upon further cooling to -85° a sharp singlet resonance of $\nu_{1/2} = 4.5$ Hz (Figure 2C) is obtained. Within experimental error, the chemical shift of the resonance is temperature independent. Owing to the marginal stability of the

⁽¹⁷⁾ R. Schaeffer, "Progress in Boron Chemistry," Vol. 1, H. Steinberg and A. L. McCloskey, Ed., Pergamon Press, New York, N. Y., 1964, Chapter 10.

⁽¹⁸⁾ J. N. Shoolery, Discuss. Faraday Soc., 19, 215 (1955).

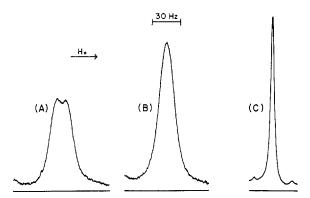


Figure 2.—The SiH₂ resonance in the ¹H nmr spectrum of 2-(Br-SiH₂)B₃H₈ at 34° (A), -13° (B), and -85° (C).

(halosilyl)pentaboranes no attempt was made to examine the spectra above 34°.

Electric quadrupole relaxation of a nucleus of $I = {}^{3}/{}_{2}$ coupled to a nucleus of $I = {}^{1}/{}_{2}$ has been examined theoretically and experimentally by Bacon, Gillespie, and Quail.¹⁹ These workers have shown that quadrupolar relaxation can produce spectral effects analogous to those observed for the (halosilyl)pentaboranes examined in this study. However, for boron compounds, this effect has been reported only for the 19 F nmr spectra of compounds in which the fluorine atom is directly bonded to the boron atom. The (halosilyl)pentaboranes appear to be the first examples of molecules in which the temperature dependence is observed to affect a two-bond coupling constant between hydrogen and boron.

(19) J. Bacon, R. J. Gillespie, and J. W. Quail, Can. J. Chem., 41, 3063 (1963).

Evidence to support the interpretation that the splitting of the SiH₂ resonance arises due to coupling with the 2-boron atom and not from coupling to other nuclei in the system was obtained from a heteronuclear spin decoupling, ¹H-¹¹B, experiment. Irradiation of the ¹¹B nuclei at a nominal frequency of 32.1 MHz using a "noise" decoupler while scanning the 100-MHz ¹H spectrum caused the broad doublet resonance to collapse to a sharp singlet of $p_{1/2} = 3$ Hz.

Deuteration Reactions.—The deuteration of 2- $SiH_3B_5H_8$ and 2-(ClSiH₂) B_5H_8 by DCl-AlCl₃ appears to occur in a manner analogous to that reported for B_5H_{9} .²⁰ The infrared and ¹¹B nmr spectra of the 2-silylpentaborane which is recovered and the 2-(chlorosilyl)pentaborane which is formed from the 2-SiH₃-B₅H₈- $DCl(AlCl_3)$ reaction indicate that specific deuteration at the 1 position of both compounds occurs. Ir absorptions at 1980 $\rm cm^{-1}$ for 2-silvlpentaborane and 2-(chlorosilyl)pentaborane indicate the presence of deuterium in terminal positions. The collapse of only the upfield doublets to singlets in the ¹¹B nmr spectra (Figure 1B) suggests that, within experimental error, deuteration has occurred specifically at the 1 position. The presence of deuterium in bridging positions cannot be unambiguously excluded, since both $2-SiH_3B_5H_8$ and $2-(ClSiH_2)B_5H_8$ have broad infrared absorptions in the region where bridge-deuterium absorptions are expected to occur.

Acknowledgment.—Support of this work by the National Science Foundation (GP-8090) is gratefully acknowledged.

(20) T. P. Onak and R. E. Williams, Inorg. Chem., 1, 106 (1962).

Contribution from the Department of Chemistry, California State College, Los Angeles, California 90032, and No. 1858 from the Department of Chemistry, Indiana University, Bloomington, Indiana 47401

Magnetic Resonance Spectra of Tetraborane(10), Pentaborane(11), Hexaborane(10), and Hexaborane(12)

BY JOHN B. LEACH, ^{1a} THOMAS ONAK, ^{1a} JOHN SPIELMAN, ^{1a} RICHARD R. RIETZ, ^{1b} RILEY SCHAEFFER, ^{1b} AND LARRY G. SNEDDON ^{1b}

Received May 14, 1970

The 220-MHz ¹H and 70.6-MHz ¹¹B nmr spectra of B_4H_{10} , B_5H_{11} , B_6H_{10} , and B_6H_{12} have been recorded and confirm the previously accepted structures. Further elucidation of basal and apical signals of B_4H_{10} , B_5H_{11} , and B_6H_{10} was obtained by multiple decoupling experiments at 100 MHz. In the pmr spectra at 51.680 kG two magnetically nonequivalent sets of protons are resolved for the $-BH_2$ groups of B_4H_{10} , B_5H_{11} , and B_6H_{12} . Distinct bridge resonance signals are found in B_5H_{11} . In addition, the apically attached anomalous proton and the single-bridge proton lying on the symmetry plane display additional fine structure.

Introduction

Proton magnetic resonance spectra of boron hydrides obtained at lower field strength have proved to be less informative in chemical and structural studies than the

(1) (a) California State College. (b) Indiana University.

more easily interpreted ${}^{11}\text{B}$ nmr spectra.² The complexity of the pmr spectra arises from the coupling of each distinct proton with both boron isotopes (80% ${}^{11}\text{B}$,

(2) (a) R. Schaeffer, "Progress in Boron Chemistry," Vol. 1, H. Steinberg and A. L. McCloskey, Ed., Macmillan, New York, N. Y., 1964, p 422;
(b) G. R. Eaton and W. N. Lipscomb, "NMR Studies of Boron Hydrides and Related Compounds," W. A. Benjamin, New York, N. Y., 1969.