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Co5(CO)15C3H is one product of the reaction of CICCo3(CO)s with mesitylene. 1
Crystals are triclinic, space group Pl with two molecules in a cell of

determined by three-dimensional X-ray analysis.

Its crystal and molecular structure has been

dimensions ¢ = 9.67 (1), & = 15.02 (2), ¢ = 9.421 (8) A; a =952 (1), 8 = 1133 (1), v = 98.8 (2)°. X-Ray data were

collected by conventional film techniques using Co Ka radiation and the intensities of 1392 reflections above background were
measured photometrically. The structure was refined isotropically by modified full-matrix least-squares procedures to a
conventional R factor of 0.067. The ~CCo3(CO)s structural unit of the parent compound is retained and is linked to a Cos-
(CO)s unit through an acetylene bridge. This bridge and the Co; pair form a tetrahedral grouping. The five Co—Co bonds
in the molecule range in length from 2.447 (4) (in the ~Cos(CO)s unit) to 2.485 (4) A. The hydrogen atom has not been

located directly but its presence is confirmed by the molecular weight obtained from the mass spectrum.

mass spectral results are reported and discussed.

Introduction

Among the products of the reactions of chloro-
methinyltricobalt enneacarbonyl, CICCos(CO)s, with
mesitylene® are a number of carbonyls®” possessing
additional carbon atoms, the simplest of which was
formulated as Cos;(CO)1:C;H on the basis of complete
analytical data, molecular weight, and mass spectrum.
In the infrared spectrum there were no bands due to
bridging CO groups, an observation which suggested
that there had been retention of the —CCo3(CO), unit
of the parent compound in which all CO groups are
terminal. (The structural details of the —CCo3(CO)s
group were earlier determined by Sutton and Dahl® in
the structure determination of CH3;CCo3(CO)s.) The
indications were that a novel structure had been formed
by linkage of a ~CCo3(CO), unit to further Co atoms.

Experimental Section
Preparation of Co;(CO);;C;H.—Chloromethinyltricobalt ennea-
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(1969).

(7) A full discussion of reactions leading to the formation of Cos(CO)1CsH
and other carbonyl carbides is given in part III of this series:  R.J. Dellaca,
B. R. Penfold, B. H. Robinson, W. T. Robinson, and J. L. Spencer, Inorg.
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Infrared and

carbonyl?~! (2.16 g) and mesitylene (15 ml) were heated at 130°
for 30 min under an atmosphere of carbon monoxide. The re-
sulting dark brown solution was rapidly cooled and the mesityl-
ene removed in vacuo. The solid residue was then extracted
with five 12-ml portions of petroleum ether (bp 30-40°) and the
extract applied to four 20 cm X 20 cm X 1.25 mm silica HFy;4
plates. Development of the plates with pentane gave the fol-
lowing four bands (in order of increasing retention time): (1)
purple, unreacted CICCo3(CO); (and possibly HCCo3(CO));
(2) grayish brown; (3) orange brown (Cog(CO);3Cq); (4) dark
brown (Cos(CO):Cs). Band 2 was removed and eluted with
acetone-pentane. The black solid obtained by removing the
solvent was recrystallized from petroleum ether (bp 30-40°) to
give small dark needles of Cos(CO»CsH: yield 15 mg. Anal.
Caled for C;sHCo30::: C, 28.76; H, 0.13; Co, 39.19. Found:
C, 28.53; H, 0.19; Co, 39.60.

The compound is air stable, soluble without decomposition in
most organic solvents, but insoluble in water. Solutions of the
compound are only moderately stable in air at room temperature.
A satisfactory melting point could not be obtained as the solid
decomposes above 100°. Sublimation with considerable de-
composition occurs at 60° (0.05 mm).

Infrared Spectra.—Solution and mull spectra were obtained
in the region 5000-200 cm™ on a Perkin-Elmer 225 spectro-
photometer using, where appropriate, sodium chloride, potas-
sium bromide, and polythene cells. Spectra from 200 to 50
cm ! were recorded on a RIIC interferometer.

Mass Spectra.l?>—Mass spectra were obtained on an AEI MS9
mass spectrometer with an ionizing energy of 70 eV using a direct

(8) W. T. Dent, L. A, Duncanson, R. G. Guy, H. . W. B. Reed, and B. L.
Shaw, Proc. Chem. Soc. (London), 169 (1861).

(10) G. Bor, B. Marko, and L. Marko, Chem, Ber., 95, 333 (1962).

(11) K. Ercoli, E. Santambrogio, and G. T. Casagrade, Chim. Ind.
(Milan), 44, 1344 (1962).

(12) We thank Dr. R. Hodges, Massey University, Palmerston North,
New Zealand, for running these spectra.
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inlet system. However some difficulty was experienced in ob-
taining a satisfactory spectrum owing to the low thermal stability
of the compound.

Nmr Spectra.—Hydrogen-1 nmr spectra were recorded on a
Varian HA-100 spectrometer using CDCl; as solvent and TMS
internal reference.

Crystallographic Data.!s—Co;(CO);;C;H, mol wt 751.5, is
triclinic with @ = 9.667 (11), » = 15.023 (15), ¢ = 9.421 (8) A;
a = 9052 (1), 8 = 113.3 (1), v = 98.8 (2)°; V = 1225 As;
dovsa = 2.05 (2) g/cm?; Z = 2; dostea = 2.038 (4) g/cm3; u(Co
Ka) = 64.5 cm™. With two molecules per unit cell in space
group Pl or PI, no crystallographic symmetry conditions are
imposed on the molecule. The structure has been refined suc-
cessfully in space group PI with all atoms occupying the general
twofold set of equivalent positions.

Unit cell dimensions and their estimated standard deviations
were obtained from a least-squares refinement on sin? 4. Input
data were the distances between Friedel pairs of reflections on
calibrated zero-level precession photographs taken with Polaroid
film and Mo K« radiation (A 0.7107 fi) at room temperature
(20°). The experimental density was obtained using a suit-
ably calibrated density gradient tube with CH;I and CCly as
media.

All X-ray intensity data were obtained from one rectangular
prismatic crystal of approximate dimensions 0.2 X 0.1 X 0.1 mm,
with the longest dimension along the ¢ axis. TUsing Co K«
radiation, three-dimensional data were collected with a two-
dimensionally integrating equiinclination Weissenberg camiera at
room temperature. The plateaus of the integrated spots and
adjacent background areas were measured using a single-beam
photometer and a galvanometer calibrated to read intensities
directly. The levels (nkl), with » = 0-6, were investigated,
and within these, intensities were assigned to 1392 independent
reflections judged to be above the threshold of observation. Com-
plete coverage of the reciprocal lattice required measurements to
be obtained from both halves of the Weissenberg films for non-
zero levels. Corrections for spot extension were applied to
measurements on one half but it was considered that the integra-
tion process had obviated the need for correction to measurements
in the other half where the spots are normally contracted. Ab-
sorption corrections were applied using the Gaussian quadrature
method with accurately measured crystal dimensions. Trans-
mission factors varied between 0.53 and 0.67. Only observed
reflections were used in the refinement process and no attempt
was made to place the data on a common scale using correlating
data from a crystal mounted about a second axis. Following final
refinement, structure factor calculations for the 594 ‘“‘unob-
served’’ reflections in the reciprocal lattice region investigated
showed that there were 50 F, values greater than Fui, butnone
greater than 2Fy,.

All calculations were performed on an IBM 360/44 computer
with 16K words of core storage and twin 2315 disk drives. The
principal programs used have been described in part I of this
series.

Structure Determination and Refinement

The presence of a center of symmetry, hence space
group PI, was strongly indicated by the distribution of
vectors in a computed three-dimensional Patterson
function. Trial coordinates for the five Co atoms were
obtained from the vector map, one initial misplacement
being corrected following a preliminary electron density
difference map phased by Co atoms alone. Several
subsequent difference maps followed by intermediate
least-squares refinement revealed all carbon and oxygen
atoms.

With seven scale factors and parameters for 38 iso-

(13) Here and throughout this paper, the uncertainties given in paren-
theses are estimated standard deviations in the least significant digits quoted.
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TABLE [
POSITIONAL AND THERMAL PARAMETERS
FOR Cos{CO);sC:H

Atom x ¥ z Be
Co(1) 0.4098(3) 0.1884(2) —0.1055(3) 3.60(7)
Co(2) 0.2973(3) 0.1845(2) 0.0893(3) 3.39(6)
Co(3) 0.0904(3) 0.3832(2) —0.2253(3) 3.13(6)
Co(4) —0.0166(3) 0.2530(2) —0.4387(3) 3.25(6)
Co(3) —0.1099(3) 0.2606(2) —0.2280(3) 3.47(7)
C(1) 0.218(2) 0.117(1) —-0.122(2) 3.0(3)
C(2) 0.198(2) 0.203(1) —0.132(2) 3.1(3)
C(3) 0.094(2) 0.261(1) —0.216(2) 2.5(3)
C(11) 0.387(2) 0.154(1) —0.298 (2) 5.7(5)
C(12) 0.519(2) 0.304 (1) —0.054(2) 3.9(4)
C(13) 0.555(3) 0.126(1) —0.018(2) 6.2(5)
C(21}) 0.365(2) 0.301(1) 0.196(2) 4.2(4)
C(22}) 0.140(2) 0.144(1) 0.130(2) 5.1(4)
C(23) 0.426(2) 0.127(1) 0.221(2) 5.2(4)
C(31) 0.150(2) 0.441(1) —0.032(2) 4.3(4)
C(32) 0.258(2) 0.426(1) —0.248(2) 4.3(4)
C(33) —0.028(2) 0.458(1) —0.327(2) 4.5(4)
C(41) 0.125(2) 0.274(1) —0.504(2) 4.2(4)
C(42) —0.074(2) 0.136(1) —0.509(2) 5.9 (3)
C(43) —0.164(2) 0.295(1) —0.583(2) 4.,5(4)
C(51) —0.182(2) 0.142(2) —0.247(2) 6.1(5)
C(52) —0.084(2) 0.292(1) —0.084 (2) 4.2(4)
C(53) —0.283(2) 0.303(1) —-0.332(2) 4.9(4)
0O(11) 0.368(2) 0.130(1) —0.426(2) 7.8(4)
0(12) 0.585(2) 0.378(1) —0.012(2) 6.1(3)
0(13) 0.655(2) 0.089(1) 0.044 (2) 8.1(4)
0O(21) 0.410(2) 0.375(1) 0.262(2) 6.5(3)
0(22) 0.033(2) 0.113(1) 0.156 (2) 7.3(4)
0(23) 0.514(2) 0.090(1) 0.307 (2) 7.2(4)
0(31) 0.188(1) 0.484(1) 0.093(2) 5.7(8)
0(32) 0.368(2) 0.457(1) —0.267(2) 6.9(4)
0(33) —0.108(2) 0.507 (1) —0.397(2) 5.9(3)
0(41) 0.223(2) 0.290(1) —0.550(2) 6.6(3)
0(42) —0.117(2) 0.058(1) —0.554(2) 7.5(4)
0(43) —0.258(2) 0.325(1) —0.681(2) 6.4(3)
O(31) —0.221(2) 0.065(1) —0.258(2) 8.8 (4)
O(52) —0.066(2) 0.312(1) 0.095(2) 6.4(3)
0(53) —0.393(2) 0.331(1) —-0.395(2) 7.4(4)

@ Isotropic thermal parameter (in A2),

tropic atoms to be refined, the total number of variables
was 159 whereas core storage limitations in our com-
puter at the time restricted to 81 the number we could
vary simultaneously. The variables in the least-squares
process were therefore split into three blocks with the
scale factors, parameters for the five cobalt atoms, and
parameters for as many carbon and oxygen atoms as
could be accommodated being varied in each block.
The function minimized was Ew(IFoy_ — !Fc\)z where the
weight w was determined by the empirical formula of
Cruickshank,*w = (4 + B[FO{ + C‘F0 2 4 DiF,|5~L,
Coefficients which gave best constancy of averagé val-
ues of the minimized function over the full F, range
were A = 114, B =023, C= —6.3 X 1073, and D =
6.0 X 107*. The usual tabulations of atomic scattering
factors® for Co, O, and C were used, those for Co only
being corrected for anomalous dispersion and values for
Af" and Af"” of —2.19 and 0.74 electrons, respectively,
being interpolated from Cromer’s tables.

(14) D. W. J. Cruickshank in “Computing Methods in Crystallography,”
J. S. Rollett, Ed., Pergamon Press, Oxford, 1965, p 114.

(15) “International Tables for X-Ray Crystallography,” Vol. 3, Kynoch
Press, Birmingham, England, 1962,

(16) D. T. Cromer, Acta Crystallogr.. 18, 511 (1965).
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OBSERVED AND CALCULATED STRUCTURE
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The initial refinement converged at values for R, and
R,V of 0.082 and 0.098. Corrections for absorption and
for extension of spot size followed by further refinement
reduced R; and R; to 0.072 and 0.082, respectively. At
this stage it was observed that a number of low-angle
reflections with high raw intensities showed large dis-
crepancies, F, invariably being less than F,. With this
evidence for secondary extinction, the approximate
correction suggested by Zachariasen® was applied.
The form of the correction was F(corrected) = F,(1 +
CI) where C was a variable in the least-squares process
and I was the raw intensity. Refinement with inclu-
sion of this correction reduced R; and R; to their final

(17) R1 = Z||Fo| — |Fol|/2|Fol; Re = [Zw(|Fo] = |Fol)2/Zw]Fo|211r2,
(18) W. H. Zachariasen, Acta Crystallogr., 16, 1139 (1963).

AMPLITUDES (IN ELECTRONS) FOR

Cos(CO)1:CH
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values of 0.067 and 0.077. The value obtained for the
extinction parameter C was 5.1 (5) X 107 on an abso-
lute scale. Final positional and thermal parameters,
with esd’s are listed in Table I, and observed and cal-
culated structure factors are compared in Table II.

In a final electron density difference map there were
peaks of height up to 1.2 e=/A3 close to the Co atoms.
The highest peak not within 0.8 A of a Co atom was 0.6
e—/A%, or approximately one-sixth of the height of a
carbon atom in the structure. Attempts to locate the
hydrogen atom proved fruitless. Presumably the situ-
ation would be more favorable if any anisotropy of the
Co atoms was accommodated by the inclusion of more
thermal parameters. However we regard the presence
of the hydrogen atom as definitely established by the
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TFigure 1.-~One molecule of Cox(CO)1sC;H with the Co; triangle
nearly edge on.
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Figure 2.—One molecule of Cos(CO);;C;H viewed normal to
the Co; triangle.

mass spectral evidence presented below. Further at-
tempts to find it using the existing data set were there-
fore considered unjustifiable.

Description of Structure and Discussion

The crystal structure consists of well-separated
monomeric molecules of Cos(CO)1;C3H, no intermolecu-
lar contact being shorter than 3.0 A. Views of the
whole molecule are shown in Figures 1 and 2. (Pa-
rentheses have been omitted from atom labels in order to
simplify the diagrams but the numbering scheme is the
same as in Table I.) Bond lengths and angles are
listed in Tables III and IV with intramolecular non-
bonded contacts in Table V.

In the molecule the —CCo;(CO)y unit of the parent
compound is retained with its idealized C;-3m sym-
metry and is linked to a hexacarbonyldicobalt unit by
means of an acetylene bridge. The Coy(CO)sC.H,
group has idealized symmetry Cs-m. Similar arrange-
ments have previously been found in complexes of Co,-
(CO)s with diphenylacetylene!® and with the cyclic
acetylene CeFe? and also in a related complex of
Niy(CsHs): with diphenylacetylene.?! However, the
linkage of such units to other metal clusters has not
previously been found.

(18) W. G. Sly, J. Amer. Chem. Soc., 81, 18 (1959); revised bond lengths
reported as personal communication by D. A. Brown, J. Chem. Phys., 88,
1057 (1960).

(20) N. A. Bailey and R. Mason, J. Chem. Soc. A, 1293 (1968).

(21) O. 8. Mills and B. W. Shaw, J. Qrganametal. Chem,, 11, 595 (1968).
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TasrLe IIT
BonD Disrances (A )

Co(1)-Co(2) 2,447(4) Co(3)-C(31) 1.76 (2)
Co(3)-C(32) 1.75(2)
Co(3)-Co(4) 2.462 (5) Co(4)-C(41) 1.71(2)
Co(8)~Co(5) 2.470(8) Co(4)-C(42) 1.75(2)
Co(4)-Co(5) 2.485(4) Co(5)-C(51) 1.78(2)
Av  2.472(10) Co(5)-C(52) 1.75(2)
Av 1.75(2)

Co(1)-C(11) 1,75(2)
Co(2)-C(22) 1.75(2) Co(3)-C(33) 1.77(2)
Av 1.75(1) Co(4)-C(43) 1.78(2)
Co(5)~-C(53) 1.82(2)
Co(1)-C(12) 1.80(2) Av 1.79(2)

Co(1)-C(13) 1.78(2)
Co(2)-C(21) 1.81(2) Co(3)-C(3) 1.89 (1)
Co(2)-C(23) 1.77(2) Co(4)-C(3) 1.93 (1)
Av 1.79(2) Co(5)-C(3) 1.93(2)
Av 1.,92(2)

Co(1)-C(1) 1.94(2)

Co(2)-C(1) 1.95(1)
C(1)-C(2) 1.34(2)
C(2)-C(3) 1.46(2)

Co(1)-C(2) 2.01(2)
Co(2)-C(2) 1.99(2) Cc-0
Mean of 15 values

1.14(2)-1.19(2)

1.17(2)

¢ Estimated standard deviations for individual bonds were
calculated using variances and covariances in positional param-
eters and variances only in cell parameters. They may be under-
estimates because of the neglect of anisotropic thermal motion.
Mean values of bonds assumed chemically equivalent are indic-
ated and their associated uncertainties are rms deviations given
by the expression (Z#(x; — az)z/n)'/z, where there are »n observa-
tions.

From the view shown in Figure 2 it can be seen that
the whole molecule possesses approximate symmetry
C,-m, exact symmetry being destroyed by a significant
(6.2°) rotation of the Co(1)-Co(2) bond (with its as-
sociated carbonyls) away from its idealized orientation
parallel to the Co(4)-Co(5) edge of the Co; triangle.
There are a number of close nonbonded contacts be-
tween CO groups in the two parts of the molecule and
most of the distortions from normal bond angle values
can be related to the repulsions arising from these close
contacts. Thus, of the equatorial CO groups attached
to the Coj triangle, those which are involved in the
closest contacts with the Co;(CO)s unit are displaced
toward the Co; plane. This displacement is reflected
in the values of the dihedral angles between the Cos
triangle and the planes formed by each Co atom and its
associated equatorial CO groups. (All of the angles
quoted below relate to mean planes involving Co, C,
and O atoms; they are within 0.2° of the values ob-
tained by considering instead the exact CoQOO planes.)
For Co(3), both of whose O atoms are within 3.0 A of O
atoms in the Coy(CO); unit, this dihedral angle is 22°.
The corresponding angle for Co(4) is 27°, while for
Co(5), whose equatorial O atoms are least involved in
contacts with the Co2(CO)s unit, the value is 30°. By
comparison, in CH;CCo3(CO)s* and Coi(CO)1,BH,N-
(CoHs)s?? where there are no such contacts, the average
values are 29 and 32°, respectively.

(22) F. Klanberg, W. B. Askew, and L. J. Guggenberger, I'norg, Chem., T,
2265 (1968).
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TABLE IV
BoND ANGLES (DEG)*
Co(3)-Co(4)-Co(8) 59.9(1) C(2)-C(3)-Co(3) 140(1)
Co(3)-Co(5)-Co(4) 59.6 (1) C(2)-C(3)-Co(4) 128(1)
Co(4)-Co(3)-Co(5) 60.5(2) C(2)-C(3)-Co(5) 126 (1)
Av 60,0

C(31)-Co(3)-Co(4) 155.3(6)
C(32)-Co(3)-Co(5) 152.6(6)
C(41)-Co(4)-Co(5)  151.7(6)
C(42)-Co(4)-Co(3) 152.2(7)
C(51)-Co(5)-Co(3) 149.6(7)
C(52)-Co(5)-Co(4) 152.6(6)
C(3)-Co(3)-Co(4) 50.5(4) Av 152.3

C(3)-Co(3)-Co(5) 50.5(5)
C(3)-Co(4)-Co(5) 50.0(5)
C(3)-Co(4)-Co(3) 49.1(4)

Co(3)-C(3)-Co(4) 80.4(6)
Co(3)-C(3)-Co(5) 80.6(6)
Co(4)-C(3)-Co(5) 80.2(5)

Av 80.4

C(11)-Co(1)-C(12) 104.1(8)
C(12)-Co(1)-C(13) 102.2(9)
C(3)-Co(5)-Co(8) 48.9(4) C(21)-Co(2)~-C(23) 101.4(8)
C(3)-Co(5)-Co(4) 49.9(4) C(22)-Co(2)-C(21) 102.7(8)
Av 49.8 Av 102.6

C(3)-Co(3)-C(33) 141.7(7)

C(3)-Co(4)-C(43) 142.7(7)

C(3)-Co(5)-C(53) 142.1(7)
Av 142.2

C(11)-Co(1)-C(13) 95.0(9)
C(22)-Co(2)-C(23) 96.0(9)

C(11)-Co(1)-Co(2) * 148.1(7)
C(22)-Co(2)-Co(1)  147.6(8)
C(31)-Co(3)-C(32) 97.6(8)
C(41)-Co(4)-C(42) 97.3(9)
C(51)-Co(5)-C(52) 97.5(9)
Av 97.5

C(12)-Co(1)-Co(2)  101.6 (5)
C(21)-Co(2)-Co(1)  102.8(6)

C(11)-Co(1)-C(1) 97.8(8)
C(22)-Co(2)-C(1) 97.5(8)
C(11)-Co(1)-C(2) 103.6 (8)
C(22)-Co(2)-C(2) 102.6(8)

C(3)-Co(3)-C(31) 107.1(7)
C(3)-Co(3)-C(32) 103.2(7)
C(3)-Co(4)-C(41) 103.9(7)
C(3)-Co(4)-C(42) 103.8(8)
C(8)-Co(5)-C(51) 101.3(8)
C(8)-Co(5)-C(52) 105.0(7)

C(13)-Co(1)-C(1) 106.7 (8)
C(23)-Co(2)-C(1) 109.2(7)

Av 104.1

C(1)-C(2)-Co(1) 67.2(9)
C(31)-Co(8)~C(33) ~ 99.1(8) C(1)-C(2)-Co(2) © 68.4(9)
C(82)-Co(3)~C(33) 100.3(8)
C(41)-Co(4)-C(43) 99.9(8) C(1)-Co(1)-C(2) 39.7(6)
C(42)-Co(4)-C(43) 101.2(9) C(1)-Co(2)-C(2) 39.9(6)
C(51)-Co(5)~-C(53) 102.8(9)
C(52)—-Co(5)-C(53) 100.4(9) C(1)-Co(1)-Co(2) 50.5(4)

Av 100.6 C(1)-Co(2)-Co(1) 50.3(5)
C(31)-Co(3)-Co(5) 98.1(6)
C(32)-Co(3)-Co(4) 98.2(6)
C(41)-Co(4)-Co(3) 95.9(6)
C(42)-Co(4)-Co(5) 99.5(7)
C(51)-Co(5)-Co(4) 98.3(7)
C(52)-Co(5)-Co(3) 96.7(6)
Av 97.8

C(13)-Co(1)-Co(2) 97.8(7)
C(23)-Co(2)-Co(1) 98.1(6)

C(12)-Co(1)-C(2) 104.0(7)
C(21)-Co(2)-C(2) 102.7(7)

C(12)-Co(1)-C(1) 141.8(7)
C(21)-Co(2)-C(1) 141.1(7)
C(13)-Co(1)-C(2) 142.8(8)
C(23)-Co(2)-C(2) 145.3(8)

C(33)-Co(3)-Co(4) 96.7(6)
C(83)-Co(3)-Co(5) 99.2(6)
C(43)-Co(4)-Co(3) 100.5(6)

C(43)-Co(4)-Co(5) 98.9(6) C(2)-C(1)-Co(1) 73.2(10)
C(53)-Co(5)-Co(3) 100.9(6) C(2)-C(1)~Co(2) 71.8 (9)
C(53)-Co(5)-Co(4) 97.7(6)
Av 99.0 C(3)-C(2)~-Co(1) 133.6 (12)
C(8)-C(2)-Co(2) 135.3(10)
Co-C-0 177-180
Mean of 15 values 177.5 C(2)-Co(1)-Co(2) 51.3(4)
. C(2)-Co(2)-Co(1) 52.2(5)
C(1)-C(2)-C(3) 145.6 (14) .
Co(1)-C(1)-Co(2) 79.2(6)
Co(1)-C(2)-Co(2) 76.5(5)

@ See footnote to Table III. Rms deviations of mean values
are not given because in general these far exceed esd’s of individ-
ual angles.
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TABLE V

SELECTED INTRAMOLECULAR NONBONDED DISTANCES (A)
C(31)---C(32) 2.64 C(31):--C(33) 2.69
C(41)- .- C(42) 2.60 C(32)- - C(33) 2.70
C(51). - C(52) 2.65 C(41)--.C(43) 2.67

C(42)---C(43) 2.73
C(31)- - -C(52) 2.92 C(51)---C(53) 2.81
C(32)---C(41) 2.89 C(52)- - -C(53) 2.74
C(42). - . C(51) 3.03

C(13)- - -C(23) 2.97
C(33)- - - C(43) 3.00
C(53)---C(33) 3.09 C(12)-.-C(21) 3.24
C(48)- - -C(53) 3.01

O(11)---0(41) 3.06
C(11)- .- C(12) 2.81 0(12)- --0O(32) 2.98
C(11)---C(18) 2.61 0(21)---0(31) 2.95
C(12)---C(13) 2.79 0(22)-.-0(52) 3.24
C(21)---C(22) 2.79
C(21)--.C(23) 2.78
C(22)---C(23) 2.62

Of considerable interest are the dimensions of the
carbon chain. The value of 1.34 (2) A for the C(1)-
C(2) acetylene bridge and the angle of 146 (1)° it makes
with C(2)-C(3) may be compared with values observed
in the closely related compounds Coy(CO)sCeH;C,CeH ;19
(1.37 A, 138°) and Niy(CsHs):CeHCoCeHs2t (1.35 A).
Corresponding bond lengths in other examples, where
the acetylene bridge is associated with a cluster of at
least three metal atoms, are Co04(CO);pCyH;CoCyH ;2
(1.44 (2) A), Fey(CO)sCeHC,CoHs (1.41 (2) A&, 124°),
and Fea(CO)g(CﬁHscrngH,s)z% (138 (3) A) These di-
mensions indicate that the bond in the acetylene bridge
is more nearly a double than a triple bond (the C-C
lengths in acetylene and ethylene are 1.20 and 1.34 A,
respectively). Whatever detailed description of the
bonding is preferred, there must therefore be considet-
able delocalization of the m orbitals of the acetylene into
the available Co orbitals. The acetylene bonds are
systematically longer in the compounds containing
clusters of three or four atoms in all of which compounds
the acetylene group itself is associated with more than
two metal atoms, and hence there may be even greater
delocalization of the = electrons. The limited infor-
mation available from these studies on the C=C—C
angles indicates a general reduction in size as the acety-
lene bond lengthens, consistent with increasing p char-
acter in the outwardly directed carbon atomic orbitals.

The C(2)-C(3) bond length of 1.46 (2) A agrees with
other values found for bonds linking four-coordinate
and two-coordinate carbon atoms.?® The C(2)-C(3)
bond departs significantly from its ideal orientation
normal to the Co; plane, as can be observed from the
inequality of the angles C(2)-C(3)-Co(3) (140 (1)°),
C(2)-C(3)-Co(4) (128 (1)°), and C(2)-C(3)-Co(5)
(126 (1)°). This distortion can be related to the gen-
eral state of strain of the whole molecule caused by the
close nonbonded approaches of the carbonyl groups.

(23) L. F. Dahland D. L. Smith, J. Amer. Chem. Soc., 84, 2450 (1962).

(24) J. F. Blount, L. F. Dahl, C. Hoogzand, and W. Hubel, 7b7d., 88, 292
(1966).

(25) R.P. Dodge and V. Schomaker, J. Organometal. Chem., 8, 274 (1965).

(26) “Tables of Interatomic Distances,” Special Publication No. 18,
The Chemical Society, London, 1965,



2202 Inorgamic Chemastry, Vol. 9, No. 10, 1970

The remaining bond lengths are normal with the axial
Co-C bonds in the Co3(CO)s unit systematically longer
than the equatorial bonds as previously observed.!??
Infrared and Nmr Spectra.—Infrared spectral data
are presented in Table VI. Of particular importance

TaBLE VI
INFRARED SPECTRUM (cM 1) oF Cos(CO);;CsHe "
4189 vw N 1465 w  »(C=C)
4169 vw 1046 w »(C—C)
4164 vw .
4136 vw »(CO) 870 w e
4129 vw E overtone and 784 w/ 7(CH), HCCO)
4123 vw {  combination bands
4118 vw, sh | 640 m|
4085 vw i 610 w
4058 vw ; 583 wl
4010 vw ] 554 m |
529 s
3076 w »(CH) 517 s \
406 s »(Co—C) and
460 w| 5(Co—C—0)
2515 vw ! 447 wl
2473 vw > 431 w
2290 vw 414 w|
2108.7 ms 406 w|
2084.1 s 401 w)
2064.8 vs ’
2058.4 vs | 385 w L
2049.5 ms 377 w, sh >
2043.5ms | o 380 yw (O(CCO) T
2033.8 5 »(CO) 357 vw
2029.9s
2021 w |
2016 w \
1981 w )

@ From 4200 to 800 cm~! in CCl, or n-octane (2200-1900 cm 1);
from 800 to 200 cm™* in Nujol mull. °? Frequencies in the range
2200-1900 em ™! are accurate to #=0.2 cm™!; the remainder, to
+lem™t

is the evidence for the presence of a C-H bond involving
C(1). A weak band at 3076 cm! attributable to a
(C-H) stretching mode was observed in both the mull
and solution spectra. Similar bands are found in Co,-
(CO)4CyH,* at 3118 and 3087 em™1, positions character-
istic of an ethylenic C-H bond.

Recent work has shown that the highest »(CO) mode
(probably the totally symmetrical ‘‘breathing” mode)
in YCCo03(CO), compounds rarely occurs above 2103
cm~! unless the apical substituent Y is a strong elec-
tron-withdrawing group.?® As this band in Co:(CO);s
CH is found at 2108.7 ecm ™! (¢f. 2110 cm~? in C1CCos-
(CO)y), it may be inferred that the Coy(CO)sC; group is
electron withdrawing.

It has been suggested that the highest frequency
bands in the region 650-600 cm~! in YCCo3(CO), com-
pounds are due to Co-C stretching absorptions asso-
ciated with Co-C ¢ bonds as distinct from the Co-C-
(carbonyl) absorptions.® Thus we assign the bands at
640 and 610 cm™! to »(Co~C,); the comparable band in
CICCo3(CO)y occurs at 601 ¢cm~* Further discussion
of the infrared data will be deferred to a later paper in
this series when comparisons with other compounds will
be made.

Further evidence for the presence of a protou comes

(27) H. Greenfield, H. W. Sternberg, R. A. Friedel, J. H. Wotiz, R.
Markby, and I. Wender, J. Amer. Chem. Soc., T8, 120 (1956); Y. Iwashita,
F. Tamura, and A, Nakamura, /norg. Chem., 8, 1179 (1869); B. H. Robinson

and J. T.. Spencer, unpublished results.
(28) B. H. Robinson and J. I.. Spencer, unpublished results.
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from the H nmr spectrum where a weak singlet was
observed at 7 3.12. This may be compared with the
singlet at 7 4.18 found in Cox(CO)sCoH,. This relative
deshielding in Co3(CO)1;C;H together with the shifts in
CO stretching frequencies mentioned above are indica-
tive of electron delocalization in the Co;C; unit.

Mass Spectrum.—Details of the mass spectrum are
given in Table VII. Perhaps the best evidence for the

TaBLE VII
Mass SpECTRUM OF Cos(CO)15CsH
Ion A Ion A

COa( CO)15C3H+ b 18 COa(CO)C3H+ 14
Cos(CO)1CsH ™ 15 Cos(CO)C;s+ 0.7
Cos(CO)CsH T 31 Coy(CO)sC;H 1.5
CO5( CO)mCaH + 10 CO@CaH te 40
C05( CO>11C3H+ 8 CO()Ca +b 3. ]
COs(CO)lOCaHT 15 CO4( CO>2C3H+ 1.4
Co(CO)C:H T 100 Coy(CO)CsH 1.8
CO5(CO)3C$I‘I+ 55 CO4(CO>C3+ 0.2
Co4(CO)CH T 0.2 CosCsH b 18
CO5(CO)7C3H+ 41 C04C3+ 4.3
CO4(CO)9C3H4‘ 03 C04C+ 0.5
COa(CO)eCaH + 35 COaCaH - 0.8
COA(CO)gC:,H + Q.2 C03C3+ 4.3
Cos(CO)sC:H 31 CosCe 0.9
CO4(CO)7C3H+ 1 7 C03C+ 0.9
COs( CO)4C3H + 30 C02C3H + 3.1
CO4(CO)5C3H+ 2 C02C3+ 38
COs(CO)3C3H+ 26 C02C2H+ 0.4
Coy(CO)CHT 1.7 CoCo * 0.6
COs( CO>2C3H+ 20 COzC+ 0.3
COa(CO>2C3+ 05 CO'Z+ 0.2
C04( CO)4C3H + 1.7

¢ Metastable peaks were not observed except for the succes-
sive loss of carbonyl fragments. ? Doubly charged species Cos-
(CO);;CHET — CosC;H2 T also Co;Cy2+ and CoyCH?H were ob-
served. © Mass measured, 331.6732; caled for CosC;H, 331.6733.

existence of a hydrogen atom in Co;(CO);;C:H is the
presence of the parent molecular ion Co;(CO)y;;CsH*
and the ion CosC;H*. The latter ion has been mass
measured.

As expected,?® the initial fragmentation process in-
volves the progressive loss of carbon monoxide with
retention of the Co;C;H T unit

CO;’.(CO)}(,C;;H T COa(CO )15_7,C3H+ + nCO

(n =0-—»15)

Appropriate metastable peaks for this breakdown were
observed.

A totally unexpected fragmentation series arising
from an ion Co4(CO)3,C;H* was noted

Coy(CONCH T — Col CO)10nCGH T 4 #CO
(n = 0—> 10)

These ions do not arise from an impurity as they ap-
peared in the same relative abundance with different
samples. It is difficult to account for this fragmenta-
tion in terms of the molecular structure of Co3(CO)ys-
CsH. A {ragmentation series beginning with the ions
Co3(CO)¢CsH+ or Coy(CO)eCH* would be reasonable
(no such ions were ever observed) but there seems no

(29) M. I. Bruce, Advan. Organometal. Chem,, 6, 275 (1068).
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reason why one cobalt atom or a Co(CO); group should
be easily lost. Although acetylene derivatives of the
type Cos(CO)10CoRy are known, 2?30 the ion Cosi(CO)-
CsH* does not have the correct composition or frag-
mentation pattern to indicate that a species Cos(CO)y-
C.H or Co4(CO);0HC,CH; is formed in the mass spec-
trometer. Nevertheless it is apparent that the pre-
dominant secondary fragmentation process from the
CosC3H ™ ion is one of successive removal of cobalt from
the cluster, as in the case of the parent YCCo3(CO)s
compounds®!

—Co —Co ~Co
Co:C:H R CosCsH e CozC:H R Co.CsH +
WU

—Co —~Co —Co
CosCi™ — CosCi™ —> CosCst —> CouCs™

Notably absent from the spectrum are rearrangement
ions of the type CosH™ which are in relatively high
abundance in the spectra of CH3;CCo3(CO)y, CeHs-
CCo03(CO)g, and HCCo3(CO)y. This provides further
confirmation that the hydrogen is indeed bonded to the
terminal carbon atom C(1).

An important feature of the spectrum is the presence
in reasonable abundance of doubly charged ions

Cos{CO);CsH2 T — Cos(COM5..,CsH2T + #CO
(n = 0 —> 15)

It is well known that doubly charged species.are found
in the mass spectra of very’ stable carbonyl- clusters
only, generally those of the heavier transition ele-
ments,2%32 and they may therefore be taken as a guide to
(30) U. Kruerk and W. Hubel, Chem. Ber., 94, 2829 (1961). 7
(31) B. H. Robinsonand W.S. Tham, J. Chem. Soc. A, 1784 (1968).

(32) B.F.G. Johnson, J. Lewis, I. G, Williams, and J. M. Wilson, ¢bid., 4,
341 (1967).
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the overall stability of the cluster. Moreover such
species were found only in C¢H;CCo3(CO)s of the parent
clusters.®? It would seem that carbide clusters of the
type investigated here are particularly stable units,
especially to electron impact, and that it is the tetra-
valent carbon atoms rather than strong cobalt—cobalt
bonding which impart unusual stability to these clus-
ters. In this regard the absence of fragments Co,™,
CosCe*, CosCT, and Co,Cyt is significant as is also the
fact that singly charged pentacobalt carbide ions ac-
count for 90.8%, of the metal-containing ions.

Pure samples of the analogous compounds Cos(CO);;-
CsF and Cos(CO)1;:CsCH; have not yet been prepared.
However they have appeared as impurities in several
mass spectra®® of Cos(CO)1;;C;H. Besides confirming
the presence of an additional group in these molecules,
the breakdown patterns follow exactly those discussed
above.

An Attempted Preparation.—After the crystal struc-
ture had been determined, it seemed that a possible
alternative method of preparing the compound might
be to treat a Cox(CO)sC.H, complex with the parent
cluster compound. Consequently Co(CO)sC.H,% was
mixed with BrCCo3(CO), in different solvents and at
various temperatures but there was never any indica-
tion of a reaction between the two Co complexes.
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