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Comparison of the observed S-S bond length (2.109
(4) A) and sulfur bond angle (100.5 (1)°) with those of
other related compounds reveals no unusual bonding in
{(dtp)s. According to Pauling’s convention of summing
covalent radii, the length of an S-S single bond is 2.08
A% From an extensive survey of sulfur-containing
compounds, Abrahams found that the S-S bond varies
in length from 1.89 to 2.39 A.2* By comparison, the
length of the S-S bond in S;, in which a small amount of
double-bond character is believed to exist, is 2.037 (5)
A% Therefore, it appears that the S-S bond in (dtp)s
is essentially an unperturbed single bond. A survey of
sulfur valency angles by Abrahams reveals a range of
from 66 to 119°.2¢ Of these, S—S-S bond angles are
found to vary only from 103 to 108° with a mean value
of 106°. The observed bond angle in Ss, for example, is
107.8°.% P-S-P angles in the phosphorus sulfides also
fall into this range (102-109°).2° Consequently, our
observed S-S-P angle, though slightly smaller than the
sulfur valency angle found in most sulfur-containing
compounds, does not reveal any unusual bonding.

The two phosphorus-sulfur bonds are unequal in
length. According to Pauling’s scheme, the lengths of
P-S single and double bonds are 2.14 and 1.94 A,
respectively.?® By comparison, our observed (cor-
rected) bond lengths were 2.081 (2) and 1.923 (3) A,
indicating the presence of multiple bonding in both
cases.

The phosphorus-oxygen bond lengths in (dtp). are
similar to those found in previously determined metal
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phosphorodithioates. =83 If 176 and 1.44 A are
accepted as the single and double P-O bond lengths,
respectively,’! the average measured value 1.569 (5) A
(cor) in (dtp). indicates the presence of some double-
bond character in these bonds as well. This presence
would be consistent with the vast majority of other
compounds containing P-O- bonds. The bond order
estimated from the Robinson equation?®!

np_o = 23.8/rp_o8 4+ 0.74

is 1.4. Such a value would not seem unreasonable if
some = bonding due to delocalization of lone-pair
electrons on oxygen into vacant 3d,:—,. and 3d,. orbitals
of phosphorus occurs.?! =%

The C-H---S and C-H---O interactions are un-
exceptional. No distances less than 3.1 and 2.6 A
respectively, were found, based on coordinates for the

hydrogen atoms adjusted to give C~H bond lengths of
1.1 4.
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There is a pronounced tendency of the substituents
attached to the carboun atoms in the o-carborane moiety
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The dimeric carborane 1,2':1’,2-di-u-carbonyl-bis[1,2-dicarba-closo-dodecaborane(12)], [0-B1yCeHig- COJs, crystallizes in the
monoclinic space group P2;/n, with two molecules per cell of dimensions ¢o = 9.528 (4) A, by = 13.704 (8) A, ¢ = 7.078 (2)
A and 8 = 95.64 (2)°, with Z = 2, petea = 1.228 (2), and pobsa = 1.23 == 0.01 g/cm?. The phases were determined by the
symbolic addition method. Least-squares refinement with 1059 X-ray data resulted in a final unweighted residual of 7.1%.
The molecules are located on crystallographic centers of symmetry which fall at the centers of the planar, six carbon atom
ring. The carbonyl bond length is 1.217 (4) A for the riding model. No corrections for thermal motion were found neces-
sary among the skeletal bond lengths where the average bond distances are C-B = 1.730 (7) A, B-B = 1.778 (8) A C-C =
1.645 (4) A [polyhedral], and C~C = 1.517 (4) & [exopolyhedral]. The average B~H length is 1.09 (5) &.

Introduction to form exopolyhedral rings. No structural data have
yet appeared for such species or for the related doubly
connected bis o-carboranes. We wish to report the
structure for one such carborane, [0-BiHiyCo:COlJ,

1,27:1’,2-di-u-carbonyl-bis[1,2-dicarba - c/oso-dodecabo-



STRUCTURE OF A DIMERIC CARBORANE

rane(12)]. The latter was originally prepared by
Reiner, Alexander, and Schroeder,? who proposed that
the individual o-carborane moieties were connected by a
planar cyclohexane-like skeleton. The present single-
crystal X-ray diffraction study of [0-BypHyCe-COJ:
confirms the proposed structure.

Experimental Section

The [BipH;pC:: COJ; studied in this X-ray investigation was
prepared as previously described.? Crystals recovered from CCl,
invariably proved to be twinned; however, suitable crystals were
grown from CH,Cl,. The crystal used for the photographic
analysis was an approximately rectangular parallelepiped elon-
gated on ¢y with dimensions of 0.30 X 0.28 X 0.20 mm. Pre-
cession (Mo Kea) photographs of the %0I, k11, 0kl, and 1kl recipro-
cal lattice nets displayed the systematic absences 0k0 for & odd
and A0/ for (A 4 1) odd, which uniquely determined the space
group Copf-P2;/n. Accurate lattice parameters [a, = 9.528 (4)
A, by = 18.704 (8) A, ¢; = 7.078 (2) A, and 8 = 95.64 (2)°}
were measured on a Picker FACS-1 automated diffractometer
using 12 reflections in a least-squares adjustment routine supplied
with that system (A 1.5418 A). A measured density of 1.23 &
0.01 g/cm?® obtained by the sink—float method in KI solution
agrees favorably with the value of 1.228 (2) g/cm3 calculated on
the basis of two molecules per unit cell. Therefore, since the
general positions for P2,/n are fourfold, the molecular centers
(center of six carbon atom ring) must reside at a pair of special
positions. In the space group P2;/n the special positions are
symmetry centers.

One set of data was collected for kL (L = 0-4) using mul-
tiple-film Weissenberg techniques; intensities were estimated
visually by comparison with a standard scale of reflections ob-
tained from the same crystal. For a satisfactory refinement it
was necessary to gather another set of data (vide infra). These
intensity data were gathered using a General Electric XRD-5
single-crystal orienter equipped with a scintillation counter and a
pulse-height analyzer. Nickel-filtered copper Ko radiation was
used for taking the intensity record. The tube takeoff angle was
set at 4° and the 6-28 scan technique was used with an open
counter (scan rate 2° in 26/min; range +=1°). The crystal used
for the intensity record was an approximately rectangular
parallelepiped elongated on g, with dimensions 0.36 X 0.23 X
0.14 mm. The long axis of the crystal was mounted approxi-
mately parallel to the instrument axis ¢. Because of the low
absorption coefficient (u = 4.4 ecm™; I/I, = 0.94 and 0.87 for
minimum and maximum path lengths, respectively) no absorp-
tion corrections were deemed necessary. Zonal data (#0I, 0kI,
and #k0 data) were collected out to 26 = 140°. General kkl
data were collected to 26 = 100° yielding 1059 reflections of
which 125 were considered to be zero; 4.e., background equaled
or exceeded the peak measurement.

Solution and Refinement.—The 1093 visually estimated pho-
tographic data were corrected for Lorentz and polarization
effects and then converted to normalized structure factors® so
that the symbolic addition method of Karle and Karlet could be
applied to determine phase relationships. The statistical data
derived from the distribution of E’s and presented in Table I
confirm the centrosymmetric space group. The starting set of
origin-setting reflections and those for which symbolic signs were
used are listed in Table II. The ‘‘sigma two’’ method* was ap-
plied to the data by initially accepting only relationships wherein
the probability of a correct sign determination was 999 or better.
As more signs were determined, the probability level was cau-
tiously lowered and more contributing pairs were required for an
acceptable sign indication. The probability level was lowered

(2) J. Reiner, R. P. Alexander, and H. Schroeder, [norg. Chem., B, 1460
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TaBLE [
STATISTICAL DATA FOR THE DISTRIBUTION OF
NORMALIZED STRUCTURE FACTORS

Theoret
Obsd Centrosymmetric Nomncentro-
symmetric
AviElZ =1.04 1.00 1.00
AvIiE: — l‘ = 1,03 ().968 0.736
AvIEl =0.776 0.798 0.886
TABLE II

STARTING SET OF REFLECTIONS FOR THE
SYMBOLIC ADDITION PHASE DETERMINATION

hkl E S hkl E 5
317 3.16 + 574 2.76 B
276 3.12 4 626 2.69 C
162 2,78 + 11 6 11 3.08 D
849 2.78 A

eventually to 989 when the total of 206 signs had been deter-
mined. The tendency of A to be negative and of both B and C
to be positive was now evident, while the symbol D was rejected
since it was contained in less than 39 of the knowns. Accord-
ingly a three-dimensional Fourier was computed with the sym-
bolic signs noted. From the initial Fourier the 14 heavy atoms
which comprise the asymmetric unit of the molecule were easily
recognized. The atom positions were entered directly into a
least-squares refinement® using data from all levels and varying

Figure 1.—Perspective view of the packing arrangement in
the crystal. Molecular centers of inversion are located at
(0, 15, 0), (2, 0, ¥/2), (M, 1, Y2), (1, 15, 0), (O, Y/o, 1), and
(1,%/5,1). The (200) plane is outlined for clarity.

atom positions. Two cycles of refinement showed good agree-
ment between F, and F,, for levels 2k0, kkl, and kk2, but 1k3
and k%4 showed major discrepancies and the conventional R,
for nonzero data® was 49%. This difficulty suggested inadequa-
cies in the photographic data. Accordingly, the best refinement
obtained converged at R; = 249, for data from levels 20, hk1, and
hk2 with variable individual isotropic thermal parameters, atom
positions, and one overall scale factor.

At this point it was apparent that better data were essential.
Using the set of diffractometer data (vide supra), a satisfactory

6) Ri = Z||Fo| — |Fo||/2]Fu], Re = {zw(Fol — |Fo|y2/zw|Fol2} e
W. R. Busing, K, O. Martin, and H. A. Levy, “orrLs,”” Oak Ridge Na-
tional Laboratory, Oak Ridge, Tenn., 1962.
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refinement of the structure was accomplished by introducing the
atom parameters derived from the photographic data into the
least-squares refinement programs ORFLS.? Throughout the
refinement the data were weighted according to a scheme sug-
gested by Stout and Jensen® of the form

1 ’/ NT + Ngzs + (001N,

27\/5 A NT — Ngxa ‘

where o(F,) is the estimated standard error of F,, Lp is the Lo-
rentz—polarization correction term, N7 is the total counts ac-
cumulated during the intensity scan, and Npxrg is the mean of
two 10-sec background counts taken on both sides of the peak
at Nyx = NT — Npgo.

Because of core size limitations in our IBM 7040 computer, all
variables could not be treated as variables on any single pass.
Accordingly, the latter stages of refinement were carried out
using blocks of variables, one block per pass, with at least a
four-atom “‘overlap’’ in each block. Hydrogen atom positions

a(Fy) =

(6) G. H, Stout and L. H. Jensen, “X-ray Structure Determination,”
Macmillan, New York, N. Y., 1968, p 457.
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were varied simultaneously with the positional and thermal pa-
rameters of their bonded boron atoms. The thermal parameters
of the H atoms were not refined, but assigned the values of the
isotropic thermal parameters of their attached B atoms. Scat-
tering factors for oxygen, carbon, and boron were taken from ref 7
and the scattering factors for hydrogen were taken from the work
of Stewart, Davidson, and Simpson.?

Two cycles of least squares varying individual isotropic thermal
parameters, positional parameters, and a scale factor brought the
residual’ for nonzero observed data to 15.6%;. Two additional
cycles of least squares allowing anisotropic thermal motion re-
duced the residual {or nonzero observed data to 13.59%. A dif-
ference Fourier was calculated at this point using the program
FORDAP.? All the hydrogen atoms were found from the Fourier
map and all had peak intensities at least 1.5 times as large as the
tallest nonhydrogen background peak in the Fourier. Two

(7) K. Lonsdale, Ed., “‘International Tables for X-Ray Crystallography,”’
Vol. ITI, Kynoch Press, Birmingham, England, 1862, p 202.

(8 R.F.Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42,
3175 (1965).

(9) A. Zalkin, “Forpapr,”’ Lawrence Radiation ILaboratory,

University
of California, Betkeley, Calif., 1964,
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TABLE IV
FiNaAL PosiTIONAL* AND THERMAL PARAMETERS? FOR [BgH¢Ce- COJ,

Atom

designa-
tion X Y Z Bu

(6] 0.1859 (3) 0.5844 (2) ~0.2289(3) 0.0074 (4)
Clu) 0.1065(4) 0.5483(3) ~0.1299(5) 0.0068(5)
C-1  0.0479(3) 0.4211(2) 0.1499 (4)  0.0061 (4)
C-2 0.1590 (3) 0.4721(2) 0.0159 (5) 0.0058 (4)
B-3 0.1688 (4) 0.50563 (3) 0.2539 (6) 0.0074(6)
B-4 0.1201(5) 0.3937(3) 0.3706 (6) 0.0075(3)
B-5 0.0922(5) 0.3007 (3) 0.1976 (6) 0.0105 (7)
B-6 0.1088 (5) 0.3516(3) ~0.0334 (6) 0.0100(6)
B-7 (0.3234 (4) 0.4841(4) 0.1347(6)  0.0047 (5)
B-8 0.3056 (5) 0.4316(4) 0.3624 (7) 0.0073(6)
B-9 0.2593 (5) 0.3074(4) 0.3273(7)  0.0097 (7)
B-10  0.2471(5) 0.2814 (4) 0.0784(7) 0.0132(8)
B-11  0.2864 (5) 0.3920 (4) —0.0369(7) .0081 ()
B-12  0.3807 (5) 0.3627(4) 0.1837(7) 0.0085 (6)
BC

H-3 0.3678 (30) 0.0779 (21) 0.2097 (40) 2.7

H-4 0.0620 (29) 0.3919(19) 0.4945 (41) 2.6

H-5 0.0091 (31) 0.2462 (23) 0.2044 (44) 3.5

H-6 0.0393 (29) 0.3389(20) —0.1705(41) 2.4

H-7 0.3824 (31) 0.5520(21) —0.1114(41) 2.7

H-8 0.3665 (30) (.4528(21) 0.4799 (44) 2.8

H-9 0.2841 (32) 0.2597 (23) 0.4267 (45) 3.4

H-10 0.2723 (30) 0.2111(22) 0.0224 (42) 3.1

H-11 0.3226(30) 0.3977(21) —0.1859(44) 3.5

H-12 0.4941(32) 0.3371(21) 0.1941 (41) 3.4

« Numbers in parentheses here and in succeeding discussions are estimated standard deviations in the least significant digits.
mal parameters are of the form exp[— (Buh? + Bunk? + Bal? + 280hk + 28041 4 28:kD)).

the H atoms and of form exp( — B(sin?§)/A?).

c o

oo oCcoCcooCc o

B2 Bas Bie B B2
0071 (2) 0.0182(7) 0.0000 (2) 0.0045 (4) —0.0054 (3)
0033 (2) 0.0120(9) —0.0002(3) —0.0004(5) 0.0004 (4)
0033 (2) 0.0085(8) —0.0001 (3) 0.0010 (5) 0.0003 (4)
0035 (2) 0.0105(8) 0.0000 (3) 0.0018 (5) 0.0011 (4)

.0046 (3) 0.0100(10) —0.0010(4) —0.0005(6) —0.0003(5)
L0054 (3) 0.0111(10) 0.0005 (4) —0.0011 (6) 0.0018 (5)
.0037 (3) 0.0159(11) 0.0005 (4) 0.0006 (7) 0.0024 (5)
L0035 (3) 0.0126(10) 0.0008 (4) 0.0018(7) —0.0004(5)
.0065 (4) 0.0169 (12) —0.0008 (4) 0.0001 (6) 0.0022 (6)
.0071(4) 0.0151(11) 0.0002 (4) —0.0019(7) 0.0015 (6)
L0061 (3) 0,01563(11) 0.0015(4) —0.0006 (7) 0.0038 (5)
L0046 (3)  0.0169 (12) 0.0037 (4) 0.0030 (8) 0.0011 (6)
L0063 (4)  0.0170 (12) 0.0029 (4) 0.0034 (7) 0.0022 (8)
L0075 (4) 0.0174 (12) 0.0027 (4) 0.0018 (7) 0.0029 (6)

b Ther-
¢ Isotropic thermal parameters assigned to

Figure 2.—Stereoscopic representation of the molecular structure and vibrational ellipsoids of the atoms.

cycles of least squares including the hydrogen atoms were car-
ried out reducing the nonzero data residual to 7.6%,. The data
were checked for blunders in data collection and several errors
were found. These data were remeasuréd and two more cycles
of least squares brought the residualt to R; (including zeros) =
0.087, R; (excluding zeros) = 0.071, weighted R, (including
zeros) = 0.064, and weighted R. (excluding zeros) = 0.063.

The error terms were all on the order of 2 and 3 times the
parameter shifts at this time and the refinement was considered
complete.

Observed and computed structure factors are presented in
Table III. Atom position and thermal parameters are listed in
Table IV.

Discussion

The packing arrangement of the crystal is shown in
perspective in Figure 1. The configuration of the
molecule can be better seen in the stereoscopic diagram
(Figure 2) which includes the vibrational ellipsoids of the
atoms. The atom numbering scheme is given in

Figure 3.—Atom numbering convention.
omitted for clarity.

Hydrogen atoins are

Figure 3. Bond distances are listed in Table V and
selected bond angles are given in Table VI.

The *‘icosahedral’” bond distances (Table V) are
averaged in terms of equivalent bonds based on an
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TABLE V
BoND DISTANCES®
Bond Distances, A Avt
C(p)-0 1.217 (4 1.217 (4)
C-C

523 (5) 1.520(5)
517 (5)

[r PI—‘
T ®
— =

C-C
1-2 1.645(5) 1.645 (5)

C-B
742 (5) 1.745 (5)
754 (5)
738 (5)
. T45 (5)

1
w
I

C-B
L715(5)
.729(5)
L711(5)
705 (5)

—_

L715(10)

—_ e

B-B
L779(8)
L763 (6)

—

L7T71(8)

\1,,‘&
= O
—
—

B-B
764 (6) 1.760 (6)
785 (6)

7T
= o
an)
—_—

B-B
796 (6) 1.792 (7)
791 (6)
799 (6)
782 (6)

— o s

B-B
LT67 (6) 1.781(6)
790 (6)
788 (6)
.779(8)

bt e e

B-B
769 (6) 1.785(11)
783 (6)
790 (6)
.798(6)

—

B-B
.762(6)
.761(6)
774 (6)
.769 (10)

—_

L7687 (6)

[EE Y

B-B
L182(6) 1.782(6)

P
—
[
—

B-H
.09 (3) 1.09 (5)
14 (3)
.09 (3)
.13(3)
J11(8)
.01 (3)
.97 (3)
.08 (3)
.14 (3)
.13 (3)

¢ Corrections for thermal motion were made only for C{u)-0.
¥ If the rms error of the average bond length was greater than the
standard deviations of the values averaged, it is listed in paren-
theses for the least significant figure,

8-
9-97
10-10'
11-11’
12-127

o's]
Ll e e

RuporeH, PrLuc, Bock, axp Hobesox

TasLe VI
SELECTED BOND ANGLES

Bonded atoms Angle, deg

CL)-Clu)-C27) 1202 (4)
C(1)-C(p)-0 119.7(3)
C2)-Clu)-0 120.1(3)
Clur-C1)-C(2) 120.0 (4)
Clu)-C(2)-C1) 119.8 (4)
Polyhedral No. of
bond type Av angle,” deg determns
B-B- B 60.0(6) 36
B-B-C 58.7 (7) 12
B-C-B 62.3(4) 8}
B-C-C 61.9(4) 4
C-B--C 56.2(4) 2
Bonded atomg
C-C B
127 111.3(3) 4
B-C-B
3-1-6 115.1(3) 2
3-1-5 114.1(3) 4
C-B-B
1-4-9 1047 (4) 4
1-4-8 104.8(6) 4
1-3-8 104 .2 (5) 4
1-3-7 103.3 (4} 4
B-B-B
437 107.5 (4) 2
487 108.5 (4) 2
8-9-10 108.2 (5) 2
4-5-10 108.4 (7) 4
4-9-12 108.3(7) 4
4-9-10 108.4 (4) 4
4-8-12 107.5(8) 4
3~4-5 109.1(5) +
3-4-9 108.0 (5} 4
3-8-9 108.6 (4) 4

@ If the rms error of the average bond angle was greater than
the standard deviations of the values averaged, it is listed in
parentheses for the least significant figure. ? In the case of the
polyhedral angles near 108°, the values are averaged in terms of
equivalent angles based on an idealized C,, symmetry for the
BiyC, moiety. The atom numbers for a typical angle of an
equivalent set are listed.

idealized C,, symmetry for the B;C; moiety.'Y The
distances within the polyhedron compare favorably
with other o-carborane distances previously re-
ported. 11

The B-H distances also compare favorably with
those found® for 1-dicarba-closo-dodecaboran(12)-
yl-1,2-dicarba-ciloso-dodecaborane(12), (C:ByHi)e. A
B-H distance of 1.2 A has been assumed in the refine-
ment of somel®:1%14 g_carborane structures.

The C-0 bond distance calculated without correction
for thermal motion was 1.188 = 0.004 A; however
calculation of this distance assuming a “riding”’ mo-

(10) J. A. Potenza and W. N. Lipscomb, {norg. Chem., 5, 1471 (1966),

(11) J. A. Potenza and W. N. Lipscomb, ¢bid., 8, 1673 (1964).

(12) D. Voet and W. N. Lipscomb, ¢bid., 8, 1679 (1964).

(13) J. A. Potenza and W. N. Lipscomb, 7bid., 5, 11478 (1966}

(14) J. A. Potenza and W. N. Lipscomb. ibid., 5, 1483 (1966).

(15) L. H. Hall, A, Perloff, F. A. Mauer, and S. Block, J. Chenm. Phys., 43,
3911 (1965).



DIMETHYL-1,6-DICARBA-c/0s0-DECABORANE (10)

tion!® of oxygen on carbon yielded the tabulated value
of 1.217 (4) A which appears to be a normal carbonyl
length. Similar calculations for other skeletal bonds
gave only insignificant corrections in length.

The bridging carbon atoms and the oxygen atoms lie
+0.013 (5) and =0.032 (4) A, respectively, from the
plane defined by the four carbon atoms in the polyhedra
[C(1), C(17), C(2), and C(2")]. Thus the six cabon
atom ring is not strictly planar but has a very slight
“chair’’ conformation.

The polyhderal bond angles are summarized in Table
VI. Although the listed angles approximate those of
60.0 and 108.0° for a regular icosahedron, a distortion
which might be described as a compression of the
carbon atoms along the twofold axis of the o-carborane

(16) W. R. Busing and H. A. Levy, Acta Crystallogr., 17, 142 (1964).
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moiety is evident. The latter distortion is also apparent
in the relative shortness of the polyhedral bond lengths
involving carbon (Table V).

Disorder as is commonly found in the icosahedral
positions of carboranes!?®:% is not possible in the present
doubly connected bis o-carborane. More subtly, how-
ever, the carbonyl groups might be tilted above and
below the C(1)-C(2)-C(11)-C(2’) plane so as to give
the six carbon atom ring a chair-like configuration.
The latter disorder could average to give the observed
planar carbon atom ring without destroying the crystal-
lographically demanded molecular inversion center.
However, all the atom positions were well defined, the
thermal ellipsoid diagram (Figure 3) showed no ir-
regularities, and the difference Fourier map showed no
residual electron density in the carbonyl vicinity.
Therefore, we exclude the possibility of disorder.

Molecular and Crystal Structure of

Dimethyl-1,6-dicarba-closo-decaborane(10)

By THOMAS F. KOETZLE anp WILLIAM N. LIPSCOMB

Recetved September 29, 1969

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY,
HarvarD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138

A three-dimensional single-crystal X-ray diffraction study at —20 to —35° shows the molecule of dimethyl-1,6-dicarba-

closo-decaborane(10), BsHsC:(CHa)y, to have essentially Cs symmetry.

The BgC, unit is a bicapped square antiprism only

slightly distorted from full Dy symmetry., The charges on the B atoms, determined by LCAO-MO methods, become more
positive in the order B8 (attached to no C atoms) < B10, B7, B9, B3, B4 (attached to one C) < B2, B5 (attached to two C

atoms).

The compound crystallizes in the orthorhombic space group Pbca with eight molecules in a cell of dimensions

e = 11.36 &= 0.01, 5 = 11.81 == 0.01, and ¢ = 14.74 £ 0.01 A A density of 0.997 g/cm?® was calculated from these cell
dimensions. The 1615 X-ray reflections observed on film were refined to R = EHFQ\ - ’FcH/E‘FOI = 0.084.

Introduction

The 1,6 isomer of BgHzCy(CHsy), is produced,! along
\Vith BeHeCz(CHa)g and B7H7C2(CH3)2, when B7C2H11-
(CHy). is pyrolyzed near 200° in the presence of diphenyl
ether. The !B nuclear magnetic resonance spectrum® of
this molecule at 19.3 Mc shows two peaks: a doublet
of area 1 at low field and a complex peak of area 7 at high
field. The doublet at low field was assigned! to an
apical BH position, like that previously assigned? for
BigHi?™, and all others were assigned to equatorial posi-
tions on a bicapped square-antiprism cage. Our X-ray
study, as described below, proves that the C atoms are
in the nonadjacent 1 and 6 positions, not in the adjacent
1 and 2 positions which would also be consistent with
the B nmr spectrum. Thus, the 1 and 6 assignment
for C atoms, considered more plausible on chemical
grounds, has been confirmed by our study. Inaddition

(1) F. N. Tebbe, P. M. Garrett, D. C. Young, and M. F. Hawthorne,
J. Amer. Chem. Soc., 88, 609 (1966).

(2) W. N. Lipscomb, A. R. Pitochelli, and M. F. Hawthorne, ibid., 81,
5833 (1959).

a detailed molecular geometry which is suitable for
theoretical study is established below.

Experimental Section

Liquid 1,6-BsHsCo(CHjs)z (mp 1.0-1.6°) was sealed into Pyrex
capillaries having uniform wall thickness and inside diameter
about 0.7 mm. The sample size was regulated to yield crystals,
grown in a cold stream of N,,® which were roughly equal in all
dimensions. X-Ray data were collected between —20 and
—35°. Crystals were stable for periods of up to 4 months when
maintained in this temperature range, and all necessary data were
collected from two crystals. Reciprocal lattice symmetry Day
and systematic absences of 0%/ for & odd, 40! for I odd, and k0
for 2 odd indicated that the space group is Pbca. Unit cell
parameters of ¢ = 11.36 & 0.01, b = 11.81 & 0.01, and ¢ =
174 £ 0.01 A were obtained from Weissenberg photographs
calibrated by the superposition of a powder diffraction pattern of
Al, using 4.04916 A for the Al cell constant and A 1.54178 A for
Cu Ka. The cell dimensions were refined by a previously de-
scribed least-squares procedure? using as data 28 values for 50
reflections. Assuming eight molecules in the unit cell, a reason-

(3) W.N.Lipscomb. Norelco Rep., 4, 54 (1957).
(4) T.F. Koetzle, F. E, Scarbrough, and W. N. Lipscomb, Inorg. Chem., T,
1076 (1968).



