CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER 8, BRITISH COLUMBIA, CANADA

Raman Spectra and Structure of Bromine Tris(fluorosulfate) and Iodine Tris(fluorosulfate) and the Anions Bromine Tetrakis(fluorosulfate) and Iodine Tetrakis(fluorosulfate)

BY H. A. CARTER, S. P. L. JONES, AND F. AUBKE*

Received May 18, 1970

Alternative routes for the preparation of $K[I(OSO_2F)_4]$ and $K[Br(OSO_2F)_4]$ are described. The Raman spectra of these compounds, of $Na[I(OSO_2F)_4]$, and of the halogen tris(fluorosulfates) $I(OSO_2F)_8$ and $Br(OSO_2F)_8$ are reported. A squareplanar configuration is proposed for the anions, whereas the presence of two types of fluorosulfate groups in the tris(fluorosulfates) suggests a polymeric structure.

Peroxydisulfuryl difluoride,1 S2O6F2, has been found particularly useful in the preparation of halogen fluorosulfate derivatives, where its behavior can best be rationalized as that of a pseudohalogen. The reaction of bromine and iodine with excess S2O6F2 has been found to yield the tris-fluorosulfate compounds Br(OSO₂F)₃ and $I(OSO_2F)_3$, respectively.² Under similar conditions potassium bromide and iodide have been found³ to give complex salts of the composition $K[Br(OSO_2F)_4]$ and $K[I(OSO_2F)_4]$, respectively. Subsequent studies⁴⁻⁶ with the tris(fluorosulfates) have yielded some information on their chemical and physical properties as well as their solution behavior in fluorosulfuric acid. However, no structural information on any of the compounds is available at present. The assumption that the tetrakis(fluorosulfate) anion is a reaction product of the tris(fluorosulfate) and the fluorosulfate anion, according to

 $Hal(OSO_2F)_3 + SO_3F^- = Hal(OSO_2F)_4^-$ (Hal = Br, I)

is logical in view of the related systems BrF₃ vs. BrF₄and ICl₃ vs. ICl₄-. This, however, has not previously been substantiated by synthesis or vibrational spectra.

The present study was undertaken in order to search for new synthetic routes for the fluorosulfate complexes which might be used as evidence for the above assumption and to obtain, if possible, vibrational spectra of this group of compounds. Their rather high reactivity has prevented any infrared studies so far. Since none of the compounds is deeply colored-the tris(fluorosulfates) are pale yellow to yellow and the anion complexes white to slightly cream colored---it should be possible to obtain laser Raman spectra.

The most feasible structural models for the tris(fluorosulfates) are provided by analogs from among the interhalogen compounds of the AB_3 type: (a) the T-shaped monomeric molecule as found for BrF₃⁷ and $ClF_{3}^{8,9}$ and (b) the fluorosulfate-bridged dimer or pos-

(3) M. Lustig and G. H. Cady, Inorg. Chem., 1, 714 (1962).

- (7) J. Magnuson, J. Chem. Phys., 27, 223 (1957).
- (8) R. D. Burbank and F. N. Bensey, ibid., 21, 602 (1953).
- (9) D. F. Smith, ibid., 21, 609 (1953).

sibly polymer similar to the $I_2Cl_6^{10}$ structure. The fact that the ¹⁹F nmr spectrum of the melt or the solution in $S_2O_6F_6^6$ shows only a single line for both tris(fluorosulfates) might imply that neither model is satisfied, but rapid inter- or intramolecular exchange is a definite possibility. Vibrational spectra, however, have previously¹¹ been found to be very helpful in distinguishing between bridging and terminal fluorosulfate groups in compounds such as $Sn(SO_3F)_4$ and $Cl_2Sn(SO_3F)_2$.

Experimental Section

Materials.—Analytical grade KBrOs, KI, and NaI from Fisher Scientific Co. were used. Sublimed analytical grade I2 was supplied by BDH. Bromine (BDH) was purified before use according to literature methods.¹² KICl₄ was prepared over the KIBr₂ intermediate.¹³ Peroxydisulfuryl difluoride was prepared in a catalytic reaction as described in principle by Cady and Shreeve.14 The purity was checked by infrared and 19F nmr spectra. Potassium fluorosulfate was prepared from KCl (BDH) and double distilled HSO₂F (Baker and Adamson). The crude product was recrystallized from water. All reactions involving S₂O₆F₂ were carried out in 50-100-ml flat-bottom reaction flasks, fitted with Fisher and Porter greaseless Teflon stem stopcocks. The reaction mixture was stirred magnetically in case of the complex salt preparations. All reactions were followed by weight. A five to tenfold excess of $\mathrm{S}_2\mathrm{O}_6\mathrm{F}_2$ was used. The details are given below.

 $K[I(OSO_2F)_4]$ was prepared by combining equimolar amounts (3.48 mmol each) of KSO₃F and I(OSO₂F)₃ in a drybox. To complete the mixing of the products, a large excess of $S_2O_6F_2$ or $S_2O_\delta F_2$ was added. White crystals were formed and separated by distillation of solvent; 3.43 mmol was obtained. The decomposition point of $\sim +165^\circ$ compares well with the previously reported one of 167-168°.3

In the ligand replacement reaction, 1.722 mmol of KICl₄ was treated with a large excess of S₂O₆F₂. Chlorine was evolved immediately. In order to complete the reaction, the mixture was heated at 70° for 24 hr. The products were separated by distillation of the volatile components at room temperature; 1.709 mmol of $K[I(OSO_2F)_4]$ with a decomposition point of $+168^\circ$ was obtained.

The composition of both products was checked by iodine analysis. Identical X-ray powder patterns were obtained for $K[I(OSO_2F)_4]$ prepared by the different routes.

Preparation of K[Br(OSO₂F)₄].-An excess of S₂O₆F₂ was dis-

- (12) W. A. Noyes, Jr., J. Amer. Chem. Soc., 45, 1194 (1923).
 (13) G. Brauer, "Handbook of Preparative Inorganic Chemistry," Academic Press, New York, N. Y., 1963, pp 296, 298.
- (14) G. H. Cady and J. M. Shreeve, Inorg. Syn., 7, 116 (1963).

^{*} To whom correspondence should be directed.

⁽¹⁾ F. B. Dudley and G. H. Cady, J. Amer. Chem. Soc., 79, 513 (1957).

⁽²⁾ J. E. Roberts and G. H. Cady, ibid., 81, 4166 (1959).

⁽⁴⁾ F. Aubke and G. H. Cady, *ibid.*, 4, 269 (1965). (5) F. Aubke and R. J. Gillespie, ibid., 7, 599 (1968).

⁽⁶⁾ R. J. Gillespie and J. B. Milne, ibid., 5, 1237 (1966).

⁽¹⁰⁾ K. H. Boswijk and E. H. Wiebenga, Acta Crystallogr., 7, 417 (1954).

⁽¹¹⁾ P. A. Yeats, B. L. Poh, B. F. E. Ford, J. R. Sams, and F. Aubke, J. Chem. Soc. A, in press.

tilled *in vacuo* onto 6.503 mmol of KBrO₈. Upon warming to 0°, the reaction proceeded moderately fast with the formation of a bright orange intermediate. The reaction mixture was kept at 0° until oxygen evolution had ceased. After removal of the oxygen and the excess $S_2O_6F_2$ by pumping, 6.50 mmol of KBr-(OSO₂F)₄ was obtained. A decomposition point of 170° was found. The sample was analyzed for bromine after hydrolysis.

Raman Spectra.—A Cary 81 spectrophotometer equipped with a Spectra Physics Model 125 laser was used. The samples were contained in flat-bottom Pyrex tubes (5-mm o.d.).

Results

The Raman spectra of $K[Br(OSO_2F)_4]$, $K[I(OSO_2-F)_4]$, and $Na[I(OSO_2F)_4]$ are listed in Table I, together

TABLE I

VIBRATION	AL FREQUENCI	es for the H	Hal(OS	$O_2F)_4$ – A	ANION
KBr-	NaI-	KI-			
$(OSO_2F)_4$	$(OSO_2F)_4$	$(OSO_2F)_4$		Assignme	nt——
1424 mw	1407 m	1409 m	ν_7	ν_{as}, so_{3}	$A^{\prime\prime}$
1407 mw	1395 w				
1237 s	1236 s	1250 s			
1220 w, sh	1222 w, sh	1222 w, sh∫	ν_1	$\nu_{\rm s}$, SO ₃	A'
970 ms	100 1 m	1002 m	ν_4	$\nu_{\rm as,SO_3}$	A'
	859 w				
834 m	834 m	837	ν_2	$\nu_{\rm SF}$	\mathbf{A}'
615 vs	612 vs	620 vs	ν_3	$\delta_{ m dd}$	$\mathbf{A'}$
$578 \mathrm{~ms}$	580 ms	582 m	ν_{5}		$\mathbf{A'}$
553 w	551 ms	554 m	ν_8		$A^{\prime\prime}$
447 s	4 40 s	442 s	ν_1	Hal-O	A_{1g}
406 w	405 w	407 w	$\boldsymbol{\nu}_{9}$		$A^{\prime\prime}$
399 w	394 w	397 w	ν_4	Hal-O	\mathbf{B}_{2g}
270 s	252 s	260 s	ν_2	Hal-O	\mathbf{B}_{1g}
239 vs	231 vs	239 vs	ν_6		$\mathbf{A'}$

with the estimated intensities and a tentative assignment. A correlation diagram for the SO_3F group is given in Table II. The spectra for $Br(OSO_2F)_3$ and $I(OSO_2F)_3$ are listed in Table III. Approximate polar-

tion of equimolar amounts of KSO_3F and $I(OSO_2F)_3$ with $S_2O_6F_2$ as the liquid phase and (b) the ligand replacement reaction where $KICl_4$ is allowed to react with an excess of $S_2O_6F_2$ at room temperature according to $KICl_4 + 2S_2O_6F_2 = K[I(OSO_2F)_4] + 2Cl_2$. The obtained products are found to have the required composition and appear to be identical with the previously reported one³ as shown by the decomposition points and X-ray powder diagrams. The outcome of the preparative reactions seems to agree well with expectations but is, however, insufficient as structural proof.

None of the two routes discussed above presents an improvement over the previous preparation with KI as the simplest starting material. When potassium iodide is substituted by sodium iodide, $Na[I(OSO_2F)_4]$ is formed as expected.

The alternative route for the preparation of K[Br- $(OSO_2F)_4$ is far easier than the interaction of KBr with $S_2O_6F_2$. When KBrO₃ is allowed to react with $S_2O_6F_2$ at temperatures below 0° , a rather vigorous reaction with oxygen evolution takes place and $K[Br(OSO_2F)_4]$ is formed instantaneously. The net reaction is best described as $KBrO_3 + 2S_2O_6F_2 = K[Br(OSO_2F)_4] +$ 1.5O₂. When the reaction flask is kept below -40° , only moderate oxygen evolution occurs and bright orange platelike crystals are formed which decompose vigorously upon further warming under O₂ release. Since the analogous reactions of S₂O₆F₂ with KClO₃¹⁵ and KIO₃¹⁶ result in the formation of ClO₂SO₃F and IO₂SO₃F, respectively, it seems feasible that the observed intermediate is possibly thermally unstable BrO₂SO₃F. The only known BrO₂ derivatives FBrO₂¹⁷ and BrO2ONO218 are of very limited thermal stability,

		,	Table II			
	Correi	LATION DIA	GRAM OF T	he SO3F Group		
SO_3F^- ion (C_{3v} symmetry),	ν_1 (A ₁)	ν_2 (A ₁)	ν_3 (A ₁)	ν_4 (E)	ν ₅ (Ε)	ν_6 (E)
vibrational modes	ν_s, so_3	$\nu_{ m SF}$	ν_{B}, BO_{3}	ν_{as}, so_s	δ_{as,SO_3}	$\delta_{ m rock}$
Example KSO₃F	1082	786	566	1287	592	409
	\downarrow	Ļ	\downarrow	\checkmark	\checkmark	\checkmark
-OSO ₂ F group, vibrational modes	ν_1 (A')	$\nu_2 (A')$	ν_3 (A')	ν_4 (A') ν_7 (A'')	ν_5 (A') ν_8 (A'')	$\boldsymbol{\nu}_{6}\left(\mathbf{A}^{\prime} ight)=\boldsymbol{\nu}_{9}\left(\mathbf{A}^{\prime\prime} ight)$
Example $Br(OSO_2F)_4^-$	1237, 1220	834	615	970 1424, 1407	578 553	239 406

ization ratios for the most intense peaks of iodine tris-(fluorosulfate) were also obtained since the spectrum was obtained for the supercooled melt. All compounds, particularly the first four, were found to give well-resolved spectra at rather low sensitivities. The accuracy is judged to be $\sim \pm 2.0$ cm⁻¹.

The Raman spectra of $K[I(OSO_2F)_4]$, $K[Br(OSO_2-F)_4]$, and $Br(OSO_2F)_3$ are shown in Figure 1. All attempts to obtain well-resolved infrared spectra by avoiding window attack did not lead to satisfactory results.

Discussion

The two new synthetic routes employed for the preparation of $K[I(OSO_2F)_4]$ are quite logical in view of the postulated nature of the complexes: (a) the interac-

being comparable to the bromine oxides. Because the complex $K[Br(OSO_2F)_4]$ is formed instantaneously, this route offers some advantages over the previous preparation where heating to 50° and a reaction time of several days are required. A difference in decomposition points—we find 170° while that reported³ is 100°— is not too meaningful since decomposition points can be influenced by small impurities and do not present a good criterion for identification.

The Raman spectra of $K[Br(OSO_2F)_4]$, $K[I(OSO_2-F)_4]$, and $Na[I(OSO_2F)_4]$ are listed in Table I. All

(18) M. Schmeisser and L. Taglinger, Chem. Ber., 94, 1533 (1961).

⁽¹⁵⁾ H. A. Carter, A. M. Qureshi, and F. Aubke, *Chem. Commun.*, 1461 (1968).
(16) H. A. Carter and F. Aubke, to be submitted for publication.

 ⁽¹⁰⁾ II. A. Carter and E. Pammer, Angew. Chem., 67, 156 (1055); 69, 781 (1957).

HALOGEN FLUOROSULFATE DERIVATIVES

	Т	ABLE	III		
VIER ATTONAL.	FREQUENCIES	FOR	Br(OSO ₂ F) ₂	AND	I(OSO ₂ F) ₂

		Assign	ment
$Br(OSO_2F)_3$	I(OSO ₂ F) ₈	Terminal	Bridging
1490 mw	1469 m	ν_7	
1467 w			
1372 m	1381 mw		ν_1'
1356 mw, sh			
1241 s	1233 s, p (0.34)	ν_1	
1230 m, sh			
1168 mw	1182 w, sh		דע '
1122 m	1076 w, sh		
	1050 m, p (0.62)		V4'
1010 m	963 m, p (0.29)	V4	
1015 m			
859 m	869 p (0.40)		ν_2'
827 vw	826 w		
801 m	800 m	ν_2	
721 ms	700 w		ν_5'
645 vs, br	642 vs, p (0.49)		ν_3'
612 vs	619 p (0.48)		
583 ms	580 m, sh	ν_5	
563 m	556		ν_8'
551 vw			
540 w	540 m, sh	ν ₈	
455 s	457 s, p (0.39)	νı Hal–O	
430 m	430 w, sh		ν_9'
408 mw	412 m	ν_9	
384 mw, sh	386 mw, sh	₽4 Hal−O	
303 vs	290 vs, p (0.46)		ν_6'
276 vs	270 s, sh	ν₂ Hal−O	
225 ms		ν_6	
206			
	181 m		
	148 m		

three show considerable similarity, indicating structurally related compounds. The three vibrations found in the sulfur-oxygen stretching region of 1500– 900 cm⁻¹ suggest that all four fluorosulfate groups are identical. Some small splittings or the presence of shoulders could be due to solid-state splitting. Also a single band attributed to the S-F stretching vibration is found at ~835 cm⁻¹. The observed frequencies differ markedly¹⁹⁻²¹ in total number and position of the absorption bands from that of an SO₃F⁻ ion.

Covalent interaction will increase the number of vibrational modes from 6 for the SO_3F^- ion with C_{3v} symmetry to 9 for the covalent monodentate or bidentate SO_3F group, both with C_s symmetry, by the removal of degeneracy for the three E modes. All vibrations for C_{3v} and C_s symmetry will be ir and Raman active.

The change in band positions is illustrated nicely for the monodentate covalent compounds by $S_2O_5F_2$ and related compounds, where bands at ~ 1500 and 1250 cm⁻¹ are found,²² indicating a larger degree of multiple bonding for the remaining terminal sulfur-oxygen bonds.

A correlation diagram, where a tentative assignment for the $Hal(OSO_2F)_4^-$ ion is made, is shown in Table II. The degree of splitting of the E modes, best recognized for the S-O stretching modes, will indicate the degree of covalency in the halogen-oxygen bond. This is well

illustrated when the $Br(OSO_2F)_4^-$ ion is compared to $I(OSO_2F)_4^-$ ion where a slightly smaller splitting for the latter indicates a slightly more polar bond.

For the anions, the vibrational frequencies can best be interpreted as being due to a covalently bonded monodentate SO₃F group. The remaining bands at \sim 445, \sim 395, and \sim 260 cm⁻¹ are most probably due to halogen-oxygen vibrations and for the bromine species occur at slightly higher frequencies than the iodine species, as expected from the difference in masses.

The number of vibrational modes agrees well with a square-planar configuration, already suggested by the structure of the BrF_4^{-1} ion^{23,24} which is found to have D_{4h} symmetry. To obtain some indication of the approximate position of the vibrational bands in the fluorosulfate compounds, we have recorded the Raman spectrum of KBrF₄ which shows a pattern of three absorption lines at 532 (s), 457 (ms), and 246 cm⁻¹ (m). Due to the above-mentioned thermal instability of bromine-oxygen bonds, no other comparable assignments could be found in the literature.

The same lack of comparable systems is found for the $[I(OSO_2F)_4]^-$ ion. All vibrational studies on tervalent iodine-oxygen compounds are concerned with in-

⁽¹⁹⁾ D. W. A. Sharp, J. Chem. Soc., 3761 (1957).

⁽²⁰⁾ H. Siebert, Z. Anorg. Allg. Chem., 289, 15 (1957).

⁽²¹⁾ J. Goubeau and J. B. Milne, Can. J. Chem., 45, 2321 (1967).

⁽²²⁾ R. J. Gillespie and E. A. Robinson, *ibid.*, 40, 644 (1962).

⁽²³⁾ S. Siegel, Acta Crystallogr., 10, 380 (1957)

⁽²⁴⁾ W. G. Sly and R. E. Marsh, ibid., 10, 378 (1957).

G. A. TSIGDINOS AND C. J. HALLADA

frared spectra of iodosyl derivatives²⁵ where the iodine– oxygen bond appears to have appreciable multiple-bond character.

The Raman spectra of both tris(fluorosulfates) indicate structural similarity but are far more complex than those of the anionic species. The vibrational frequencies are listed in Table III, together with a tentative assignment. For both compounds, a total number of six vibrational modes is found in the sulfur-oxygen stretching region and two strong bands become assignable to sulfur-fluorine stretching. A similar duplication of vibrations is found in the lower range of the bending and rocking modes. Bands previously assigned to halogen-oxygen are found again with comparable intensity in the same place as the anionic species.

The obvious explanation for the multitude of bands is that two types of fluorosulfate groups are present in both compounds. One set of bands is in approximately the same place as found for the tetrafluorosulfatohalate-(III) anions, even though the asymmetric S–O stretching frequency appears at a higher wave number. Again the shift is larger for the bromine compound, indicating a higher degree of covalency, as found before.

The second set of nine vibrational modes could possibly be due to a second covalently bonded monodentate SO₃F group as expected for a T-shaped molecule or for a bidentate bridging group. We clearly prefer the latter alternative for the following reasons. The (25) W. E. Dasent and T. C. Waddington, J. Chem. Soc., 3350 (1960). halogen-oxygen frequencies would be found in a different place and a total of six Raman-active bands would be expected for the C_{2v} model with three in the stretching range. Only minor positional changes for a second terminal SO₃F group would be expected. In addition, fair agreement with the bridging fluorosulfate group in the hexacoordinated compounds Sn-(SO₃F)₄ and Cl₂Sn(SO₃F)₂¹¹ is found.

All this points to the fact that the two halogen tris-(fluorosulfates) are not monomeric in the solid state. The most likely models are a chain-type polymer or a bridged dimer, both with a square-planar configuration for the halogen. Even though the observed solubility in solvents such as $S_2O_5F_2$ and $S_2O_6F_2$ points to low molecular weight species, no clear distinction is possible at this point.

The occurrence of many doublets in the spectrum of bromine tris(fluorosulfate) is best explained by assuming different conformations of both the terminal and the bridging group. Only singlets are observed for most corresponding bands of $I(OSO_3F)_3$ present as a melt. All assignments for the two fluorosulfate groups are tentative particularly in the lower frequency range. The higher frequency S-F vibration is assigned to the bridging SO₃F group, based on the Cl₂Sn(SO₃F)₂¹¹ example. Vibrational modes at 200 cm⁻¹ and lower could possibly be due to lattice modes.

Acknowledgment.—We acknowledge financial support from the National Research Council of Canada.

Contribution from the Climax Molybdenum Company of Michigan, Research Laboratory, Ann Arbor, Michigan 48105

Solution Properties of 12-Heteropoly Acids of Molybdenum

BY G. A. TSIGDINOS* AND C. J. HALLADA

Received April 13, 1970

Conductivity and pH measurements were made on the heteropoly acids $H_4[PMo_{11}VO_{40}]$ and $H_5[PMo_{10}V_2O_{40}]$ at 25° in mixed oxygen-containing solvents to establish the stability and electrolyte strength of the compounds. Measurements of pH were also obtained on $H_3[PMo_{12}O_{40}]$ and $H_4[SiMo_{12}O_{40}]$. The conductivity data show that the vanadium compounds exhibit typical behavior of unsymmetrical strong electrolytes in the oxygen-containing solvents. The pH data show that the heteropoly acids studied are strong, stable acids in these media. The acid $H_3[PMo_{12}O_{40}]$ is hydrolytically unstable in water, but it is stabilized by mixed oxygen-containing solvents. Diffusion coefficients were calculated for $PMo_{11}VO_{40}^{4-}$ and PMo_{10} - $V_2O_{40}^{5-}$ using conductivity data.

Introduction

A previous paper¹ reported the stability and acid strength of the heteropoly acids $H_4[PMo_{11}VO_{40}]$ and $H_5[PMo_{10}V_2O_{40}]$ as determined by conductivity and pH measurements in aqueous solution. These data showed that $H_4[PMo_{11}VO_{40}]$ and $H_5[PMo_{10}V_2O_{40}]$ are strong 1:4 and 1:5 electrolytes, respectively, having conductivities that obey the Onsager-Fuoss equation.^{2,3}

The present work constitutes an extension of the conductivity studies on these compounds into dioxanewater and *tert*-butyl alcohol-water solvent mixtures; the compounds are expected to find usefulness in solvents other than water alone. In addition, pH measurements of the acids $H_3[PMo_{12}O_{40}]$, $H_4[SiMo_{12}O_{40}]$, $H_4[PMo_{11}VO_{40}]$, and $H_5[PMo_{10}V_2O_{40}]$ were obtained in (2) R. M. Fuoss and L. Onsager, *ibid.*, **61**, 668 (1957).

(3) R. M. Fuoss and F. Accescina, "Electrolytic Conductance," Interscience, New York, N. Y., 1954.

^{*} To whom correspondence should be addressed.

⁽¹⁾ C. J. Hallada, G. A. Tsigdinos, and B. S. Hudson, J. Phys. Chem., 72, 4304 (1968).