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The crystal and molecular structure of the molecular nitrogen complex azidodinitrogenhis(ethylenediamine)ruthenium(II)
hexafluorophosphate, [Ru(N;)(N2)(NHsCH,CH.NH,).] [PFs], has been determined from three-dimensional X-ray data col-

lected by counter techniques.
collection.

The central metal atom is coordinated octahedrally to six nitrogen atonis.

The material is X-ray sensitive and it was necessary to use four different crystals for the data

The Ru—N of (N;) bond distance is

1.894 (9) A and the Ru-N-N bond angle is 179.3 (9)°; the Ru-N (of N;~) bond distance is 2.121 (8) A and the Ru-N-N

bond angle is 118.7 (7)°."

The Ru—N distances to the nitrogen atoms of the ethylenediamine groups range from 2.144 (9) to

2.108 (9) A, with an ave{age distance of 2.125 (19) A Crystal data: monoclinic, space group Co5-P21/n; ¢ = 9.97 (1) A,

b=1201(1)A ¢ =1259 (1) A, 8 = 1024 (8)°, Z = 4; dobsa = 2.00 2= 0.03 g/cm?, degtea = 1.98 g/cm?.

The structure

was refined using 1375 independent reflections from a limited data set for which F2? > 3a(F?), and the refinement converged

to a conventional R factor (on F) of 5.69%.

Introduction

In the previously reported structure of CoH(Ny)-
(P(CeHj;)s)5,* we found that the Co-N bond is 1.807
(23) A and by comparison with the Co-N distance of
1.936 (15) A in [Co(NHj)s]Is* we concluded that, as
expected, the metal-nitrogen (of N2) bond has some
multiple-bond character. In carrying out this present
study of the bonding of molecular nitrogen, we chose
azidodinitrogenbis(ethylenediaﬁine)ruthenium(II) hex-
afluorophosphate because the central metal atom,
ruthenium, was expected to be coordinated to three
different types of nitrogen atoms. Thus we expected
to obtain a direct, intramolecular comparison between
a Ru-N single bond length and the length of the Ru-N
bond when molecular nitrogen is the coordinating lig-
and. The compound is of further interest because it
contains a coordinated azido group. Only a limited
number of structures are known in which there is an
azido group coordinated to a transition metal. This
work bears directly on our previous studies of metal-
nitrogen multiple bonds.?

Collection and Reduction of Intensity Data

The material is prepared* by treating frams-[RuCl-
(NH,CH,CH,NH,),]Cl with silver p-toluenesulfonate
and, after filtering, adding NaN; This solution is
allowed to stand and after several hours, a saturated
solution of NaPF; is added. The crystals were kindly
supplied by Dr. P. S. Sheridan. The N-N (of Ny)
stretching frequency in this compound is 2103 cm™1, at
the lower end of the range 2105-2167 em~! reported for
the Ru(NH;)5(Ny)2+ salts.’

* To whom correspondence should be addressed.
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A series of Weissenberg and precession photographs
taken with Cu Ka radiation showed the crystals to be
monoclinic with 2/m Laue symmetry. The systematic
extinctions observed were: 0! for & + [ odd and 00
for £ odd. These extinctions are consistent with the
space group Ca’-P2:/n.

A crystal was mounted, along the long dimension
[100], in a thin-walled glass capillary for data collection
on a Picker four-circle automatic diffractometer. It
was observed that the material is extremely X-ray
sensitive. The mosaic spread of the crystal, as deter-
mined by w scans taken with a narrow source and open
counter, increased greatly after only about 12 hr of
exposure of the crystal to X-rays. This crystal was
used to establish the following experimental conditions
for data collection. The data were to be collected using
Mo Kay radiation (A 0.7093 A) and the diffracted beam
was to be filtered through 3 mils of Nb foil. A takeoff
angle of 2.2° would be used. At this takeoff angle, the
peak intensity of a strong reflection was about 809, of
the maximum value as a function of takeoff angle.
The counter aperture selected was 4.0 mm X 4.0 mm
and was positioned 29 em from the crystal. The pulse
height analyzer was set for approximately a 909, win-
dow, centered on the Mo K& peak. The data were to
be collected by the 626 scan technique at a scan rate of
1° in 20/min. An asymmetric scan range of 0.75° on
the low-angle side and 1.25° on the high-angle side of
the calculated 26 values (Mo Ka;) would be used.
Stationary-counter, stationary-crystal background
counts of 10 sec were to be taken at each end of the
scan range. Attenuators were inserted automatically
when the intensity of the diffracted beam exceeded
7000 counts/sec during the scan; the attenuators were
Cu foil, their thicknesses being chosen to give attenua-
tor factors of approximately 2.2. After these experi-
mental conditions were determined, Friedel pairs of
reflections (hkl and AEl) were collected in the 26 range
0-25°. These data were corrected for decomposition,
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equivalent forms were averaged, and values of F,? were
derived. These were then used as input to a Patterson
function calculation.

The rapid decomposition of this crystal indicated
unusual sensitivity of the material to X-rays. There-
fore, we had no choice but to collect data on several
crystals. We will refer to these new crystals as I-1V.
All crystals were mounted in thin-walled glass capil-
laries along the long dimension [100]. The experi-
mental conditions described above wete the same for
data collection on each of the four crystals. In each
case, the same ten reflections were centered on the
diffractometer and used in a least-squares refinement of
setting angles to determine cell constants,® and the same
three reference reflections (400, 040, 004) were used as
a check on crystal decomposition. These reference
reflections were measured every 100 reflections during
the early stage of each run and every 50 reflections in
the later stages. The cell constants, determined by
methods previously described,® are as follows (Mo Key
radiation; X 0.7093 A): ¢ = 9.97 1) A, b = 12.01 (1)
A c=1259(1) A&, 8 = 102.4 (3)°, at 22°. The details
on each data set are given in Table I. The data in the

TABLE I
DEeTAILS OF DaTa COLLECTION

Av
Crystal Dimensions,? No. of 2¢ range, decompn,
no. mm observationsd deg A
1 0.32X0.12X0.13 759 20-35 45
II 0.44 X 0.14 X 0.14 661 33.5-41 79
111 0.60 X 0.14 X 0.15 666 0-25 40
40-43

v 0.64 X 0.10X 0.12 600° 42-49 55

e Parallel to {100], [011], and [011], respectively, of the paral-
lelepiped-shaped crystals. ® Owing to the problem of decom-
position, only unique reflections were collected. ¢ Although
there were 882 reflections in this 28 range, owing to the weak
intensity at higher 26 values coupled with decomposition, only
600 reflections were collected.

20 range 0-25° were recollected on crystal IIT because
the crystal which was used for collection of Friedel
pairs of reflections (kkl and %El) in this 20 range was
first used for determination of the experimmental condi-
tions for data collection. We felt, therefore, that this
crystal had severely decomposed even before data col-
lection was begun and therefore we did not have an
accurate measurement of decomposition on this early
block of data. In general, all three standards de-
creased in intensity at approximately the same rate.
A cotrection for decomposition was applied to each
data set based on the average decomposition of the
three standards as a function of X-ray exposure. Each
block of data, with decomposition correction applied,
was processed in the manner previously described,®
with a value of 0.04 for p selected for the calculation of
o(I). The values of I and ¢(I) wete corrected for
Lorentz-polarization effects. The data on the four

(6) P. W. R. Corfield, R. J. Doedens, and J. A. Ibers, I'norg. Chem., 6, 197
(1867). ‘
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crystals were interscaled using common reflections.’
At first, all the data for which I > 30(7) were used for
interscaling and the interscaled data were used in the
solution of the structure. We found, after solving the
structure, that data from crystal II, which suffered the
greatest average decomposition, were markedly inferior
in the agreement between |F,| and |F,|, where | F,| and
|F.| are the observed and calculated structure ampli-
tudes. Therefore, the data were again interscaled
using only crystals I, III, and IV, Of the resultant
1783 unique reflections, obtained by omitting data in
the range 35 < 26 < 40°, only the 1375 which had F2 >
30 (F?) were used in the final refinement.

The absorption coefficient of this compound for Mo
Ka radiation is 11.9 en~!.  On the basis of absorption
correction tests,” a correction for absorption proved
unnecessary as the transmission factors did not vary by
more than 1.5%, for a given crystal.

Solution and Refinement

All least-squares refinements were carried out on 7,
the function minimized being Ew(|F°| — |Fc|)2, where
the weight w is taken as 4F,%?/02(F,2). In all calcula-
tions of F,, the atomic scattering factors for the ru-
thenium and hydrogen atoms were those calculated by
Cromer and Waber® and by Stewart, Davidson, and
Simpson,® respectively; scattering factors for all other
atoms were taken from the usual tabulation.’®* The
effects of anomalous dispersion of the ruthenium and
phosphorus atoms were included in the calculation of
Fo;1* the values of Af’ and Af'’ used were those calcu-
lated by Cromer.!?

The ruthenium atom and six nitrogen atoms co-
ordinated to it were found from a Patterson function’
which was based on the data obtained on the initial
crystal. These seven atoms were refined and structure
factors were calculated. A difference Fourier synthesis
revealed the phosphorus atom and provided no evi-
dence of disorder problems. At this point we collected
the data on crystals I-IV.

After the data from crystals I-IV were corrected for
decomposition and interscaled, structure factors were
calculated using the initial positions of the ruthenium,
phosphorus, and six nitrogen atoms; this was followed
by a difference Fourier synthesis. The positions of the
six fluorine, four carbon, and the other three nitrogen
atoms were found from this map. Three cycles of
refinement were carried out in which the ruthenium
and phosphorus atoms were refined with anisotropic
thermal parameters, the six fluorine atoms were refined

(7) Inaddition to various local programs, Patterson functions and Fourier
syntheses were calculated using a local version of Zalkin’s Forbap. Ab-
sorption correction tests were made by a modification of W. C. Hamilton’s
cono9 and data were interscaled using Hamilton’s INSCALE. Refinement
and structure factor calculations were done by our least-squares program,
NucLs, which, in its nongroup form, resembles the Busing-Levy ORFLS,
Errors in derived quantities were obtained from the Busing-Levy ORFFE
program, and drawings were made with use of Johnson’s ORTEP program,
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(9) R. F. Stewart, E. R. Davidson, and W, T. Simpson, J. Chem. Phys.,
42, 3175 (1985).
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TABLE II
PoSITIONAL AND THERMAL PARAMETERS FOR [Ru(N3)(Ny)(NHCHy;CH,NH, )| [PF)

Atom x 3y z Au*
Ru 0.22318 (8)® 0.16331 (7) 0.36589 (6) 0.00821(10) O
N1 0.4315 (9) 0.1792 (6) 0.3583 (7) 0.0130 (14) 0
C1 0.4626 (11) 0.0997 (9) 0.2782 (10) 0.0078 (13) 0
C2 0.3445 (13) 0.0981 (9) 0.1805 (9) 0.0142 (18) 0
N2 0.2149 (10) 0.0737(7) 0.2176 (7) 0.0130 (13) 0
N3 0,2329 (9) 0.2613 (7) 0.5084 (7) 0.0082 (11) 0
Cc3 0.0935 (13) 0.2920 (11) 0.5177 (10) 0.0123 (18) 0
C4 —0.0014(11) 0.1959 (10) 0.4798 (10) 0.0068 (13) 0
N4 0.0094 (9) 0.1624 (7) 0.3707 (7) 0.0095 (11) 0
N5 0.1885 (8) 0.3134 (6) 0.2753 (7) 0.0107 (11) 0.
N6 0.1047 (10) 0.3107 (7) 0.1935 (8) 0.0130 (14) 0
N7 0.0234 (11) 0.3084 (9) 0.1139 (8) 0.0174 (17) 0
N8 0.2611 (9) 0.0314 (8) 0.4493 () 0.0120 (12) 0
N9 0.2828 (11) —0.0453 (8) 0.4987 (9) 0.0216 (18) 0
P —0.1856 (4) —0.0755 (3) 0.1773 (3) 0.0131 (5) 0
F1 —0.0326(8) —0.0994 (6) 0.2389 (8) 0.0152 (12) 0
F2 —0.3353(9) —0.0509 (8) 0.1146 (8) 0.0188 (13) 0
F3 —0.2257(12) —0.1931 (8) 0.2100 (10) 0.0333 (22) 0
F4 —0.1371(12) 0.0405 (8) 0.1538 (10) 0.0351 (21) 0
F5 —0.1553(13) —0.1282 (11) 0.0754 (8) 0.0355 (23) 0

F6 ~—0.2100 (10)

,00482 (6)
.0055 (7)
.0080 (10)
.0085 (11)
.0056 (7)
.0077 (8)
.0097 (11)
.0095 (11)
.0087 (7)
0048 (7)
.0081 (8)
.0110 (11)
.0065 (8)
.0073 (9)
.0087 (3)
.0118 (8)
,0140 (10)
.0125 (10)
.0110 (8)
.0355 (20)
—0.0268 (11)  0.2851 (9) 0.0243 (19)  0.0335 (19)

a The form of the thermal ellipsoid is exp[ — (Buh? + B2k? + B3l? + 2812hk + 281381 + 282k1)].

B2 Bas Br2 B3 B3
0.00498 (8) —0.00024 (7) —0.00065 (5) —0.00012 (6)
0.0054 (7) —0.0011 (7 —0.0000 (7) —0.0001 (8)
0.0078 (10) 0.0001 (9) 0,0018 (9) —0.0005 (8)
0.0048 (9) —0.0008 (11) 0.0014 (10) —0.0001 (8)
0.0055 (7) —0.0012 (8) —0.0021 (7) —0.0002 (6)
0.0060 (7) 0.0006 (7) —0.0014 (7 —0.0013 (6)
0.0078 (10) 0.0010 (11) 0.0014 (11) —0.0038 (9)
0.0098 (12) 0.0024 (9) 0.0031 (10) —0,0004 (9)
0.0068 (7) —0.0007 (7) 0.0003 (7) —0.0010 (8)
0.0057 (7) 0.0002 (8) —0.0020 (7) 0.0003 (5)
0.0061 (8) —0.0010 (7) 0.0002 (8) 0.0004 (6)
0.0072 (9) -—0.0015 (10) -~0.0027 (9) 0.0014 (8)
0.0048 (7) 0.0005 (7) 0.0021 (7) —0,0002 (8)
0.0091 (9) 0.0034 (10) 0.0039 (10) 0.0046 (8)
0.0098 (3) 0.0012 (3) —0.0011 (3) —0.0017 (2)
0.0142 (9) 0.0014 (8) —0.0042 (8) —0.0021 (7)
0.0240 (12) 0.0051 (9) —0.0117 (10) —0.0050 (9)
0.0259 (16) —0.0099 (12) —~0.0070 (13) 0.0039 (10}
0.0270 (15) —0.0042 (11) —0.0118 (14) 0.0083 (10)
0.0108 (9) 0.0164 (17) -0.0012 (12) —0.0073 (12)
0.0187 (12) 0.0028 (15) 0.0073 (12) —0.0124 (13)

b Numbers in parentheses given here

and in other tables are estimated standard deviations in the least significant digits.

as an octahedral group with an overall group thermal
parameter, and the other atoms were refined with iso-
tropic thermal parameters. At this time the contribu-
tions of the hydrogen atoms were calculated. Hydro-
gen atom positions for the two hydrogen atoms on each
of the carbon and nitrogen atomis of the ethylenediamine
groups were calculated from idealized tetrahedral geom-
etry about the atom (C-H, N-H = 0.90 A). The
fixed contributions of the 16 hydrogen atoms to F, were
calculated using an isotropic thermal parameter of 5.0
A? for each atom. Two cycles of refinement in which
the six fluorine atoms were refined as a group with an
overall group thermal parameter and all other atoms
were refined with anisotropic thermal parameters gave
agreement factors Ry of 15.19, and R, of 18.09, where
R, = EHF°| — |FOH/E|F0| and R, (or weighted R factor)
= (Ew(\Fo\ — |Fc\)2/EwF02)l/2. Structure factors
were calculated and a statistical analysis indicated that
the data from crystal IT were inferior to the data from
the other crystals.

Therefore, the data were scaled again, as described
above, with the omission of those collected from crystal
II. This resulted in a data set which omitted reflec-
tions in the range 35° < 20 < 40°. The input param-
eters for the first cycle of refinement using this limited
data set were those derived from the complete data set.
After three cycles of refinement the positions of the 16
hydrogen atoms were recalculated and these were added
as a fixed contribution to F.. After three more cycles
of refinement, in which all 21 atoms (ruthenium, phos-
phorus, six fluorine, four carbon, and nine nitrogen
atoms) were refined anisotropically and data in the
range 35° < 20 < 40° were omitted, convergence was
reached at Ry = 5.69% and Ry = 6.7%,.

A statistical analysis of Zw(|F,| — | F.|)? as a function
of |F,| and A\—! sin 6 revealed no unexpected trends.
In particular, no correction for extinction appeared
necessary. The error in an observation of unit weight
is 2.6 electrons.

The positional and thermal parameters derived from

the last cycle of refinement are presented in Table II
along with the associated standard deviations in these
parameters as derived from the inverse matrix. The
idealized positional parameters of the hydrogen atoms
of the ethylenediamine rings are listed in Table III.

TABLE III
DERIVED PARAMETERS FOR
ETHYLENEDIAMINE HYDROGEN ATOMS®

x z

2

N1H1® 0.450 0.249 0.335
NI1H2 0.488 0.167 0.423
CIH1 0.470 0.030 0.309
CIH2 0.542 0.115 0.260
C2H1 0.356 0.051 0.129
C2H2 0.333 0.170 0.149
N2H1 0.216 —0.002 0.230
N2H2 0.142 0.091 0.167
NSH1 0.272 0.223 0.568
N3H2 0.279 0.325 0.505
C3H1 0.090 0.308 0.589
C3H2 0.061 0.353 0.478
C4H1 -0.091 0.220 0.482
C4H? 0.019 0.141 0.529
N4H1 —0.038 0.212 0.320
N4H2 —0.028 —0.095 0.355

@ Allatomshave B = 5A2 ¢ NIH1and NIH2 are attached to
N1, C1H1 and C1H2 are attached to Cl, etc.

The final values of lO‘Fol and IEI\FC\ (in electrons) are
given in Table IV for the 1375 reflections which were
used in the final refinement. For the 408 reflections
omitted from the refinement for which F,? < 30(F.?%),
none had ‘Fo2 — Fu2| > 4g(F,?). Thus these data are
not included in Table IV.

In principle there are no inherent dangers in dropping
a block of data out of a least-squares refinement. If
particular parameters are especially sensitive to data of
that block, then marked increase in their resultant
standard deviations will indicate this. Nevertheless,
the procedure may not be a desirable one, as one is
never dealing with an idealized least-squares procedure
in which the observations suffer only from random
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TABLE IV

OBSERVED AND CALCULATED STRUCTURE AMPLITUDES X 10 (IN ELECTRONS)
FOR [Rl-l(NS)(NZ)(NHzCHgCHzNHz)2] [PFe]
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where agreement was particularly poor, but this seemed
to us to be too arbitrary. Accordingly since further
data collection was not at that time feasible, we de-
cided to drop the entire block of data. The fact that
atomic parameters derived with or without the data
from crystal II do not differ significantly adds support
to the present essential, but perhaps undesirable, pro-
cedure,
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Figure 1.—A stereoscopic pair of views of the contents of a unit cell.

Description of the Structure
The structure consists of discrete PPy~ and Ru(Nj)-
(N2) WHCH,CH;NH,),+ ions with no crystallographic
symmetry imposed upon either. A stereoscopic pair of
views of the contents of a unit cell is given in Figure 1.
The closest, nonbonding contact of each of the amine
hydrogen atoms is given in Table V. On the basis of

TaBLE V

N-H- . -B INTERACTIONS AROUND CALCULATED
ETHYLENEDIAMINE HYDROGEN POSITIONS

N-H-B¢
B° Ne Hb H.--B,A N:.-.B,A angle deg
F1 1 1 2.28 3.18 167
N7 1 2 2.37 3.15 146
N5 2 1 2.43 3.27 153
F4 2 2 2,82 3.45 129
N7 3 1 2.48 3.04 120
F4 3 2 2.48 3.12 130
F3 4 1 2.57 3.29 135
F6 4 2 2.35 3.18 154

@ The numbering scheme of the cation is indicated in Figure 2.
In the anion, F1 is trans to F2, F3 is trans to F4, and F5 is trans
to F6. ¥ The numbering scheme is as indicated in Table III.
¢ All N-H distances were fixed at 0.90 A.

1L14eln

L179010)

Figure 2.—An overall view of the cation.

structural data on N-H: -F and N-H-::-N bonds,!?
any such hydrogen bonds in this structure are very
weak.

The coordination of the cation may be viewed in
Figure 2. The ruthenium atom is octahedrally coordi-

(13) W. C. Hamilton and J. A. Ibers, ‘“Hydrogen Bonding in Solids,”
W. A. Benjamin, New York, N, Y., 1968,

nated by six nitrogen atoms. A selection of intramo-
lecular bond distances and angles, together with esti-
mated standard deviations as derived with the inclusion
of correlation effects, is given in Tables VI and VII.

TABLE VI

INTRAMOLECULAR BOND DISTANCES
Atoms Distance, & Mean distance, A
Ru-N1 2.108 (9)
Ru-N2 2,140 (9) o . .
Ru-N3 2,100 (8) 2.125(19)
Ru-N4 2,144 (9)
Ru-Nj) 2.121(8)
Ru-N8 1.894 (9)
N1-Cl 1.470 (13)
N2-C2 1.495(13)
N3-C3 1.474 (13) 1.474 (15)
N4-C4 1.458 (14)
C1-C2 1.500 (14)
C3-C4 1.504 (15)] 1.507 (14)
Nb5-N6 1.179 (10)
N6-N7 1.146 (11)} 1.162(23)
N8-N9 1.106 (11)
P-F1 1.581(8)
P-F2 1.560 (8)
P-F3 1.548 (10) .
P-F4 1.524 (9) 1.546 (24)
P-F5 1.517 (10)
P-F6 1.545 (10)

¢ The standard deviation given for an average quantity in
this table is that for an individual estimate as derived from the
collection of values assumed to be equivalent or from an indi-
vidual standard deviation, as obtained from the inverse matrix,
whichever is the larger value. Omn this basis it appeats that in-
dividual standard deviations derived from the inverse matrix
are optimistic by a factor of 2.

TaBLE VII
INTRAMOLECULAR BOND ANGLES
Atoms Angle, deg Mean angle, deg
N1-Ru-N2 81.9 (3))
N3-Ru-N4 81.2 (3) 81.6 (13)
N2-Ru-N4 99.8(3)
N1-Ru-N3 96.8 (3) 98 (2)
Ru-N5-N6 116.7 (7)
Ru-N8-N9 179.3(9)
Ru-N1-C1 109.1 (6)
Ru-N2-C2 107.5(6)
Ru-N3-C3 110.3 (8) 109 (1)
Ru-N4-C4 107.5(8)
N1-C1-C2 108.9(9)
N2-C2-C1 108.8 (9)
N3-C3-C4 108.6 (9) 109 (1)
N4-C4-C3 110 (1)
N5-N6-N7 180 (1)
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On the assumption that chemically equivalent bonds
are indeed equal in length, it appears that these derived
standard deviations are optimistic by a factor of approx-
imately 2. The derived standard deviations are reli-
able if the data are subject only to random errors. Un-
doubtedly systematic errors have been introduced into
the data as a result of decomposition and so we use twice
these standard deviations as a basis for discussion. The
root-mean-square amplitudes of vibration along the
principal axes of vibration for atoms refined anisotrop-
ically are given in Table VIII. The directions of vi-

TABLE VIII

R0OOT-MEAN-SQUARE AMPLITUDES OF VIBRATION (IN A)
Atom Min Intermed Max
Ru 0.168 (1) 0.189 (1) 0.233 (1)
N1 0.189 (13) 0.204 (13) 0.268 (14)
C1 0.193 (16) 0.234 (16) 0.248 (16)
C2 0.191(17) 0.245 (16) 0.268 (16)
N2 0.169 (13) 0.205 (13) 0.292 (13)
N3 0.165 (13) 0.223 (12) 0.270 (13)
C3 0.189 (19) 0.240 (17) 0.313 (16)
C4 0.155(19) 0.269 (17) 0.276 (16)
N4 0.193(13) 0.228 (12) 0.249 (13)
N5 0.167 (12) 0.189 (13) 0.275 (12)
N6 0.206 (14) 0.210(12) 0.269 (14)
N7 0.200(14) 0.273 (14) 0.344 (14)
N8 0.187 (15) 0.217 (13) 0.242 (12)
N9 0.161(17) 0.290 (14) 0.339 (13)
P 0.210(5) 0.225 (5) 0.320 (5)
F1 0.225(11) 0.284 (10) 0.396 (11)
F2 0.208(11) 0.296 (11) 0.540 (12)
F3 0.240 (12) 0.349 (12) 0.553 (14)
F4 0.232(12) 0.319 (12) 0.592(14) '
F5 0.258(13) 0.330(12) 0.594 (16)
F6 0.255(12) 0.359 (13) 0.5561 (15)

bration of atoms in the cation may be discerned from
Figure 2. Figure 2 also displays the numbering scheme
employed for the cation.

The hexafluorophosphate anion is not unusual in aty
way. The six values of the P-F bond distance range
from 1.517 (10)" to 1.581 (8) A to give a mean distance
of 1.546 (24) A. Owing to the large amount of thermal
motion associated with the F atoms (Table VIII) this
mean distance is necessarily shorter than the distance
corrected for the effects of thermal motion,
rection does not appear to be feasible here, as the motion
appears to be a combination of bond stretching, bond
bending, and rigid-body torsional modes. Neverthe-
less, the mean distance is comparable with the P-F dis-
tance of 1.58 A found in various PFy~ salts.!s The
F-P-F bond angles range from 87.0 (5) to 95.0 (8)°.

In the ethylenediamine group, the four C-N bond
distances have a mean value of 1.474 (15) A and the two
C-C distances have an average value of 1.507 (14) A.
If we define the dihedral angle, «, as that angle between
the normal to the plane which contains the metal atom
and the ring carbon atomnis and the normal to the plane
which' contains the metal atom and the ring nitrogen
atoms, we would expect this angle to be ronzero for an

(14) For reasons discussed in the text, this numbet is more realistically

1.517 (20) 4, instead of 1.517 (10) A.
(15) H. Bodeand H. Clausen, Z. Anorg. Chem., 368, 229 (1951).

Such a cor- -
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ethylenediamine ring in the gauche conformation. For
the ring containing N1-C1-C2-N2, « is 27.6 (6)°, and
for the ring containing N3-C3-C4-N4, « is 26.6 (7)°.
These values compare well with the average value of 27°
found in Cr(NH,CH,CH,NH,);*+.!® If the azido and
molecular nitrogen groups are ignored and one looks at
the plane containing the ruthenium atom and the two
ethylenediamine rings, it is apparent that a pseudo-two-
fold axis of rotation exists perpendicular to this plane.
Upon rotation, C1 would go into C4 and C2 would go
into C3. The weighted least-squares plane through
these nine atoms is given in Table 1X. It is found that

TaABLE IX

WEIGHTED LEAST-SQUARES PLANE. EQUATION OF PLANE:
0.650x — 10.172y + 6.312y = 0.790 (MoNocLINIC COORDINATES )

Dev from Dev from Dev from

Atom plane, & Atom plane, & Atom plane, &
Ru 0.0027 (8) C2 —0.426(11) C3 —0.432(13)
N1 -—-0.072(8) N2 —0.027 (8) C4 0.244 (12)
C1 0.252 (11) N3 —0.101 (9) N4 —0.097(9)

C1 and C4 are approximately 0.2 A above the plane and
C2and C3 are 0.4 A below the plane. The N-Ru-N an-
gle associated with the ethylenediamine groups is 81.6
(3)° owing to the “‘bite” of the ligand. The four Ru-N
bond distances give a mean value of 2.125 (19) 4. As
may be seen by comparison with various Ru~N bond
lengths in Table X, the Ru-N bond length associated

TABLE X

SELECTED METAL-NITROGEN BOND LENGTHS

Bond
Compound type Distance, & Ref

K:0sNCls =N 1.614 (3) a
ReNCl:(P(CsHs)s)2 M=N 1.602 (9) b
ReCla(NCsH«OCH3) (PCeHs(CoHs)1)2 M=N 1,709 (4) ¢
ReCls(NCsHiCOCH3) (PCsH5(C2Hs)2)2 M=N 1.690 (5) ¢
ReCli{NCH3) (PCeHs(C2Hs)2) 2 M=N 1.685 (11) d
K3 [Ru:NCls (H20):2] M=N 1.718 €
[Ru(NHs)e]I2 M—N 2,144 (5) f
[Ru(NHs3)s](BF4)s M—N  2.105 (4) f

M—N 2,104 (6) (axial)
[Ru(NHs)sN:Ru(NHs)s](BF4)4 M—N  2.12 (equatorial) g

M==N 1.928 (6) (N2

M—N 2,125 (19) (mean)
[Ru(Ns) (N2) (NH:CH:CH:NH3):]PFg M—N - 2.121 (8) (azido) h

M=—=N 1.894 (9) (N2)

@ See ref 3. ?R. J. Doedens and J. A. Ibets, Inorg. Chem., 6,
204 (1967). ©D. Bright and J. A. Ibers, bid., 7, 1009 (1968).
¢ D. Bright and J. A. Ibers, b4d., 8,703 (1969), ¢ M. Ciechan-
owicz and A. C. Skapski, Chem. Commun., 574 (1969). / H.
Stynes and J. A. Ibers, unpublished results. ¢ I, M. Treitel,
M. T. Flood, R. E. Marsh, and H. B. Gray, J. Amer. Chem. Soc.,
01,6512 (1969). " This work.

with the ethylenediamine groups is in the range ex-
pected for a single-bond distance.

The coordinated azido group is of interest in this com-
pound since relatively few structures are known in which
this group is a ligand. These include coordination of
the ligand to copper,'? cobalt,!® and iron.!® It appears

(16) K. N. Raymond, P. W. R, Corfield, and J. A. Ibers, Inorg. Chem., T,
842 (1968).

(17) 1. Agell, Acta Chem. Scand., 31, 2647 (1967); Z. Dori, Chem. Com-
mun., 714 (1968); R. F. Ziolo, A. P. Gaughan, Z. Dori, C. G. Pierpont, and
R, Eisenberg, J. Amer. Chem. Soc., 93, 738 (1970).

(18) G.J. Palenik, Acta Crystallogr., 17, 360 (1964).

(19) J. Drummond and J. 8. Wood, Chem. Commun., 1373 (1869).
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TaBLE XI
BoNDp LENGTHS AND BOND ANGLES IN COORDINATED AZIDES

Compound N-N, &
f1.240 (3)
Ny {1 .134 (3)
N3~ 1.154 (15)
(As(CgHis)s)z2[Fe(Ny)s] 1.16 (3)
[Co(N3)(NHa)] (Ns), L Ef;
1.179 (10)
[Ru(Ns)(Ng}(NH,CH:CH,NH, )] PF, 1.146 (11)

1.163 (23) (mean)
¢ B. L. Evans, A. D. Yoffe, and P. Gray, Chem. Rev., 59, 515 (1959).

¢ E, Amkle and B. P. Dailley, J. Chem. Phys., 18, 1422 (1950).
¢ Seeref 19. 4 Seeref 18. ¢ This work.

on the basis of the data in Table XI that if the azide is
covalent, as in HNj;, the N-N bond lengths are not
equal, but they are equal in an ionic azide, N5~. The
asymmetry of the azido group coordinated to a transi-
tion metal is open to question. In [Co(N;)(NH;);]-
(N5)z,®® the azido group is asymmetric whereas in (As-
(CsHj)y)2 [Fe(N;)s]*® the azido group is reported to be
symmetric. In the present structure, the N-N dis-
tances do not differ significantly and average 1.162 (23)
A. The Ru-N bond distance associated with the azido
group is that of an M-N single bond (M = metal), as
has been found in other transition metal-azido com-
plexes. The Ru-N-N bond angle is 116.7 (7)°, some-
what smaller than the M-N-N angle found in the other
two complexes listed in Table XI.

The geometry of the coordinated molecular nitrogen
is the same as that reported in other dinitrogen com-
plexes. There is no significant lengthening of the
N—N bond upon coordination, as may be seen by exam-

ination of the bond lengths listed in Table XII. The
TasLE XII
NITROGEN-NITROGEN BOND LENGTHS
Compound Distance, & Ref
N(g) 1.098 a
CoH(N,)(P(CeHs)s)s 1.112(11) b
[Ru(NHs)sNzRu(NHa)s](BF4)4 1.124 (15) c
[Ru(N }{ N }(NH,CH,CH,NH ;] PFs 1,108 (11) d

¢« P. G. Wilkinson and N. B. Houk, J. Chem. Phys., 24, 528
(1956). ?» Seerefl. ¢ Seeref22. ¢ Thiswork.

M-N or H-N, 4 M-N~N, deg Ref

1.02 (1) 112.85 (50) a
b

2,041 (15) (axial) 124.8 _
1.971 (14) (equatorial)  125.1 ¢
1.943 (5) 125.2(2) d
2.121 (8) 116.7 (7) ¢

Ru—N bond length of 1.894 (9) A is significantly
shorter than an M—N single bond distance but not as
short as an M==N bond distance, as seen by comparison
with various M-—N and M==N bond lengths listed in
Table X and by comparison with the Ru—N bond dis-
tance of 2.121 (8) A associated with the azido group and
the mean distance of 2.125 (19) A associated with the
ethylenediamine groups found in this present study.
The Ru—N distance is comparable with the mean
Ru—C distances of 1.94 (3) and 2.01 (6) A found in Ru,-
(CO)eBrs# and Ru(CO).]p,? respectively. Therefore,
as we have stated earlier, the bonding between a transi-
tion metal atom and molecular nitrogen is very similar
to that between the metal and the isoelectronic ligand
carbon monoxide. It is interesting that the N-N bond
distance in this compound, as in CoH(N,)(P(CsHj;)s)s,*
is not significantly shorter than the N~N bond length
found in the bridging species [Ru(NH;);NoRu(NHj);]-
(BF4)4.22
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