Multinuclear NMR Studies of [Pt(alkyl)(PR₃)₃]⁺ Complexes

P. S. PREGOSIN

Laboratorium für anorganische Chemie, ETH Zürich, CH-8092 Zurich, Switzerland

R. FAVEZ, R. ROULET*

Institut de Chimie minérale et analytique de l'Université, Place du Château 3, CH-1005 Lausanne, Switzerland

T. BOSCHI, R. A. MICHELIN

Centro di Chimica e Tecnologia Composti Metallorganici Elementi Transizione C.N.R., Padua, Italy

and R. ROS

Facoltà di Chimica Industriale, University of Venice, Italy Received February 18, 1980

As part of our program [1, 2] involving the synthesis and study of new platinum-alkyl complexes containing phosphine ligands we have prepared the cationic complexes $[PtX(PPh_3)_3]BF_4$, $X = CH_3$, CH_2CH_3 , CH_2CF_3 , CH_2Ph , CH_2CN , CH_2CH_2CN , CH_2CH_2CN , $O-CH_2C_6H_4CN$, CH_2NO_2 , CH_2COCH_3 . During the characterization of these molecules we noticed some interesting aspects of their ³¹P NMR properties, and in particular, the values ¹J(¹⁹⁵Pt, ³¹P).

$$\begin{bmatrix} P_2Ph_3 \\ I \\ X-Pt-P_1Ph_3 \\ I \\ P_2Ph_3 \end{bmatrix} BF_4$$

The absolute magnitudes of the two one-bond coupling constants (see Table I) do not differ markedly from literature expectations (less than 2000 Hz for PPh₃ trans to C and 2500-3000 Hz for PPh₃ trans to PPh₃) [3]; however, it is interesting to note that the changes in ${}^{1}J({}^{195}Pt, {}^{31}P_2)$ are as large (up to 400 Hz) as those for ¹J(¹⁹⁵Pt, ³¹P₁). Further, for the complexes 1-5, 7, 9, 10, there is roughly an inverse correlation of these two one-bond coupling constants. The variance of ¹J(¹⁹⁵Pt, ³¹P₂) is surprising in that the trans ligand (another phosphine) is constant throughout the series. Moreover, there was no obvious reason for the change in ${}^{1}J({}^{195}Pt,$ $^{31}P_1$), as the relative size and electronic characteristics for these carbon ligands do not vary enormously, e.g., CH₃ and CH₂CH₃. Nevertheless, there are changes in the one-bond coupling approaching 10-15% for P_2 and ~ 20% for P_1 . It is conceivable

that the nitrile nitrogen was somehow coordinated, however, this seemed unlikely based on our previous solid state studies [4][†]; on the other hand, the possibility of a deviation from square planar geometry could not be excluded as we had previously shown that the complex cation [PtCl(PMe₃)₃]Cl [5] is significantly tetrahedrally distorted. Since PMe₂Ph is sterically larger than PMe₃ perhaps this type of intramolecular twist might prove significant.

We were successful in growing crystals suitable for X-ray diffraction of $[Pt(CH_2CN)(PMe_2Ph)_3]PF_6$ *via* slow evaporation of a CDCl₃ solution at 5 °C, and show in Fig. 1 an ORTEP diagram of the molecule with some relevant bond angles and bond distances. A full description of the structure will appear separately.

Fig. 1. Perspective view of the ionic complex $[Pt(CH_2CN)-(PMe_2Ph)_3]PF_6$.

Although the cation [Pt(CH₂CN)(PMe₂Ph)]⁺ has several interesting features, there is absolutely nothing unusual about the observed square planar coordination geometry. The bond angles deviate only slightly from the 90° norm and there is no evidence for a significant tetrahedral distortion. The bond distances, on the other hand, are of interest in that they represent extremes for the phosphorusplatinum and phosphorus-carbon bonds in platinum (II) complexes. The value of 2.395(5) Å for the Pt-P bond represents the longest bond of this type yet observed, whereas the value of 2.023(16) Å for the Pt-C bond is one of the shortest ever observed for an sp³ carbon bound to platinum. Some representative bond distances for other platinum phosphine complexes are given in Table II.

^{*}Author to whom correspondence should be addressed.

[†]Complexes 6 and 8 are geometrically capable of forming pseudo 5- and 6-membered rings via association of the nitrile π -bond with the metal.

Complex	x	$ \delta(P_1); {}^{1}J(Pt, P_1)^{c} $ $ P_1 \text{ trans to } X $	$\frac{\delta(P_2); {}^1 J(Pt, P_2)^c}{P_2 \ cis \ to \ X}$	² J(P, P)	$\delta(C)$; ¹ J(Pt, C) ^d C bonded to Pt	δ(H); ² J(Pt, H) ^f Methylene Group
$L = PPh_3$, <u>.</u>
1	-CH ₃	20.2; 1919	28.4;2931	19	11.1;440	0.28; 56.7 ^g
2	-CH ₂ CH ₃	18.7; 1674	25.7; 3140	19	18.5;454	1.21;h
3	$-CH_2CF_3^{b}$	15.4;2068	18.4; 2780	22		1.85;h
4	-CH2C6H5	18.3; 1795	22.7; 3000	19		2.65; 62.0
5	-CH ₂ CN	15.8; 2218	21.3; 2718	20	-0.7;470 ^e	1.38; 71:0
6	-CH ₂ CH ₂ CN	17.2;1830	23.3; 2896	22		1.23; h
7	-CH2CH2CH2CH2CN	18.6; 1778	24.6; 3018	21		0.62; h
8	0-CH2C6H4CN	18.3; 1865	21.9; 2850	21		2.83;65.0
9	-CH ₂ NO ₂	14.3; 2094	19.7; 2754	22	65.9;673	4.38;48.3
10	-CH ₂ COCH ₃	18.0; 1850	22.9; 2918	22		
11	CF3b	11.0; 1824	20.2; 2824	23		
12	-Н	23.1; 2219	22.5; 2821	19		g
13	-Cl	12.1;3647	22.9; 2487	19		-
$L = PPh_2N$	ſe					
14	-CH ₃	1.5;1882	10.0; 2778	21	6.4;457	0.23; 55.6 ¹
15	-CH ₂ CN	-3.7;2176	4.8; 2590	24	-0.4;483	1.12; 73.0 ⁱ
L = PPhMe	°2					
16	-CH ₃	-13.1;1831	-5.7;2682	24	0.2;456	0.58; 57.4 ^{gi}
17	-CH ₂ CN	-15.7; 2156	-7.1; 2501	24	-7.1;462	1.59; 74.5 ⁱ
18	-CF3b	-23.2; 1859	-6.6;2586	18		
19	H	-11.2; 1956	-11.2; 2531	21		g

TABLE I. NMR Spectral Data for [PtXL₃]^{*,a}

^aAll data refer to CD_2Cl_2 solutions at room temperature. The counterion is BF_4 for complexes 1-13, 18 and PF_6 for 14-17, 19. ^{b19}F NMR data. Chemical shifts are in ppm referred to external CFCl₃. $3: \delta(F) - 47.0$, ³J(Pt, F) 106, ⁴J(P, F) 11.3 (*trans*) and <2 (cis), ²J(H, F) 13.0 Hz; $11: \delta(F) - 14.0$, ²J(Pf, F) 541, ³J(P, F) 56 (*trans*) and 19.5 Hz (cis); 18: see ref. 4. ^cChemical shifts are in ppm referred to external H₃PO₄ 62.5% and are correct to ± 0.1 ppm; coupling constants are correct to ± 3 Hz (spectrum width 6024 Hz, 4096 points). ^dChemical shifts are in ppm referred to internal TMS and are correct to ± 0.1 ppm; coupling constants are correct to ± 3 Hz (spectrum width 6024 Hz, 8192 points). ²J(C, P₁) for 1:71; 2:71; 5:77; 9:88; 14:74; 15:76; 16:75; 17:75 Hz. ^eJ ± 6 Hz. ^fChemical shifts are in ppm referred to internal TMS. ³J(P₁, H) and ³J(P₂, H) for 1:5.8, 8.0; 4:6.5, 9.8; 5:7.2, 9.0; 8:5.0, 9.0; 9:3.3, 9.0; 14:6.0, 7.9; 15:7.7, 9.0; 16:6.3, 7.9; 17:7.4, 8.8 Hz. ^{g1}H NMR data for [Pt(CH₃)(PPh₃)₃]FSO₃ in acetone: see ref. 17; 12: see ref. 18; 16 in CDCl₃: see ref. 14; 19: see ref. 16. ^hUnresolved multiplet. ⁱThe following data refer to the phosphine methyls. $\delta(P_1$ -CH₃) in ppm, [²J(P, H) + ⁴J(P, H)] and ³J(Pt, H) in Hz for 14: 1.8, 6.4, 31.5; 15: 1.93, 6.3, 29.6; 16: 1.66, 6.9; 30.2; 17: 1.74, 6.9, 28.3. $\delta(P_2$ -CH₃) in ppm, ²J(P₂, H) and ³J(Pt, H) in Hz for 14: 1.37, 8.0, 19.2; 15: 1.66, 8.6, 23.0; 16: 1.25, 8.3, 18.3; 17: 1.36, 9.1, 22.5.

It seems reasonable that the large *trans* influence of the carbon ligand [6] is partly responsible for the very long platinum—phosphorus bond. Further, steric crowding of the three tertiary phosphine ligands might also lead to bond lengthening, although the remaining platinum—phosphorus distances of 2.339(4) Å and 2.302(5) Å are not unusually long. It would be of interest to have structural data for a PPh₃ complex.

In the absence of a significant geometric distortion we returned to electronic effects as the primary source of the changes in the NMR coupling constants. Since the complexes 1 and 5 (and 14 and 15 as well as 16 and 17) were available in sufficient quantity we measured their ¹³C NMR spectra in the hope of learning something of the effect of phosphine on the *trans* carbon ligand. Clark and co-workers [7, 8] have shown that ¹J(¹⁹⁵Pt, ¹³C) is markedly dependent on the *trans* ligand in a wide variety of neutral and cationic complexes. Since ${}^{1}J({}^{195}Pt, {}^{31}P)$ in the three pairs of complexes I and 5, 14 and 15 and 16 and 17 varies by approximately 300 Hz, some significant change in ${}^{1}J({}^{195}Pt, {}^{13}C)$ might be expected. Unfortunately, there are only trivial changes in this coupling with the values falling in the range 440–483 Hz. For a given phosphine the change is less than 5%. We cannot exclude the possibility that this negative result stems from two opposing effects (a decrease in ${}^{1}J({}^{195}Pt, {}^{13}C)$ due to a weaker σ -bond for the CH₂CN ligand, which is compensated by an increase in ${}^{1}J({}^{195}Pt, {}^{13}C)$ due to the presence of the electron withdrawing cyano group on carbon [9]), however, the result remains inconclusive.

To summarize, we join with Ball *et al.* [10] in repeating our previous comment [11], that although phosphorus chemical shifts and one-bond platinum—

Inorganica Chimica Acta Letters

TABLE II. Representative Pt-P Distances in Pt(II) Complexes as a Function of the *trans* Ligand.

Compound	Bond Length, Pt-P, Å
cis-[PtCl ₂ (PEt ₃)(P(OPh) ₃)]	2.182 ^a
cis-[PtCl ₂ (PMe ₃) ₂]	2.248
trans-[PtCl(CH2CN)(PPh3)2]	2.309
$[Pt(C_3H_5)(P(cyclohexyl)_3)_2]^*$	2.330 ^d
$[PtH(PPh_3)(P(cyclohexyl)_3)_2]^*$	2.359 ^e
trans-[PtI ₂ (P(cyclohexyl) ₃) ₂]	2.371 ^r
$[Pt(CH_2CN)(PMe_2Ph)_3]^+$	2.395 ^g
[PtCl(PMe ₃) ₃] ⁺	2.242 ^h
	2.337

^aA. M. Caldwell, L. M. Muir and K. W. Meier, J. Chem. Soc. Dalton, 2265 (1977). Pt-P for PEt₃. ^bG. G. Messmer, E. L. Amma and J. A. Ibers, Inorg. Chem., 6, 725 (1967). ^cRef. 4. ^dJ. D. Smith and J. D. Oliver, Inorg. Chem., 17, 2585 (1978). ^eH. C. Clark, N. J. Dymarski and J. D. Oliver, J. Organometal. Chem., 154, C40 (1978). ^fP. B. Hitchcock, B. Jacobson and A. Pidcock, J. Chem. Soc. Dalton, 2038 (1977). ^gP. S. Pregosin and M. Parvez, unpublished results. Pt-P for PMe₂Ph trans to CH₂CN. ^hRef. 5. P trans to Cl and P trans to P, respectively.

phosphorus coupling constants are a qualitative help to the chemist, a quantitative interpretation should be made with caution.

Experimental

The following cationic complexes were prepared according to literature methods: 1, 13 [12], 5 [1]; 8 [2]; 12 [13]; 16 [14]; 18 [15]; 19 [16]. A typical procedure is given for the preparation of the new $[PtR(PPh_3)_3]BF_4$ complexes: a solution of AgBF_4 (one equivalent) in acetone (5 ml) was added to a solution of cis- or trans-PtXRL₂ (ca. 0.4 g) in dichloromethane. Silver halogenide was filtered off and PPh₃ (one equivalent) was added to the filtrate. The solution was reduced to a small volume and diethylether added. The white precipitate formed was recrystallised from CH_2Cl_2/C_6H_6 giving $[PtR(PPh_3)_3]$ - BF_4 in almost quantitative yield. In the case of 10, the complex was dissolved in CH_2Cl_2 and the solution was passed through a short Florisil column before recrystallisation. All complexes gave satisfactorily elemental analyses. IR data: v(BF₄) 1055-1060 cm⁻¹, vs, broad for 1-12; ν (CN) 2214 m for 5, 2216 m for 6, 2245 w for 7, 2220 for 8, 2211 m for 15, 2210 m for 17; ν (NO₂) 1520s, 1365 m for 9; ν (CO) 1686 m for 10; ν (PtH) see ref. 17 for 12 and ref. 16 for 19. Unambiguous assignment of the ν (Pt-C) of these complexes could not be made as other absorptions are present in the 500-600 cm⁻¹ IR and Raman regions.

Acknowledgement

The authors wish to thank the Swiss National Science Foundation (grant FN. 2.037-0.78) and the Italian C.N.R. for financial support.

References

- 1 R. Ros, J. Renaud and R. Roulet, Helv. Chim. Acta, 58, 137 (1975).
- 2 R. Ros, J. Renaud and R. Roulet, J. Organometal. Chem., 87, 379 (1975).
- 3 P. S. Pregosin and R. W. Kunz in 'NMR Basic Principles and Progress', Springer-Verlag (1979), vol. 16.
- 4 A. Del Pra, G. Zanotti, G. Bombieri and R. Ros, *Inorg. Chim. Acta*, 36, 121 (1979).
- 5 R. Favez, R. Roulet, A. A. Pinkerton and D. Schwarzenbach, *Inorg. Chem.*, (1980), in press.
- 6 T. G. Appleton, H. C. Clark and L. E. Manzer, Coord. Chem. Rev., 10, 335 (1973).
- 7 M. H. Chisholm. H. C. Clark, L. E. Manzer, J. B. Stothers and J. E. H. Ward, J. Am. Chem. Soc., 95, 8574 (1973).
- 8 H. C. Clark and J. E. H. Ward, J. Am. Chem. Soc., 96, 1741 (1973).
- 9 This is a general observation for most one-bond coupling constants. See B. E. Mann in 'Advances in Organometallic Chemistry', Academic Press (1974), vol. 12, p. 135.
- 10 R. G. Ball, B. R. James, J. Trotter, D. K. W. Wang and K. R. Dixon, *Chem. Comm.*, 460 (1979).
- 11 See ref. 3, p. 44.
- 12 K. R. Dixon and D. J. Hawke, Can. J. Chem., 49, 3252 (1971).
- 13 F. Cariati, R. Ugo and F. Bonati, Inorg. Chem., 5, 1128 (1966).
- 14 H. C. Clark and J. D. Ruddick, Inorg. Chem., 9, 1226 (1970).
- 15 T. G. Appleton, M. H. Chisholm, H. C. Clark and L. E. Manzer, *Inorg. Chem.*, 11, 1786 (1972).
- 16 H. C. Clark and H. Kurosawa, J. Organometal. Chem., 36, 399 (1972).
- 17 J. L. Peterson, T. E. Nappier, Jr., and D. W. Meek, J. Am. Chem. Soc., 95, 8195 (1973).
- 18 K. Thomas, J. R. Dumler, B. W. Renoe, C. J. Nyman and D. R. Roundhill, *Inorg. Chem.*, 11, 1795 (1972).