Kinetics of TI(III) Oxidation of 1,2-Dihydroxybenzene in Chloride-Containing Media

R. MENARD and M. ZADOR

Département de Chimie, Université de Montréal, C.P. 6210, Succ. A, Montreal, Que., Canada

Received June 24, 1980

Introduction

The kinetics and mechanism of thallic ion oxidation of dihydroxybenzenes has been studied with great detail by Pelizetti *et al.* [1, 2]. The changes in rate with acidity have generally been attributed to contribution by different $Tl(OH)_n^{3-n}$ species, although the authors have underlined the possibility of a kinetically indistinguishable reaction path implying the formation of a deprotonated intermediate complex.

The present work deals with the influence of coordination of TI(III) by CI^- ions on the rate of oxidation of 1,2-dihydroxybenzene and the evidence obtained favors this alternate reaction path via an inner sphere complex implying TI(III) and a deprotonated phenol OH group.

Results and Discussion

The kinetics were followed by monitoring the increase in absorbance at 400 nm due to formation of the quinone product:

$$Tl^{3+} + C_6H_4(OH)_2 \rightarrow Tl^+ + 2H^+ + C_6H_4O_2$$

The reaction was studied in pseudo-first order conditions ([Tl(III)] \gg [(C₆H₄(OH)₂]) and the absorbance vs. time data were accumulated in a data-acquisition system coupled to a Durrum stopped-flow spectrophotometer. The pseudo-first order rate constants, k_{obs} , were obtained by a least squares program. The rate law, as shown by previous work [1], is given by: Rate = k[Tl(III)] [C₆H₄(OH)₂]. In our case it yields eqn. 1 for k_{obs} :

$$k_{obs} = k[Tl(III)]$$
(1)

The addition of chloride ions to the reaction medium at constant acidity and ionic strength causes the rate to decrease as shown by Table I. For Cl/II = 1, k_{obs} decreases by a factor of ~8 as compared to the value obtained in the absence of chloride ions. Further addition of chloride has even greater effect and for Cl/Tl ~ 3, the rate is reduced by a factor of ~10⁴.

TABLE I. Observed and Calculated Rate Constant at Various CI/TI Ratios.

T = 25 °C; $[C_6H_4(OH)_2] = 3.0 \times 10^{-4} M$; $[Tl(III)] = 2.75 \times$	
$10^{-3} M$; [HClO ₄] = 1.1 M	

CI/TI	k _{obs} (s ⁻¹)	$k_{calc} (s^{-1})$
0	23.4	22.8
0.11	20.4	20.4
0.22	18.2	18.0
0.33	15.3	15.6
0.44	13.9	13.4
0.55	11.6	11.3
0.66	9.6	9.3
0.77	7.5	7.5
0.88	6.2	5.9
0.99	4.1	4.5
1.10	2.9	3.4
1.32	1.03	1.68
1.54	0.47	0.73
1.65	0.35	0.44
1.76	0.23	0.25
2.20	1.5×10^{-2}	1.7×10^{-2}
2.64	3.9×10^{-3}	4.6×10^{-3}
3.09	2.2×10^{-3}	2.2×10^{-3}
3.31	1.6×10^{-3}	1.6×10^{-3}
3.85	8.2×10^{-4}	8.4 × 10 ⁻⁴

Affinity of Tl(III) for Cl⁻ is well documented and the stability constants of $TlCl_n^{3-n}$ complexes are known [3]. The concentrations of the different species at equilibrium have been calculated using an iterative program and the rate constants have been fitted by eqn. 2.

$$k_{obs} = k_0 [Tl^{3^+}] + k_1 [TlCl^{2^+}] + k_2 [TlCl_2^+]$$
(2)

A multiple weighted regression program, with weight factors proportional to $1/k_{obs}^2$, has been used to determine k_0 , k_1 and k_2 . Inclusion of contributions by TlCl₃ and TlCl₄ into eq. 2 does not improve significantly the correlation factor, their possible contribution to k_{obs} is negligible over the whole concentration range. Contribution by TlOH²⁺, whose concentration represents a constant fraction (of a few percent) of Tl³⁺ in 1.1 *M* HClO₄ [4], is included in the term k_0 [Tl³⁺].

The regression leads to the following rate constants at 25 °C: $k_0 = 8.3 \times 10^3 M^{-1} s^1$, $k_1 = 1.2 \times 10^2 M^{-1} s^{-1}$, $k_2 \cong 1 M^{-1} s^{-1}$ and to the conclusion that reactivities decrease in the order $Tl^{3+} > TlCl^{2+} > TlCl_2^{+}$. The calculated rate constants by means of eqn. 2 show a good agreement with the observed values as shown in Table I.

The contribution to the rate by Tl^{3^+} , $TlCl^{2^+}$ and $TlCl_2^+$ (in %) is shown in Fig. 1. Due to its considerably higher rate constant, Tl^{3^+} is the main reacting

Inorganica Chimica Acta Letters

Fig. 1. Contribution of TI(III) species to k_{obs} at different Cl/ Tl ratios (T = 25 °C; [TI(III)] = 2.75 × 10⁻³ M; [C₆H₄(OH)₂] = 3.0 × 10⁻⁴ M; [HClO₄] = 1.1 M).

Fig. 2. Influence of acidity on k_{obs} at Cl/Tl = 3(T = 25 °C; [Tl(III)] = 2.75 × 10⁻³ M; [C₆H₄(OH)₂] = 3.0 × 10⁻⁴ M; ionic strength = 1.1 M); open circles represent experimental data; curve is calculated.

species from Cl/Tl = 0 to 2. However at higher Cl/Tl ratios $TlCl^{2+}$ and $TlCl^{2}$ have the main contributions, despite their much lower rate constant, due to the fact that their concentrations largely exceed that of Tl^{3+} .

The reduction in rate has also been observed in the presence of carboxylic acids [5] where 1:1 Tl(III)-carboxylate complexes were shown to be unreactive.

The influence of acidity has been studied in conditions where TI^{3^+} (and $TIOH^{2^+}$) have only minor contributions to the rate. In these conditions, the changes in the hydrolitic equilibrium: $[TI \cdot OH_2]^{3^+} \rightleftharpoons$ $TIOH^{2^+} + H^+$, upon changes in acidity have no significant effect on the rate of oxidation. This is achieved at Cl/Tl = 3, where TI^{3^+} represents only about 10^{-4} % of Tl(III).

As shown in Fig. 2, an increase in acidity causes the rate to decrease. The curve in Fig. 2 is calculated by using the equation $k_{obs} = k'/[H^*]$, where $k' = 9.9 \times 10^{-4} M^{-1} s^{-1}$ for Cl/Tl = 3.

The results can be accounted for by the following mechanism:

$$TlCl_{n}^{3-n} + C_{6}H_{4}(OH)_{2} \xrightarrow{\beta_{n}} [Cl_{n}Tl-O-C_{6}H_{4}-OH]^{2-n} + H^{*} \quad (3)$$

$$[Cl_nTl-O-C_6H_4-OH]^{2-n} \xrightarrow{k'_n} slow$$

$$C_6H_4O_2 + nCl^- + Tl^* + H^* \qquad (4)$$

Equation 3 implies the formation of an inner sphere complex between Tl(III) and phenol group which loses a proton. It decomposes in eqn. 4 to give the final products. Inhibition by H^* is due to displacement of eqn. 3 to the left when acidity is increased. Combining with results in eqn. 2 one obtains: $k_0 = \beta_0 k'_0/[H^*]$; $k_1 = \beta_1 k'_1/[H^*]$; $k_2 = \beta_2 k'_2/[H^*]$ with $\beta_2 k'_0 > \beta k'_1 > \beta_2 k'_2$.

Similar results, in the absence of chloride ions, could also be accounted for by an alternate mechanism [1]. If overall reactivities are in the order $TIOH^{2^+} > TI^{3^+}$, and the main reactive species is $[HOTI-C_6H_4(OH)_2]^{2^+}$ (where deprotonation implies a Tl-coordinated water molecule) inhibition by H⁺ can also be explained. However, our results strongly favor a mechanism similar to eqns. 3 and 4, even in absence of chloride ions, with reactivities of the species $TI^{3^+} > TIOH^{2^+}$ and loss of phenolic proton upon coordination.

In several known cases coordination of Tl^{3^+} by $Cl^$ or OH^- produces qualitatively the same effect [6]. Therefore it seems likely that coordination by $OH^$ should lead to a strong decrease in rate like that by Cl^- . It would mean that the electrostatic effect is very strong in this reaction.

Deprotonation of a phenolic OH upon coordination, although not shown by direct evidence, is also quite logical. Acidity of H₂O coordinated to Π^{3^+} is increased very strongly due to the strong electric field of the cation (pK_a \cong 1.18 for Tl·OH₂^{3^+} [4]) and even in 1 *M* HClO₄ it dissociates to the extent of a few percent. 1,2-dihydroxybenzene has a K_a greater than H₂O by a factor of 10⁴. Therefore, when coordinated, it should lose its proton even more readily than does H₂O.

Finally, due to the larger orbitals, the electrons of the phenolate oxygen are more easily delocalized than those of the corresponding hydroxyl, therefore their transfer to Tl(III) in the rate-determining step should also be favoured.

References

- 1 E. Pelizetti, E. Mentasti and G. Saini, J. Chem. Soc. Dalton, 721 (1974).
- 2 E. Pelizetti, E. Mentasti, M. E. Carlotti and G. Giraudi, J. Chem. Soc. Dalton, 794 (1974).
- 3 D. Peschanski, S. Valladas-Dubois, Bull. Soc. Chim. France, 1170 (1956).
- 4 F. Ya. Kul'ba, Yu. B. Yakovlev and V. E. Mironov, Russ. J. Inorg. Chem. (Engl. Ed.), 9, 1390 (1964).
- 5 E. Pelizetti, E. Mentasti and G. Giraudi, Ann. di Chimica, 69, 355 (1974).
- 6 R. Favier and M. Zador, Can. J. Chem., 48, 2407 (1970); L. Nadon and M. Zador, Can. J. Chem., 55, 3590 (1977).