Synthesis of Cyclic Hydroxylamines: Crystal Structure of $[(Me_3C)_2SiONH]_2$

DIETER BENTMANN, WILLIAM CLEGG, UWE KLINGE-BIEL and GEORGE M. SHELDRICK*

Anorganisch-Chemisches Institut der Universität Göttingen, Tammannstrasse 4, D-3400 Göttingen, F.R.G.

Received June 23, 1980

Unlike chlorosilanes, fluorosilanes do not undergo substitution reactions with hydroxylamine [1-3]. Here we report a preparative method for fluorosilylsubstituted hydroxylamines. The presence of two functional groups in such molecules leads to the possibility of further reaction to give cyclic hydroxylamines, a class of compounds hitherto unknown.

Preparation

Substitution of the hydroxyl H atom of H_2NOH by R_2SiF results from reaction of $H_2NOH \cdot HCl$ with amino-fluorosilanes $R_2SiFNHCMe_3$ [4] in THF and n-pentane at room temperature, to give $R_2SiFONH_2$. The by-product $Me_3CNH_2 \cdot HCl$ is precipitated from solution. When $R = CH_3$, the product cannot be isolated because it polymerises on removal of the solvent; when $R = CMe_3$, the product can be distilled at reduced pressure.

IR and ¹H NMR spectra of the products indicate that there is no substitution at N [5]. Further reaction with ClSiMe₃ and trimethylamine does,

*Author to whom correspondence should be addressed.

TABLE II. Ring Geometry for II.

TABLE I. Atomic Coordinates (×10⁴) for II.^a

Atom	x	у	Z
Si(1)	-1084(2)	1200(1)	6225(1)
Si(2)	485(2)	2691(1)	6222(1)
N(1)	-2600(7)	1834(2)	6054(1)
N(2)	2005(7)	2022(2)	6132(1)
0(1)	1274(6)	1496(2)	6396(1)
0(2)	-2065(5)	2411(2)	6288(1)
C(11)	-748(9)	680(3)	5749(2)
C(12)	861(10)	976(3)	5441(2)
C(13)	153(10)	42(3)	5863(2)
C(14)	-2909(10)	593(3)	5519(2)
C(15)	-2291(10)	818(3)	6700(2)
C(16)	648(10)	405(3)	6932(2)
C(17)	-3055(12)	1325(3)	7001(2)
C(18)	-4291(10)	413(3)	6589(2)
C(21)	1134(10)	3118(3)	6724(2)
C(22)	1537(12)	2644(3)	7071(2)
C(23)	-739(10)	3525(3)	6872(2)
C(24)	3144(11)	3531(4)	6687(2)
C(25)	762(9)	3168(3)	5731(2)
C(26)	-256(10)	3819(3)	5769(2)
C(27)	3164(10)	3226(3)	5606(2)
C(28)	-409(10)	2832(3)	5364(2)

^aEstimated standard deviations are given in parentheses.

however, produce substitution at N. $Me_2SiF \cdot ONH_2$, prepared in solution as above, reacts to give $Me_2SiF \cdot ONHSiMe_3$, with precipitation of $Et_3N \cdot HCl$. The product can be isolated and purified by distillation at reduced pressure.

These substituted hydroxylamines contain two functional groups: N-H and Si-F. In aminofluorosilanes, the same groups can lead to ring formation when treated with bases [6]. Here, too, reaction with

Bond lengths (A):			
Si(1)-N(1)	1.732(4)	Si(2)–N(2)	1.729(5)
Si(1)-O(1)	1.677(4)	Si(2)-O(2)	1.694(4)
N(1)-O(2)	1.476(6)	N(2)–O(1)	1.475(6)
Bond angles (°):			
N(1)-Si(1)-O(1)	106.1(2)	N(2)Si(2)-O(2)	103.5(2)
Si(1) - N(1) - O(2)	111.7(3)	Si(2)-N(2)-O(1)	111.5(3)
Si(1)-O(1)-N(2)	111.3(3)	Si(2)-O(2)-N(1)	115.9(3)
Torsion angles (°):			
O(1) - Si(1) - N(1) - O(2)	-29.7(4)	O(2)-Si(2)-N(2)-O(1)	-38.5(4)
N(2) - O(1) - Si(1) - N(1)	-37.5(4)	N(1)-O(2)-Si(2)-N(2)	-30.8(4)
Si(1)–N(1)–O(2)–Si(2)	65.4(4)	Si(2)N(2)O(1)Si(1)	74.0(4)

L230

Fig. 1. Molecular structure of [(Me₃C)₂SiONH]₂.

LiCMe₃ eliminates LiF and isobutane, and previously unknown cyclic silylhydroxylamines are formed.

 $11 : R = CMe_3, R' = H$

The compound II is obtained as long colourless needles by recrystallisation from CH_2Cl_2 .

Crystal Structure of II

Crystal data: $C_{16}H_{38}N_2O_2Si_2$, orthorhombic, a = 6.163(2), b = 21.306(7), c = 31.977(10) Å. Space group *Pbca*, Z = 8. R = 0.066 (0.069 weighted) for 1348 unique reflections with $7^{\circ} \le 2\theta \le 4.2^{\circ}$ and $I \ge 2\sigma(I)$, measured with a Stoe-Siemens AED diffractometer and Mo- K_{α} radiation ($\lambda = 0.71069$ Å) [7].

Final coordinates are given in Table I. The molecular structure is shown in Fig. 1. H atoms are omitted for clarity. Those for the Me groups were included in the refinement with C-H and H-C-H constrained to 0.96 Å and 109.5° respectively. H atoms attached to N were not located, but N and O atoms could be distinguished by their relative thermal parameters when the various possible arrangements were tested, and by the Si-N and Si-O bond lengths.

The bond lengths, bond angles and torsion angles of the (SiNO)2 ring are given in Table II. The ring is far from planar, and has a twist conformation [8].

Acknowledgement

We thank the Verband der Chemischen Industrie for financial support.

References

- 1 U. Wannagat and J. Pump, Monatsh. Chem., 94, 141 (1963).
- 2 P. Boudjouck and R. West, Intra-Sci. Chem. Reports, 7, 65 (1973).
- 3 U. Klingebiel and M. Northe, J. Organometal. Chem., 179, 391 (1979).
- 4 U. Klingebiel and A. Meller, Z. Anorg. Allg. Chem., 430, 234 (1977).
- 5 H. Bürger, K. Burczyk and O. Smrekar, Monatsh. Chem., 100, 766 (1969).
- 6 U. Klingebiel and A. Meller, Z. Anorg. Allg. Chem., 428, 27 (1977).
- 7 W. Clegg, Acta Cryst., 36A, in press.
- 8 R. Bucourt and D. Hainaut, Bull. Soc. Chim. France, 1366 (1965).