The Crystal Structure of a Complex between 2,3,11, 12-(Bis-1,2-acenaphtho)-18-crown-6 and Potassium Isothiocyanate

G. WEBER*, G. M. SHELDRICK

Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen, F.R.G.

A. MERZ and F. DIETL

Institut für Organische Chemie der Universität, Universitätsstrasse 31, D-8400 Regensburg, F.R.G.

Received June 1, 1984

'Benzo-crowns', *i.e.* macrocyclic oligoethers containing 1,2-phenylene entities, have long been known to form stable complexes with alkali and alkaline earth metal ions [1, 2]. The title ligand L [3] may be considered an acenaphthyleno analogue of dibenzo-18-crown-6. However, its coordination abilities turned out to be very poor; only an L·KNCS complex could be isolated [3] to study and compare its crystal structure with those of related compounds.

Experimental

The title complex could not be recrystallised without disintegration [3]; hence the crystal quality was rather poor.

Crystal Data

 $C_{32}H_{28}O_6$ ·KNCS, M = 605.76, orthorhombic space group Cmc2₁, a = 22.814(9), b = 15.170(6), c = 8.282(4) Å, D_{calc} = 1.404 g cm⁻³ for Z = 4, μ -(MoK α) = 0.30 mm⁻¹.

*Author to whom correspondence should be addressed.

TABLE II. Mean Distances (Å) and Angles (°) in $\overset{\circ}{\succ} \alpha \overset{\circ}{} \alpha \overset{\circ}{} \overset{\circ}{$

	x	у	Z	$U^{\mathbf{a}}$
к	0	3625(1)	4426 ^b	59(1)
S	0	783(3)	1714(13)	179(4)
С	0	1836(8)	1774(17)	69(4)
N	0	2581(8)	1745(15)	84(4)
0(1)	0	2075(4)	6044(10)	60(2)
C(2)	515(3)	1664(5)	6529(15)	79(3)
C(3)	1023(3)	2020(4)	5741(14)	78(3)
O(4)	1077(2)	2934(3)	6060(7)	62(2)
C(5)	1576(3)	3359(4)	5555(9)	44(2)
C(6)	1584(2)	4140(4)	4863(9)	51(2)
0(7)	1079(2)	4584(2)	4377(7)	55(1)
C(8)	1039(3)	5483(4)	4895(11)	63(3)
C(9)	512(3)	5877(4)	4169(14)	70(3)
O(10)	0	5466(4)	4729(11)	63(3)
C(11)	2190(3)	3049(4)	5798(8)	48(2)
C(12)	2470(3)	2332(5)	6421(11)	64(3)
C(13)	3092(3)	2318(6)	6428(11)	70(3)
C(14)	3424(3)	2965(5)	5797(10)	61(3)
C(15)	3149(3)	3723(4)	5129(10)	55(2)
C(16)	3423(3)	4469(5)	4424(10)	63(2)
C(17)	3093(3)	5143(6)	3801(11)	72(3)
C(18)	2465(3)	5139(6)	3841(10)	62(3)
C(19)	2189(2)	4437(4)	4545(10)	51(2)
C(20)	2538(3)	3735(4)	5149(10)	49(2)

TABLE I. Atomic Coordinates $(\times 10^4)$ and Isotropic Thermal Parameters $(A^2 \times 10^3)$.

^aEquivalent isotropic U defined as one third of the trace of the orthogonalised U_{ij} tensor. ^bFixed to define the origin on the polar axis.

1832 observed $[F > 3\sigma(F)]$ profile-fitted [4] diffractometer data up to $2\theta = 47^{\circ}$ were collected from a red prism *ca*. $0.3 \times 0.5 \times 0.6$ mm with monochromated MoK α -radiation ($\lambda = 0.71069$ Å). The structure was solved by direct methods and subsequent Fourier syntheses [5], and refined anisotropically to a final *R* of 0.083 with H-atoms included in calculated positions [C-H = 0.96 Å, $U(H_i) = 1.2 U_{eq}(C_i)$].

Atom parameters are listed in Table I; further crystallographic information is available from GW on request.

Units of Crown Ethers.

	0 0					
	C····C	α	β	γ	0(
L [3]	1.36	109	120, 126	125, 131	3.04	
L·KNCS	1.32	110	126	124	2.87	
DB-18-Cr-6 [6]	1.41	119	127	114	2.55	
DB-18-Cr-6·KI [8]	1.39	121	124	116	2.56	

Inorganica Chimica Acta Letters

Fig. 1. Top and side views of the title complex including the numbering scheme. Primed atoms are related to the respective unprimed ones by a mirror running through O(1), O(10), K, N, C, and S. Radii are arbitrary; the anion in the top view is omitted for clarity. Coordination distances (Å) are to O(1): 2.706(6), to O(4): 2.994(8), to O(7): 2.860(7), to O(10): 2.804(6), to N: 2.727(9).

Results and Discussion

In the uncomplexed state, the title ligand L displays an elongated conformation [3] comparable to those found in uncomplexed dibenzo-18-crown-6 [6] or in 18-crown-6 itself [7]. However, when coordinating a 'fitting' spherical e^- acceptor like K^{*}, 18-membered crown ethers usually adopt a circular form (*e.g.* [8, 9]). This also holds for the present complex (Fig. 1) but torsion angles of 137.2(8)° [C(3)-O(4)-C(5)-C(6)] and 130.6(7)° [C(5)-C(6)-O(7)-C(8)] deviate considerably from the respective torsions ($\approx anti$) in dibenzo-18-crown-6·

KI [8] and thereby indicate the steric strain induced by the acenaphthylene nuclei.

The poor complexing ability of L, as compared to that of the analogous dibenzo-18-crown-6, was attributed mainly [3] to the unfavourable geometry at the O-C=C-O entity. The shortened C(5)-C(6) bond and widened exocyclic and narrowed endocyclic O-C_{sp}²-C_{sp}² angles in L·KNCS all facilitate an O(4)··O(7) distance of 2.87(1) Å. This value is much more appropriate for vicinal oxygen atoms (when part of a hexagonal environment of K⁺) than is the observed 3.04 Å in free L, but it is still larger than in dibenzo-18-crown-6 (see Table II).

L2

The six O(ether) atoms (co-planar to within ± 0.35 Å; cf. ± 0.19 Å in 18-crown-6·KNCS [9] and ± 0.13 Å in dibenzo-18-crown-6·KI [8]) are thus able to form the basal plane of the quite common (e.g. [8-11]) hexagonal coordination pyramid of potassium, with K⁺ displaced by 0.73(2) Å towards the apical anion (cf. [8, 10]).

However, the gain of energy on complex formation may well be modest since $K^* \cdot O$ distances (mean 2.87 Å; cf. 2.76 Å in dibenzo-18-crown-6·KI [8, 11] and 2.80 Å in 18-crown-6·KNCS [9]) give rise to a $K^* \cdot O$ bond valence [12] of only 0.77 (cf. 1.04 in [8] and 0.90 in [9]). This might be taken as further evidence for the poorly-fitting geometry of L and is in agreement with the low stability of the title complex [3].

Acknowledgement

This study was supported by the Fonds der Chemischen Industrie.

References

- 1 C. J. Pedersen, J. Am. Chem. Soc., 89, 7017 (1967).
- 2 Structural reviews: M. R. Truter, *Struct. Bonding*, 16, 71 (1973);
- R. Hilgenfeld and W. Saenger, Top. Curr. Chem., 101, 1 (1982).
- 3 A. Merz, F. Dietl, R. Tomahogh, G. Weber and G. M. Sheldrick, *Tetrahedron*, 40, 665 (1984).
- 4 W. Clegg, Acta Cryst., A37, 22 (1981).
- 5 SHELXTL, the program package used for crystal structure solution, refinement, and graphical display, was written by GMS.
- 6 D. Bright and M. R. Truter, J. Chem. Soc. (B), 1544 (1970).
- 7 E. Maverick, P. Seiler, W. B. Schweizer and J. D. Dunitz, Acta Cryst., B36, 615 (1980).
- 8 S. M. Aldoshin, O. A. D'yachenko, V. V. Tkachev and L. O. Atovmyan, Russ. J. Coord. Chem., 7, 138 (1981).
- 9 P. Seiler, M. Dobler and J. D. Dunitz, Acta Cryst., B30, 2744 (1974).
- 10 C. Riche, C. Pascard-Billy, C. Cambillau and G. Bram, J. Chem. Soc., Chem. Commun., 183 (1977).
- M. G. Myŝkiv, T. Głowiak, B. Jeżowska-Trzebiatowska, K. B. Yatsymirsky, E. I. Hladyshevsky, L. I. Budarin and A. I. Teliatnyk, Acta Cryst., A34, S143 (1978).
- 12 I. D. Brown and K. K. Wu, Acta Cryst., B32, 1957 (1976).