## Preparation and Properties of Ruthenium(II) Mercapto Complex, RuH(SH)(PPh<sub>3</sub>)<sub>3</sub>·PhCH<sub>3</sub>

KOHTARO OSAKADA, TAKAKAZU YAMAMOTO\* and AKIO YAMAMOTO

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan

Received June 6, 1984

Despite the recent interest in the complexes that contain SH<sup>-</sup> or S<sup>2-</sup> ligand [1-3], little is known about the reaction of sulfur or hydrogensulfide with metal hydrido complexes [4, 5] compared with those with other low valent transition metal complexes [6-8]. In this paper we report the preparation of a new ruthenium(II) mercapto complex RuH(SH)-(PPh<sub>3</sub>)<sub>3</sub>•PhCH<sub>3</sub> 1 by the reaction of both H<sub>2</sub>S and S<sub>8</sub> with RuH<sub>2</sub>(PPh<sub>3</sub>)<sub>4</sub> and the properties of 1 such as NMR behavior and hydrogen exchange with MeOD.

The reaction of  $\text{RuH}_2(\text{PPh}_3)_4$  with equimolar  $H_2S$  in toluene gave complex 1 in a high yield (74%) accompanied by evolution of a quantitative amount of  $H_2$ , similarly to the reaction of thiols with  $\text{RuH}_2(\text{PPh}_3)_4$  [9].

$$RuH_{2}(PPh_{2})_{4} + H_{2}S \xrightarrow{-PPh_{3}}_{PhCH_{3}}$$
$$RuH(SH)(PPh_{3})_{3} \cdot PhCH_{3} + H_{2}$$

Complex 1 was also obtained independently from the reaction of  $S_8$  with  $RuH_2(PPh_3)_4$ . Experimentally, addition of a toluene solution of  $S_8$  to  $RuH_2(PPh_3)_4$  at -50 °C, followed by standing the reaction mixture at -20 °C for five days, gave purple microcrystals of 1. Although the yield of the complex is low (10%), it can be obtained in pure form.

$$RuH_{2}(PPh_{3})_{4} + \frac{1}{4}S_{8} \xrightarrow{PhCH_{3}} RuH(SH)(PPh_{3})_{3} \cdot PhCH_{3} + S = PPh_{3}$$

$$1$$

This reaction appears to proceed through insertion of sulfur atom to the ruthenium hydrogen bond. A similar insertion process is proposed to elucidate the formation of  $H_2S$  in the reaction of  $S_8$  with  $MH_2(C_5H_5)_2$  (M = Mo, W) [4]. Although formation of mercapto complexes from metal hydrido comTABLE I. IR, <sup>1</sup>H NMR and Analytical Data of 1.

| IR <sup>a</sup>                 | ν(Ru-H)<br>ν(S-H)                                                |                                        | 1971 cm <sup>-</sup><br>2525 cm <sup>-</sup> | 1       |
|---------------------------------|------------------------------------------------------------------|----------------------------------------|----------------------------------------------|---------|
| <sup>1</sup> H NMR <sup>b</sup> | $C_6H_5^{c}$ 7.7–7.0 p<br>CH <sub>3</sub> <sup>c</sup> 2.3 ppm s |                                        | opm broad 50H<br>s 3H                        |         |
|                                 | SH                                                               | 1.6 ppm dq 1H J <sub>HH</sub> = 1 Hz   |                                              |         |
|                                 | $J_{PH} = 16 Hz$                                                 |                                        |                                              |         |
|                                 | RuH                                                              | -16.7 ppm dq 1H J <sub>HH</sub> = 1 Hz |                                              |         |
|                                 |                                                                  |                                        | J <sub>PH</sub>                              | = 26 Hz |
| Analyses                        | C(%)                                                             |                                        | H(%)                                         | S(%)    |
| Found                           | 71.8                                                             |                                        | 5.3                                          | 3.1     |
| Calcd.                          | 72.2                                                             |                                        | 5.5                                          | 3.2     |

<sup>a</sup>KBr disk. <sup>b</sup>In CD<sub>2</sub>Cl<sub>2</sub> at room temperature (100 MHz). <sup>c</sup>Solvated toluene is contained.

plexes and tiirans or carbonyl sulfide is known [10, 11], this is the first example to our knowledge of the preparation of a mercapto complex from the reaction of elemental sulfur with a hydrido complex.

Complex 1 was characterized by IR and NMR spectra as well as by elemental analysis (Table I). In the <sup>1</sup>H NMR spectrum resonances of both mercapto hydrogen and hydrido ligand are split into a quartet due to <sup>31</sup>P-<sup>1</sup>H coupling with three phosphorus atoms at 35 °C. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum at 35 °C shows only one broad signal as in RuHCl- $(PPh_3)_3$  [12] and RuH(SCH<sub>2</sub>Ph)(PPh<sub>3</sub>)<sub>3</sub> [9]. How-ever, quite different <sup>31</sup>P{<sup>1</sup>H} NMR spectra from those of RuHCl(PPh<sub>3</sub>)<sub>3</sub> were observed at lower temperatures, as shown in Fig. 1. It indicates the exchange of only two PPh<sub>3</sub> ligands ( $P_B$  and  $P'_B$  in Fig. 1) of 1 below -40 °C, whereas in RuHCl(PPh<sub>3</sub>)<sub>3</sub> interchange of all three PPh<sub>3</sub> ligands is prevented at the same temperature [12]. This NMR behavior of 1 is interpreted by transformation of coordination sites of  $P_B$  and  $P'_B$  in square pyramidal structure, as shown in Scheme 1.



Scheme 1. A possible scheme for the ligand exchange of the complex 1 at  $-40 \sim -80$  °C. P<sub>B</sub> and P'<sub>B</sub> may be reversed.

Intermolecular hydrogen exchange of the mercapto ligand and protic media such as methanol

© Elsevier Sequoia/Printed in Switzerland

<sup>\*</sup>Author to whom correspondence should be addressed.



Έ

Fig. 1. Temperature dependence of  ${}^{31}P{}^{1}H$  NMR of 1 (40 MHz, CD<sub>2</sub>Cl<sub>2</sub>). The resonance with asterisk is due to OPPh<sub>3</sub> formed during preparation of the sample for NMR. Peak area of P<sub>A</sub>, P<sub>B</sub> and P'<sub>B</sub> is 1:1:1.

was confirmed by means of <sup>1</sup>H NMR spectroscopy. The time course of the decrease in peak areas of the SH, RuH and C<sub>6</sub>H<sub>5</sub> (in PPh<sub>3</sub>) signals of <sup>1</sup>H NMR in CD<sub>2</sub>Cl<sub>2</sub> containing 4% of CD<sub>3</sub>OD is shown in Fig. 2. Besides the decrease of the peak area of the mercapto hydrogen, those of hydrido ligand and phenyl hydrogen of PPh3 ligands also diminish. These facts may be interpreted by the three simultaneous hydrogen exchange processes: (i) intermolecular exchange of hydrogen between mercapto ligand and methanol, (ii) intramolecular hydrogen exchange of hydrido and mercapto hydrogen, as is observed in PtH(SH)(PPh<sub>3</sub>)<sub>2</sub> [6], and (iii), reversible orthometalation [13]. Direct intermolecular hydrogen exchange between hydrido or hydrogen of PPh<sub>3</sub> ligands and deuterium of CD<sub>3</sub>OD seems improbable because similar hydrido complexes RuHCl(PPh<sub>3</sub>)<sub>3</sub>



Fig. 2. H-D Exchange of 1 in CD<sub>3</sub>OD-CD<sub>2</sub>Cl<sub>2</sub> at 20 °C.

and RuH(SPh)(PPh<sub>3</sub>)<sub>3</sub> show no H–D change, as shown by their <sup>1</sup>H NMR spectra in a  $CD_2Cl_2-CD_3$ -OD mixture (even after 4 days).

## References

- 1 H. Vahrenkamp, Angew. Chem. Intern. Edit. Engl., 14, 322 (1975).
- 2 M. R. Dubois, M. C. VanDerveer, D. L. Dubois, R. C. Hatiwanger and W. K. Miller, J. Am. Chem. Soc., 102, 7456 (1980).
- 3 R. J. Angelici and R. G. W. Gingerich, Organometallics, 2, 89 (1983).
- 4 V. H. Kopf and S. K. S. Hazari, Z. Anorg. Allg. Chem., 426, 49 (1976).
- 5 T. V. Ashworth, M. J. Nolte and E. Singleton, J. Chem. Soc., Chem. Comm., 936 (1977).
- 6 R. Ugo, G. L. Monica, S. Cenini and F. Conti, J. Chem. Soc. (A), 522 (1971).
- 7 A. M. Mueting, P. Boyle and L. H. Pignolet, *Inorg. Chem.*, 23, 44 (1984).
- 8 M. D. Vaira, S. Midollini and L. Sacconi, *Inorg. Chem.*, 17, 816 (1978).
- 9 B. Chaudret and R. Poilblanc, *Inorg. Chim. Acta, 34*, L209 (1979).
- 10 W. Danzer, W. P. Fehlhammer, A. T. Liu, G. Thiel and W. Beck, Chem. Ber., 115, 1682 (1982).
- 11 T. R. Gaffney and J. A. Ibers, Inorg. Chem., 21, 2857 (1982).
- 12 P. R. Hoffman and K. G. Caulton, J. Am. Chem. Soc., 97, 4221 (1975).
- 13 G. W. Parshall, Acc. Chem. Res., 8, 113 (1975).