Remarkably Stable Adducts of Gallium Halides with Chalcogenols

G. G. HOFFMANN

Institut für Anorganische Chemie der Universität, Würzburg Am Hubland, D-8700 Wiirzburg, F.R.G.

It is well known that chalcogenols react readily with covalent metal halides of both the main group and the auxiliary group elements, with formation of metal chalcogenolates $[1, 2]$. In these reactions the addition compounds of the chalcogenols to the metal halides can be formulated as intermediates. So far these intermediates could only be isolated and characterized in a very few instances, containing the main group elements $[3-6]$. The reactions of gallium(III) bromide **la** or gallium(II1) iodide **lb** with the chalcogenols **2a-c** lead in an amazingly simple reaction path to the desired adducts $3a-e$ (eqn. 1)

If the chalcogenol is used in a twofold or threefold excess, the 1: 1-adduct is still formed. However, in the 'H NMR spectra (recorded *in situ)* of these mixtures the signals of the chalcogenol hydrogens are shifted towards those of the non-bonded chalcogenol hydrogens. This effect is indicative of a very rapid exchange of the chalcogenol on the metal halide in solution.

Compounds 3a-e are remarkably stable under normal conditions. They lose neither chalcogenol nor hydrohalogenic acid under reduced pressure. They decompose above 100 $^{\circ}$ C (Table I), splitting off hydrohalogenic acid, which can be proved both qualitatively and by the aid of differential thermograms.

TABLE I. Physical Properties of the Adducts; $\Delta \nu^a$ and $\Delta \delta^b$ Values.

3	Hal	YEt	Decomp. Point (°C)	$\Delta \nu$ (cm ⁻¹) $\Delta \delta$ (ppm)	
a	Bт	SEt	115	42	1.80
b	Bт	SeEt	51	90	1.94
c	I	OEt	50 ^c	80	1.05
đ	I	SEt	120	71	1.74
e	I	SeEt	109	134	2.43

a Difference of the vibrations of the bonded chalcogen hydrogen to the non-bonded chalcogen hydrogen $[4, 7]$. b Difference of the signals of the bonded chalcogen hydrogen to the non-bonded chalcogen hydrogen, benzene solution. $^{\rm c}$ Mp.

This extraordinary stability of these adducts may be explained as follows: The coordinative and electronic saturation of the gallium atom prevents the reverse process of eqn. (1); on the other hand, the high reactivity of the hydrohalogenic acid in anhydrous medium displaces the equilibrium in eqn. (2)

Received July 3, 1984 GaHal₃ \cdot HYEt \rightleftharpoons GaHal₂(YEt) + HHal (2)

to the left side. The hydrohalogenic acid cannot be captured with bases like triethylamine. Instead of this reaction, compounds of the general composition $[NEt₃H][GaHa1₃(YEt)]$ are formed, which can be identified analytically and by 'H NMR spectroscopy.

The adducts **3a-e** are readily soluble in aromatic and halogenated hydrocarbons. They are liquids at room temperature (3 is a crystalline solid). In the IR spectra of the adducts the absorptions of the chalcogenol hydrogens are observed at much lower frequencies, compared to those of the non-bonded chalcogenol hydrogens. This effect points out a strong metal-chalcogen-interaction. As expected, the shifts of the adducts of **lb** are much stronger than those of the adducts of **la.** The most polarised band is found for compound 3e (Table I).

The 'H NMR spectra of the adducts show clearly a very strong downfield shift for the signals of the chalcogen hydrogens; again the most striking shift is found for compound 3e (Table II). This also indicates a very strong metal-chalcogen-interaction; therefore, these coordination compounds may also be desig-

TABLE 1I. Spectroscopic Data of $3a-e^a$.

```
3a: <sup>1</sup>H NMR (benzene): \delta = 3.23 - 2.70(s), 2.33(q),
1.13(t); IR (CsI/film): v = 2488vb, 775w, 734w,
684m, 630m, 576w, 388w, 359m, 300sh, 285sh, 
262vb, 233m cm<sup>-1</sup>.
```
- 3b: ¹H NMR (benzene): $\delta = 2.30(q)$, 1.40-1.00(s), $0.76(t)$; IR (CsI/film): $\nu = 2237vb$, 795sh, 750m, 71Ow, 682m, 538m, 528m, 295sh, 282b, 270sh, $265sh$, $230mb$ cm⁻¹.
- 3c: ¹H NMR (benzene): $\delta = 3.46 2.96$ (s) superposed on $3.33(q)$, $0.56(t)$; IR (CsI/nujol): $\nu = 3520vb$, $719m$, 695w, 386w, 355w, 245m, 228sh, 211b cm⁻¹.
- 3d: ^IH NMR (benzene): $\delta = 2.90(t)$, 2.30(d of q), $0.76(t)$; IR (CsI/film): $\nu = 24.59vb, 770m, 733m,$ 630b, 558mb, 382w, 354m, 305w, 242b, 215s cm-'.
- 3e: ¹H NMR (benzene): $\delta = 2.43(q)$, 1.83-1.56(s), 0.83 (t); IR (CsI/film): $\nu = 2193vb, 790m, 748m,$ 71Ow, 682m, 538m, 382w, 289m, 230b, 210s cm-'.

aFor IR data, only the frequencies of the vibration of the chalcogen hydrogen and the interval between $800-200$ cm⁻¹ are given.

nated as strong protonic acids, which means trihalogen0 (monochalcogenolato) gallium acids.

Many other thiol- and selenol-adducts of **la** and **lb** and even $GaCl₃$ and $AlI₃$ could be synthesized.

Experimental

All operations were carried out under nitrogen in dried solvents. To a stirred solution of 1.55 g (5.01) mmol) **la** or a suspension of 2.25 g (5.00 mmol) **lb in 10** ml benzene was added a benzene solution of 5.00 mmol **2a-c** at room temperature; there was an initial heat evolution. After stirring for one hour at room temperature, the solvent was evaporated under vacuum. 3c remained as a colourless solid, **3a, b, d** and e as colourless (SEt-compounds) or light yellow (SeEt-compounds) oils. All compounds were dried under high vacuum at room temperature.

Acknowledgments

These investigations were supported by the Fonds der Chemischen Industrie; the author wishes to thank

Professor M. Schmidt for stimulating discussions and for his kind cooperation in making research facilities available.

References

- Survey: D. C. Bradley, Prog. *Inorg. Chem., 2, 303* (1960); D. C. Bradley. *Adv. Inora. Chem. Radiochem., 15, 259* (1972); D. C: Bradley, R.?. Mehrotra and D. P. Gaur, in 'Metal Alkoxides', Academic Press, New York, 1978; R. C. Mehrotra, *Adv. Inorg. Chem. Radiochem., 26, 269 (1983).*
- *Survey: S. E.* Livingstone, Q. *Rev., 19, 386* (1965); E. W. Abel and D. Armitage, *Adv. Organomet. Chem., 5,* 1 (1967); J. A. McCleverty, Prog. *Inorg.* Chem., 10, 49 968); Ch. G. Kuehn and S. S. Isied, *Prog. Inorg. Chem.*, 27, 153 (1980).
- H. Funk and A. Paul, Z. *Anorg. Allg. Chem., 330, 70* (1964).
- 4 I. A. Douek and J. T. Spickett, J. *Inorg. Nucl. Chem.*, 35, 511 (1973).
- 5 G. G. Hoffmann, Z. Anorg. Allg. Chem., (1984) in press.
- B. M. Mikhailov, *Russ.* Chem. *Rev.,* 37, 935 (1968);B. M. Mikhailov, *Progr. Boron Chem., 3, 313 (1970);* J. Goubeau and H. W. Wittmeir, Z. *Anorg. Allg.* Chem., 270, 16 (1952): E. Wiberg and W. Siitterlin, Z. *Anorg. Allg. Chem.. 202,37* (1931).
- 1. R. Durig and W. E. Bucy, J. *Mol. Spectrosc., 64, 474 (1977).*