Synthesis and Properties of Vanadium(III) Dithiocarbamates

LESLIE F. LARKWORTHY and MICHAEL W. O'DONOGHUE

Department of Chemistry, University of Surrey, Guildford, GU2 5XH, U.K.

Received February 25, 1983

Attempts to synthesise vanadium(II) complexes from $VBr_2 \cdot 6H_2O$ and dialkylammonium NN-dialkyldithiocarbamates led to the isolation of the vanadium-(III) complexes $[V(S_2CNR_2)_3]$, where R = Me, Et, Pr^n , and Bu^{i} . The magnetic behaviour and reflectance spectra are typical of six co-ordinate vanadium(III). The complex $[V(S_2CNEt_2)_3]$ and the corresponding chromium(III) and iron(III) complexes are isomorphous.

Introduction

Extensive studies have been carried out on the NN-disubstituted dithiocarbamato-complexes of most of the trivalent first row transition metals, but only a few tris(dithiocarbamato)vanadium(III) complexes, $[V(S_2CNEt_2)_3]$, $[V(S_2CNBz_2)_3]$ and $[V(S_2CNMePh)_3]$ are known [1, 2]. The first compound was prepared [1] by refluxing red-brown $[V(S_2CNEt_2)_4]$ in toluene for several hours, and the others by mixing ethanolic solutions of anhydrous vanadium(III) chloride with the sodium or lithium salt of the appropriate dithiocarbamate [2]. We wish to report a different synthesis of and the new complexes [V- $[V(S_2CNEt_2)_3]$ $(S_2CNR_2)_3$, where R = Me, Prⁿ, and Buⁱ (Table I), which does not involve the use of vanadium(IV) dithiocarbamates or anhydrous VCl₃, and was discovered during investigations of vanadium(II) complexes.

Results and Discussion

Orange-brown, microcrystalline complexes $[V(S_2CNR_2)_3]$ were obtained under anaerobic conditions by treating vanadium(II) bromide, $VBr_2 \cdot 6H_2O$ [3], in a de-gassed ethanol/triethylorthoformate medium, with the anhydrous diethylammonium dialkyldithiocarbamate dissolved in absolute ethanol. Rigorous exclusion of air was necessary since the vanadium(III) complexes darkened rapidly in air, and eventually became pale green. Previously [4], when vanadium(II) salts were treated under nitrogen with aqueous or aqueous ethanolic solutions of

sodium dithiocarbamates, brown products were obtained which analysed approximately as bis(dithiocarbamato)vanadium(II) compounds, but some decomposition of the ligand and oxidation of the vanadium(II) had occurred because the magnetic moments were very low for vanadium(II) [3], and the compounds smelt of sulphide. This work was repeated with similar results. Triethylorthoformate was then used in the reaction media to react [5] with the water in VBr₂·6H₂O and any present in trace amounts in the ethanol in case it was involved in the decomposition. However, this produced the vanadium (III) dithiocarbamates. Since vanadium(II) is stable under nitrogen in ethanol/triethylorthoformate mixtures (see Experimental), the oxidation must occur on the addition of the dithiocarbamate salt, but this was not investigated further.

Magnetic Properties of $[V(S_2CNR_2)_3]$

The magnetic moments of the complexes at room temperature are somewhat below but close to the spin-only value for the d² configuration (2.83 B.M.) thus confirming the oxidation state of the metal ion. The susceptibilities followed the Curie-Weiss law with fairly large θ values (Table II). Since tris(dithiocarbamato)vanadium(III) complexes would be expected to be magnetically-dilute, the large θ values must be ascribed to a variation of magnetic moment arising from a combination of distortion and delocalization effects, and spin-orbit coupling. Tabulated theoretical data show [6] that temperature variation of the type reported here is expected for vanadium-(III) complexes.

Electronic Spectra

Octahedral vanadium(III) compounds show [7] two spin-allowed d-d bands due to the transitions: ${}^{3}T_{1g}(F) \rightarrow {}^{3}T_{2g}(F)(\nu_{1})$ and ${}^{3}T_{1g}(F) \rightarrow {}^{3}T_{1g}(P)(\nu_{2})$. A third, two-electron transition, ${}^{3}T_{1g}(F) \rightarrow {}^{3}A_{2g}(F)$ (ν_{3}), is frequently weak and masked by chargetransfer transitions. This appears to be the case for the vanadium(III) dithiocarbamates. The diffuse reflectance spectra (Table III) contain the expected bands ν_{1} and ν_{2} although the latter appears as a shoulder except in some low temperature spectra. The ligand field parameters Dq and B' have been

V V C [V(S_2CNMe_2)_3] chocolate-brown 12.2 27.0 [V(S_2CNPt_2)_3] chocolate-brown 12.4 (26.3) [V(S_2CNPt_2)_3] orange 10.2 36.5 [V(S_2CNPt_2)_3] orange-brown 8.7 43.5 [V(S_2CNBuj_)_3] orange-brown 7.7 48.7 [V(S_2CNBuj_)_3] orange-brown 7.7 48.7 [V(S_2CNMe_2)_3] orange-brown 7.7 48.7 [V(S_2CNMe_2)_3] orange-brown 7.7 48.8 Acalculated percentages in parentheses. b In cm ⁻¹ × 10 ⁻³ . $c_{\beta} = 1$ TABL H.I. Magnetic Data. 7.7 48.8 231.4 [V(S_2CNMe_2)_3], $\theta = 2S^6$, $xL^a = 213$ 2.62.5 2.55 2.55 [V(S_2CNE	H B (4.4) B (4.4) B (4.4) C (4.4) B (4.4) C $(4.4$	N 9.5 (10.2) 8.3 (8.5) 7.0 (7.3) 6.2 (6.3) (6.3) (6.3)	spec ν_2 b 295 19.6 90 19.4 19.5 19.4 90 19.5 90 19.5 90 19.5 90 19.5 90 19.5 91 19.5 92 19.5 91 19.5 92 19.5 93 19.5 94 19.5 95 19.5 96 19.5 97 19.5 98 19.5 99 19.5 90 19.5 91 19.5 92 19.5 93 19.5 94 19.5 95 19.5 96 19.5 97 19.5 98 19.5	tra ν_1 b d 14.4 d 14.2 d 14.2 13.7 13.7 14.0 14.0 14.1 d 14.1 d 14.1 d 14.1 d 14.1 d 14.0 d 14.0	Dq ⁰ 1.52 1.47 1.50 ^e d These b	parameters B' B' 0.363 0.444 0.430 0.430 0.422e bands appear b	β ^e 0.422 0.516 0.500 0.491 ^e is shoulders c	ν ³ - 29.6 29.6 29.0 29.1 ^e 29.1 ^e an steeply
[V(S ₂ CNMe ₂) ₃] chocolate-brown 12.2 27.0 [V(S ₂ CNFt ₂) ₃] chocolate-brown (12.4) (26.3) [V(S ₂ CNFt ₂) ₃] orange 10.2 36.5 [V(S ₂ CNFt ₂) ₃] orange-brown 8.7 43.5 [V(S ₂ CNFt ₂) ₃] orange-brown 7.7 48.7 [V(S ₂ CNBu ₃)] orange-brown 7.7 48.7 [V(S ₂ CNMe ₂)] orange-brown 7.7 48.7 [V(S ₂ CNMe ₂)] orange-brown 7.7 48.7 [V(S ₂ CNMe ₂)] 0.5 2.13 2.14 [V(S ₂ CNMe ₂)] 2.25 2.55 2.54 [V(S ₂ CNMe ₂)] $\theta = 18^{\circ}, x_L = 28^{\circ}$ 2.62.5 2.30.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.5 (10.2) 8.3 8.3 (8.5) 7.0 (7.3) 6.2 (6.3) (6.3) (6.3) (6.3)	ν_2 b 295 19.0 90 19.4 19.4 90 19.5 19.4 90 19.5 90 19.5 90 19.5 91 19.5 90 19.5 91 19.5 91 19.5 92 19.5 93 19.5 94 19.5 95 19.5 96 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 10.5 19.5 110.5 19.5 110.5 19.5 110.5 19.5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.52 1.47 1.50 1.50 ^e d These b	B' 0.363 0.444 0.430 0.422 ^e ands appear i	β ^e 0.422 0.516 0.500 0.491 ^e is shoulders c	29.6 28.4 29.0 29.1 ^e 29.1 ^e n steeply
$ \begin{bmatrix} V(S_2CNMe_2)_3 \end{bmatrix} \text{chocolate-brown} 12.2 27.0 \\ (12.4) (26.3) \\ (12.5)^2 (26.3) \\ (10.3) (26.3) \\ (10.3) (36.3) \\ (10.3) (36.3) \\ (10.3) (36.3) \\ (10.3) (36.3) \\ (10.3) (36.3) \\ (10.3) (36.3) \\ (10.3) (36.3) \\ (10.3) (36.3) \\ (10.3) (36.3) \\ (10.3) (26.3) \\ (10.3) (26.1) \\ (10.3) (26.1) \\ (10^6 \text{ xA}(\text{cg.s.}) 246^2 \\ (10.3) (26.1) \\ (10^6 \text{ xA}(\text{cg.s.}) 246^2 \\ (10.3) (26.2) \\ (10.3) (26.2) 255 \\ (10.3) (26.2) 255 \\ (10.3) (26.2) 255 \\ (10.3) (26.2) 255 \\ (10.5) (26.5) 255 \\ (10.5) (25.5) 262.5 \\ (10.5) (25.5) 262.5 \\ (10.5) (25.5) 262.5 \\ (10.5) (25.5) 262.5 \\ (10.5) (25.5) 255.2 \\ (10.5) (25.5) 255.2 \\ (10.5) (25.5) 255.2 \\ (10.5) (25.5) 255.2 \\ (10.5) (25.5) 255.2 \\ (10.5) (25.5) 255.2 \\ (10.5) (25.5) 255.2 \\ (10.5) (25.5) 255.2 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (10.5) (25.5) 252.5 \\ (25.5) 252.5 \\ (25.6) $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.5 (10.2) 8.3 (8.5) 7.0 (7.3) 6.2 (6.3) (6.3) (6.3) e B is the free re measuremen	295 19.0 90 19.5 295 19.4 90 19.5 90 19.5 90 19.5 90 19.5 91 19.5 92 19.5 91 19.5 92 19.5 93 19.5 94 19.5 95 19.5 96 19.5 97 19.5 98 19.5 99 19.5 90 19.5 91 19.5 92 19.5 93 19.5 94 19.5 95 19.5 96 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.52 1.47 1.50 ^e d These b	0.363 0.444 0.430 0.422 ^e ands appear i	0.422 0.516 0.500 0.491 ^e is shoulders c	29.6 28.4 29.0 29.1 ^e 29.1 ^e n steeply
$ \begin{bmatrix} V(S_2CNEt_2)_3 \end{bmatrix} \text{ orange} & 10.2 & 36.5 \\ (10.3) & (36.3) & (36.3) \\ V(S_2CNPt_D^3)_3 \end{bmatrix} \text{ orange-brown} & 8.7 & 43.5 \\ (8.8) & (43.5) & (7.7) & (48.8) & (43.5) \\ (7.7) & (48.8) & (7.7) & (48.8) & (48.8) & (43.6) & (7.7) & (48.8) & (43.6) & (7.7) & (48.8) & (7.7) & (7.7) & (48.8) & (7.7) & (7.8) & (7.7) & (7.8) & (7.7) & (7.8) & (7$	$\begin{array}{cccc}$	8.3 (8.5) 7.0 (7.3) 6.2 (6.3) (6.3) e B is the free re measuremen	295 19.4 90 19.4 90 19.5 90 19.5 90 19.5 90 19.5 90 19.5 this in which ν_2 w	d 13.7 13.7 d 14.0 d 14.0 d 14.4 d 14.4 as resolved.	1.47 1.50 1.50 ^e d These b	0.444 0.430 0.422 ^e ands appear i	0.516 0.500 0.491 ^e is shoulders c	28.4 29.0 29.1 ^e n steeply
[V(S2CNPr $\mathbf{\tilde{D}}_{3}$]orange-brown8.743.5 $[V(S_2(CNBu\dot{\mathbf{J}}_3)]$ orange-brown7.748.7 (7.7) (48.8)(7.7)(48.8) $\mathbf{\tilde{T}}_{11}$ orange-brown7.748.7 (7.7) (48.8)(7.7)(48.8) $\mathbf{\tilde{T}}_{11}$ orange-brown7.748.8 $\mathbf{\tilde{T}}_{11}$ orange-brown7.748.9 $\mathbf{\tilde{T}}_{11}$ orange-transfer absorptions. $\mathbf{\tilde{T}}_{11}$ (48.8) $\mathbf{\tilde{T}}_{11}$ $\mathbf{\tilde{T}}_{11}$ $\mathbf{\tilde{T}}_{11}$ (48.8) \mathbf{T}_{11} $\mathbf{\tilde{T}}_{11}$ $\mathbf{\tilde{T}}_{11}$ (48.8) \mathbf{T}_{11} $\mathbf{\tilde{T}}_{11}$ $\mathbf{\tilde{T}}_{11}$ (48.8) \mathbf{T}_{11} $\mathbf{\tilde{T}}_{12}$ $\mathbf{\tilde{T}}_{12}$ $\mathbf{\tilde{T}}_{12}$ \mathbf{T}_{12} \mathbf{T}_{12} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{11} \mathbf{T}_{12} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{11} \mathbf{T}_{12} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{12} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{11} \mathbf{T}_{12} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{12} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{10} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{11} \mathbf{T}_{13} \mathbf{T}_{14} \mathbf{T}_{13} \mathbf{T}_{10} \mathbf{T}_{13} \mathbf{T}_{14} \mathbf{T}_{13} \mathbf{T}_{10} \mathbf{T}_{12} \mathbf{T}_{13} \mathbf{T}_{13} \mathbf{T}_{10} \mathbf{T}	.5 7.5 .5 (7.3) .7 8.4 .8) (8.2) .8) (8.2) .6 = B'/B when from low temperatu 3524 3524 2.55	7.0 (7.3) 6.2 (6.3) (6.3) (6.3) e B is the free re measuremen	295 19.5 90 19.4 295 19.5 90 19.5 -ion value for V ats in which ν ₂ w	d 14.0 14.0 d 14.4 d 14.4 $^{3+}$ (860 cm ⁻¹). as resolved.	1.50 1.50 ^e d These b	0.430 0.422 ^e ands appear i	0.500 0.491 ^e is shoulders o	29.0 29.1 ^e an steeply
[V(S_2(CNBuỷ)]]orange-brown7.748.7 a Calculated percentages in parentheses. b_{11} cm ⁻¹ × 10 ⁻³ . $c_{\beta} = 1$ a Calculated percentages in parentheses. b_{11} cm ⁻¹ × 10 ⁻³ . $c_{\beta} = 1$ rising charge-transfer absorptions. e This value was deduced from low tiTABLE II. Magnetic Data. $[V(S_2CNMe_2)_3]$, $\theta = 25^{\circ}$, $x_L^a = 213$ $[V(S_2CNMe_2)_3]$, $\theta = 25^{\circ}$, $x_L^a = 213$ $T(K)$ 295.7 3091 $T(K)$ 295.7 3091 0^{6} x _A (c.g.s.) 2835 3091 2.60 2.55 $2.30.1$ 10^{6} x _A (c.g.s.) 3244 3581 $\mu_{eff}(B.M.)$ 2.78 2.74 10^{6} x _A (c.g.s.) 3244 3581 $\mu_{eff}(B.M.)$ 2.78 2.74 10^{6} x _A (c.g.s.) 3222 3533 10^{6} x _A (c.g.s.) 2.78 2.74 0^{6} x _A (c.g.s.) 2.78 2.74 10^{6} x _A (c.g.s.) 3222 3533 $\mu_{eff}(B.M.)$ 2.76 2.72 10^{6} x _A (c.g.s.) 2.76 $2.30.1$	$\begin{array}{ccc} .7 & 8.4 \\ .8) & (8.2) \\ .8.2 & (8.2) \\ .6 & B'/B when \\ .7 & 0 & 10w temperatu \\ .7 & 10 & 0 \\ .7 & 3524 \\ .7 & 2.55 \\ .7 & 2.55 \\ .7 & 0$	6.2 (6.3) e B is the free re measuremen	295 19.5 90 19.5 -ion value for V its in which ν_2 w	d 14.4 d 14.1 ³⁺ (860 cm ⁻¹). as resolved.	1.50 ^e d These b	0.422 ^e ands appear a	0.491 e is shoulders o	29.1 ^e in steeply
A Calculated percentages in parentheses. b In cm ⁻¹ × 10 ⁻³ . $c_{\beta} = F$ rising charge-transfer absorptions. e^{T} This value was deduced from low transfer absorptions. $c_{\beta} = F$ TABLE II. Magnetic Data. e^{T} (S2CNMe ₂) ₃], $\theta = 25^{\circ}$, $x_L^a = 2113$ 262.9 231.6 [V(S ₂ CNMe ₂) ₃], $\theta = 25^{\circ}$, $x_L^a = 2113$ 262.9 231.6 2.524 $T(K)$ 295.7 260.9 $2.31.6$ 2.554 2.54 $T(K)$ 295.0 2.560 2.555 $2.30.6$ 2.55 $2.30.6$ $T(K)$ $2.95.0$ $2.60.2.55$ $2.30.6$ 2.74 2.74 2.7 $\mu_{eff}(B.M.)$ 2.78 2.74 2.74 2.7 2.74 2.7 $10^{6} \times_{A}(c.g.s.)$ 2.78 2.74 2.74 2.7 2.76 2.76 $2.30.4$ $10^{6} \times_{A}(c.g.s.)$ $2.262.6$ $2.330.4$ 2.77 2.77 2.77 2.77 2.72 2.77 2.77 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75	$c_{\beta} = B'/B$ when from low temperatu 231.0 3524 2.55	e B is the free re measuremen	-ion value for V its in which ν_2 w	³⁺ (860 cm ⁻¹), as resolved.	d These b	ands appear a	is shoulders o	on steeply
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	231.0 3524 2.55	100 6						
T (K)295.7262.9231.0 $10^{6} X_{A}(c.g.s.)$ 283530913524 $\theta_{eff}(B.M.)$ 2.602.552.5 $[V(S_{2}CNEt_{2})_{3}]^{b}, \theta = 18^{\circ}, x_{L} = 285$ 2.552.30.5 $[V(S_{2}CNEt_{2})_{3}]^{b}, \theta = 18^{\circ}, x_{L} = 285$ 2.602.552.30.5 $T(K)$ 2.95.02.62.52.30.5 $10^{6} X_{A}(c.g.s.)$ 324435814103 $\mu_{eff}(B.M.)$ 2.782.742.5 $[V(S_{2}CNPt_{2}^{b})_{3}], \theta = 46^{\circ}, x_{L} = 407$ 2.742.5 $[V(S_{2}CNPt_{2}^{b})_{3}], \theta = 25.22.35.235333977\mu_{eff}(B.M.)2.762.722.522.30.510^{6} X_{A}(c.g.s.)3.22235333977\mu_{eff}(B.M.)2.762.722.5$	231.0 3524 2.55	100 6						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3524 2.55	C.041	166.0	2	35.3	103.4		89.5
$ \begin{bmatrix} V(S_2CNEt_2)_3 \end{bmatrix} ^{\mathbf{b}}, \theta = 18^{\circ}, \mathbf{x_L} = 285 \\ T(\mathbf{K}) & 295.0 & 262.5 & 230.3 \\ 10^{6} \mathbf{x_A}(c.g.s.) & 3244 & 3581 & 4103 \\ \mu_{eff}(B.M.) & 2.78 & 2.74 & 2.5 \\ [V(S_2CNPt_2^{\mathbf{b}})_3], \theta = 46^{\circ}, \mathbf{x_L} = 407 \\ T(\mathbf{K}) & 295.2 & 262.6 & 230.8 \\ 10^{6} \mathbf{x_A}(c.g.s.) & 3222 & 3533 & 3977 \\ \mu_{eff}(B.M.) & 2.76 & 2.72 & 2.5 \end{bmatrix} $		4016 2.53	4643 2.4	49 55 19	.25 2.44	6869 2.38		838 2.37
T (K)295.0262.5230.3 $10^{6} X_{A}(c.g.s.)$ 324435814103 $\mu_{eff}(B.M.)$ 2.782.742.5 $I (S_{2}CNPr_{2}^{D})_{3}], \theta = 46^{\circ}, \chi_{L} = 407$ 2.742.5 $[V(S_{2}CNPr_{2}^{D})_{3}], \theta = 46^{\circ}, \chi_{L} = 407$ 2.62.6230.8 $T(K)$ 295.2262.6230.8 $10^{6} X_{A}(c.g.s.)$ 322235333977 $\mu_{eff}(B.M.)$ 2.762.722.5								
$\begin{array}{cccc} \mu_{\rm eff}({\rm B.M.}) & 2.78 & 2.74 & 2.7 \\ [V(S_2 {\rm CNPr}_2^{\rm B})_3], \ \theta = 46^{\circ}, \ \chi_{\rm L} = 407 \\ {\rm T}({\rm K}) & 295.2 & 262.6 & 230.8 \\ {\rm T}({\rm K}) & 3222 & 3533 & 3977 \\ \mu_{\rm eff}({\rm B.M.}) & 2.76 & 2.72 & 2.5 \end{array}$	230.3 4103	198.3 4721	166.3 5536	3 67	.35.1 119	103.0 8630	0	89.0 828
$ \begin{bmatrix} V(S_2CNPr_2^{h})_3 \end{bmatrix}, \theta = 46^{\circ}, x_L = 407 \\ T(K) & 295.2 & 262.6 & 230.8 \\ 10^{6} x_A(c.g.s.) & 3222 & 3533 & 3977 \\ \mu_{eff}(B.M.) & 2.76 & 2.72 & 2.5 \end{bmatrix} $	2.75	2.74	2.	71	2.69	2.67		2.65
T(K) 295.2 262.6 230.5 $10^6 \chi_A(c.g.s.)$ 3222 3533 3977 $\mu_{eff}(B.M.)$ 2.76 2.72 2.5								
$10^{\circ} \times_{A}(c.g.s.)$ 3222 3533 3977 $\mu_{eff}(B.M.)$ 2.76 2.72 2.5	230.8	198.5	166.	5 1	35.0	103.0		89.0
	3977 270	4483 267	5094 2	55 51	169 254	7407 247	~	3349 245
$V(S_{a}CNB_{11}^{b})$, $1 = 54^{\circ}$, $2 = 435$				5		1		
	130.3	2 001	1221		010	0101		6 00
$10^{6} \chi_{A}$ (c.g.s.) 2215 3459 3878	3878	4325	4974	57		6902		748
μ _{eff} (B.M.) 2.76 2.69 2.4	2.67	2.62	2	57	2.48	2.40		2.36

156

L. F. Larkworthy and M. W. O'Donoghue

TABLE III. X-Ray Powder Patterns (d-spacings, Å).

$[V(S_2CNEt_2)_3]$ d_{hkl}^a	[Fe(S ₂ CNEt ₂) ₃] d _{hkl}	[Cr(S2CNEt2)3] d _{hkl}
8.65 s		
7.81 s	7.57 vs	7.86 vs
6.89 m	6.70 w	6.66 m
6.37 vs	6.30 vs	6.24 vs
5.06 m	5.10 m	5.13 m
4.87 w	4.91 w	4.90 w
4.30 m	4.31 m	4.34 s
4.06 s	4.05 s	
3.95 m	3.93 w	3.93 m
	3.74 vw	3.70 vw
3.66 vw	3.59 vw	3.68 vw
3.32 w	3.29 w	3.30 w

^aCu- K_{α} radiation; intensities estimated visually.

calculated from the equations given by Griffith [8], and are similar, as would be expected, to those [9] of $[V(S_2PR_2)_3]$. The calculated value of ν_3 occurs where there is intense charge transfer or intraligand absorption.

The shoulder at 19400 cm⁻¹ was not detected by Bradley *et al.* [1] in the reflectance spectrum of $[V(S_2CNEt_2)_3]$ although the band near 14000 cm⁻¹ was. Their assumptions concerning the values of ν_2 , ν_3 , and B' are fully borne out by our spectra.

The assumption of approximate octahedral symmetry in the spectral analysis is justified by the isomorphism (Table III) of the complexes $[M^{III}-(S_2CNEt_2)_3]$, in which M = V, Cr, or Fe. A full X-ray investigation has shown [10] that $[Fe(S_2CNEt_2)_3]$ contains the iron(III) ion in a slightly distorted FeS₆ octahedron.

Experimental

Preparation of Complexes

The preparation of tris(NN-di-n-propyldithiocarbamato)vanadium(III) is described as an example.

A pale blue solution of VBr₂·6H₂O (2.8 g) in 1:1 ethanol/triethylorthoformate (20 cm³) was treated with di-n-propylammonium di-n-propyldithiocarbamate (4.9 g) dissolved in the same solvent (20 cm³). Fine orange-brown *crystals* separated quickly (yield $\approx 50\%$). They were filtered off, washed with ethanol, dried *in vacuo*, and ampouled. The complexes all changed colour on exposure to air, and one sample of $[V(S_2CNMe_2)_3]$ ignited. This complex appeared less stable than the others and was more difficult to obtain pure; $[V(S_2PMe_2)_3]$ behaved similarly [9].

The dialkylammonium dithiocarbamates were obtained from Ralph N. Emanuel Ltd. and were used without further purification, or were prepared by Uhlin and Akerström's method [11]. Ethanol and triethylorthoformate were purified by standard methods [12].

Ethanolic solutions of VBr₂·6H₂O were violet, with ν_1 and ν_2 at 17400 cm⁻¹ ($\epsilon = 6.6$ cm² mol⁻¹) and 11600 cm⁻¹ ($\epsilon = 4.0$ cm² mol⁻¹) respectively. The addition of small quantities of triethylorthoformate to the ethanolic solution gave a turquoise solution and slight bathochromic shifts; and in a 20:1 mixture ν_1 and ν_2 were at 16900 and 11050 cm⁻¹, with little change in extinction coefficients. Oxidation had not occurred because bands did not appear at 22000 and 15000 cm⁻¹ where vanadium(III) alcoholates [13] absorb. Therefore the oxidation occurs on the addition of the dithiocarbamate salts.

Analyses and Physical Measurements

To destroy organic matter the complexes were fumed almost to dryness with a mixture of oxidising acids. The residue was then digested with concentrated perchloric acid (75%) containing a little concentrated sulphuric acid. The solution containing vanadium(V) was cooled, diluted carefully with water, and phosphoric acid added. An excess of standard iron(II) was then added and back titrated with potassium permanganate and ferroin as indicator.

X-Ray powder photographs were recorded on samples in sealed Lindemann capillaries with a Philips camera PW 1024/00 of radius 114.6 mm and copper K_{α} radiation and a nickel filter. Electronic spectra were recorded on a Unicam SP 700C spectrophotometer provided with a SP 735 diffuse-reflectance attachment and a lithium fluoride reference. The samples were sealed in cells under nitrogen. Magnetic measurements were carried out by the Gouy method on samples sealed *in vacuo* in Pyrex tubes. The apparatus, calibrated with Hg[Co(NCS)₄], was obtained from Newport Instruments Ltd.

Acknowledgment

We thank the Science Research Council for a Studentship (M.W.O'D.).

References

- D. C. Bradley, I. F. Rendall and K. D. Sales, J. Chem. Soc. Dalton, 2228 (1973).
- 2 L. Que Jr. and L. H. Pignolet, Inorg. Chem., 2, 351 (1974).
- 3 L. F. Larkworthy, K. C. Patel and D. J. Phillips, J. Chem. Soc. (A), 1095 (1970); H. J. Seifert and B. Gerstenberg, Z. Anorg. Chem., 315, 56 (1962).
- 4 R. R. Patel, Ph. D. Thesis, University of Surrey (1972).
- 5 P. W. N. M. Van Leeuwen, Recueil, 86, 247 (1967).
- 6 F. E. Mabbs and D. J. Machin, 'Magnetism and Transition Metal Complexes', Chapman & Hall, London (1973).

- 7 B. N. Figgis, 'Introduction to Ligand Fields', Interscience,
- New York (1966), p. 218.
 J. S. Griffith, 'Theory of Transition Metal Ions', Cambridge University Press, New York (1961), p. 302.
- 9 R. G. Cavell, E. D. Day, W. Byers and P. M. Watkins, Inorg. Chem., 10, 2716 (1971).
- 10 J. G. Leipoldt and P. Coppens, Inorg. Chem., 12, 2269 (1973).
- 11 A. Uhlin and S. Akerström, Acta Chem. Scand., 25, 393 (1971).
- 12 D. D. Perrin, W. L. E. Armarego and D. R. Perrin, 'Purifi-cation of Laboratory Chemicals', Pergamon Press, London (1965).