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In the frame of our work on the interaction 
between transition metal ions through extended 
bridging ligands, we have shown that the tetra- 
dentate ligand p-oxalato shown hereunder 
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was particularly able to propagate the electronic 
effects when the xy-type exchange pathway was ope- 
rative. The large antiferromagnetic coupling generally 
observed is due to the strong overlap between the xy- 
type magnetic orbitals centered on the metal ions, 
and is delocalized towards the oxygen atoms of the 
oxalato bridge [ 1, 21. Such a situation occurs in the 
linear chain Cu(C204)‘l/3H20 [l] , and in Ni(l1) 
and Cu(I1) binuclear species [3, 41. To the best of 
our knowledge, the efficiency of the oxalato ligand 
to couple two high-spin iron(II1) ions had not yet 
been put into evidence. In this letter, we describe 
the synthesis, the magnetic properties and the 
EPR spectrum of the molecular compound (acac),- 
Fe(C204)Fe(acac)2*%H20, noted 1 with acac = 
acetylacetonato. 

The synthesis is carried out according to the 
scheme : 

ZFe(acac)s t Fe3+ 2 3Fe(acac)i 

2Fe(acac): + C2024- + I 

I was obtained as a dark red polycrystalline solid 
by slow evaporation of a methanol solution contain- 
ing 1.0 mmol of Fe(acac)3, 050 mmol of Fe(N03)3* 
9H# and 0.75 mmol of (Cs H12N)2C204 l 2H20. 
Fe(acac)3 was prepared as described [5] and the 
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Fig. 1. Experimental (0) and theoretical ( -) tempera- 
ture dependences of the molar magnetic susceptibility of 1. 

piperidinium oxalato dihydrate was isolated from 
piperidine and oxalic acid in dimethylformamide. 
Anal. Calcd.: C, 43.66; H, 4.79; Fe, 18.47. Found: 
C,43.65; H, 4.78; Fe, 18.2. 

The infrared spectrum of 1 exhibits in addition 
to the bands of the acac- ligand, the VC_O stretch- 
ing vibration at 1675 cm-’ and the V~_C_O bending 
vibration at 805 cm-’ characteristic of the oxalato 
bridging ligand. It follows that the molecular struc- 
ture of 2 is that shown hereunder, with two Fe(III) 
ions in octahedral surroundings of oxygen atoms, 
separated by more than 5 8, [4,6,7] : 

The molar magnetic susceptibility xM versus temper- 
ature T plot for 1 is shown in Fig. 1, in the range 
2 < T/K < 300. When cooling down, xM increases 
much slower than expected from a Curie law, reaches 
a plateau around 20 K with xM = 9.28 X lo* cm3 
mol-’ , then increases again. This behaviour is char- 
acteristic of an intramolecular antiferromagnetic 
coupling between two high-spin Fe(II1) ions, with 
a very small amount p of uncoupled impurity. 
Assuming a CZv site symmetry for the metal ions and 
a DZh molecular symmetry, the interaction between 
two 6A1 iron(III) single-ion ground states leads to 
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Fig. 2. X-band EPR spectra at 20 K of 1. Top: spectrum of 
a solution in a l/l toluene-chloroform mixture. Bottom: 
spectrum of the powder solid. 

‘A, + 3BrU t 5A, + ‘BrU + 9A, + ‘rBlu molecular 
states, the spin degeneracy of each tenn being even- 
tually removed by the Zero Field Splitting. To 
determine the magnitude of the interaction in 1 from 
the magnetic data, we expressed the observed suscep- 
tibility XM as 

XM = P (1 - PI •t XIP 

xD is the actual susceptibility of 1 and x1 the suscep- 
tibility of the impurity. We assumed that the 
impurity was a monomeric high-spin iron(II1) com- 
pound of the same molecular weight as 1, with a 
magnetic susceptibility obeying the Curie law xr = 
35 NPZg2/12 kT. In a first calculation, we described 
the interaction by the X = -J&*S, Hamiltonian, 
i.e. we considered that the relative energies of the 
molecular states followed the Landee interval rule, 
J being the ‘A, - 3B1, energy gap. xD is then given 
by: 

2Nfi2g2 
x”=_ 

x + 5x3 + 14x6 t 3ox’O t 55x15 

kT 1 t3xt5x3t7x6t9x10tllx15 
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Fig. 3. Low lying states in 1 (see text). 

J, the g factor and p determined by least squares 
fitting are found as: 

J = -7.22 cm-’ 

g= 1.99 

p= 0.051 

The agreement factor defied by zl(XG& - $“)‘I 
z(x$‘)* is then 2.3 X 10e5, which is a very low 
value. In a second calculation, we introduced a 
biquadratic term j(S,*S2)2 in the exchange Hamilto- 
nian. This did not improve the fitting, owing to the 
excellent theory-experiment agreement derived from 
the simple HDVV Hamiltonian. 

The X-band EPR spectra at 20 K of the powder 
solid and of the solution in a l/l toluene-chloroform 
mixture are shown in Fig. 2. These spectra are 
unchanged in the temperature range 4-80 K*. 
Since the 5A, state and the states of higher spin multi- 
plicity are essentially not populated at 4 K, all the 
features visible in the spectra of Fig. 2 are associated 
to the first excited 3B1U state. Between 2000 and 
5000 G the solution spectrum is typical of the 
AMa = *l transitions in a triplet state, with an 
axial Zero Field Splitting and an isotropic g-tensor. 
From the two peaks at 2238 and 4511 G corres- 
ponding to the resonant fields H//i and Hp, when 
the applied magnetic field is parallel to the axis of 
the D tensor, one easily determines g = 2.00(3) and 
the Zero Field Splitting parameter 1DI = 0.10(6) 
cm-’ [8]. Below 2000 G, the solution spectrum 
exhibits many weak features which may be assign- 
ed to the AM, = +2 forbidden transitions. The 

with 

x = exp(J/kT) 

*Except for the appearance below 10 K of a small feature 
at g = 4.3, most likely belonging to the uncoupled iron(III) 
impurity already detected in magnetism. 



Inorganica Chimica Acta Letters L41 

powder spectrum is poorly resolved. It only shows 
a large signal centered at g = 2.00 between 2000 and 
5000 G which is clearly the envelope of all the AM, = 
?l transitions, and a small signal at low field, which 
is the envelope of the features detected in the 
solution spectrum below 2000 G. 

From the magnetic and EPR investigations, we 
obtained a relatively accurate description of the rela- 
tive energies and the nature of the low lying states 
in 1. These results are summarized in Fig. 3. 

In a forthcoming paper, we aim at rationalizing 
the results concerning the interaction through oxa- 
lato type bridging ligands. We restrict ourselves here 
to emphasize the magntidue of the coupling between 
two Fe(II1) ions separated by more than 5 A. This 
interaction is of the same order of magnitude as that 
occurring in di-p-hydroxo Fe(II1) dimers with a Fe- 
Fe separation of about 3 A [9]. 

Experimental 

The magnetic measurements were carried out on 
two samples weighing about 5 mg with a previously 
described Faraday type magnetometer [2]. The 
applied magnetic field was about 0.2 T. The indepen- 

dence of the susceptibility against the magnetic field 
was checked at both room temperature and 4.2 K. 
The diamagnetism was estimated as -167 X lo* 
cm3 mol-‘. The EPR study was carried out with a 
Bruker ER 200 D spectrometer. A listing of the 
magnetic data may be obtained on request from the 
authors. 
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