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Structure and Properties of [Fe(WS&] 3- 
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Work in our laboratories has concentrated in the 
area of enzymes containing both molybdenum and 
iron, particularly nitrogenase and its iron-molyb- 
denum cofactor (FeMoco), and chemical models 
related to these entities [l-5]. Recently, we reported 
[4, 51 the synthesis and characterization of the new 
Fe-MO-S species, [Fe(MoS&]” (n = 2,3). For n = 
3, a well-defined trinuclear species is obtained, while 
the species with n = 2 could not be isolated in a pure, 
crystalline form [2, 41. The structure of the trianion, 
prepared by a method similar to ours, was reported 
independently [6]. The analogous tungsten com- 
pounds, [Fe(WS4)2]w (n = 2,3) have also been re- 
ported [4, 71, although, with n = 3, the yield was 
rather poor. Of this series of compounds, only the bis 
(DMF) adduct of [Fe(WS,),]*- has been structurally 
characterized [7]. As part of our continuing studies 
in this area, we now report an improved preparative 
method for [Fe(W&)*] ‘- (I), together with its X-ray 
crystal structure and characteristic spectral features. 

[Et,,N] 3 [Fe(WS4)2] is best prepared by a method 
similar to that of its molybdenum analog [5] except 
that the solvent system is 15% water in CH2C12#. The 
use of this biphasic reaction medium allows yields 
exceeding 50%, which is at least twice that obtainable 
from the reported preparation involving the [Et4N]- 
BI& reduction of the dianion in CHzC12. The 
presence of water is vital, but its role is unknown. In 
fact, I precipitates in moderate-to-good yield directly 
from an aqueous solution containing [NH412WS4, 

Fe(NHq)2Wd2a6H20 and [(W-WH2NCW31C~ 
after standing at room temperature for 2 hr. Solvated 
red-brown single crystals of the mixed cation salt of 

*Authors to whom correspondence should be addressed. 
*Anal. Calcd. C2&cFeN&W2: C, 26.9; H, 5.65; N, 

3.92; S, 23.9. Found: C, 26.6; H, 5.71; N, 3.91; S, 23.7. 
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bis(triphenylphosphine)iminium (PNP) and tetra- 
ethylammonium of I grow in 40% yield from a 
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saturated acetonitrile solution obtained by treating 
[PNP] 2 [Fe(W&)a] with NaBHe followed by addition 
of excess [Et,N]+. Single crystal X-ray diffraction 
data5 were collected on a Syntex P2r four-circle dif- 
fractometer with graphite monochromatized MO-Kcu 
radiation (h = 71.07 pm) and corrected for absorp- 
tion by an empirical method. The structure was 
solved by the heavy atom method and all non- 
hydrogen atoms were located by subsequent structure 
factor calculations and difference electron density 
maps. Least squares refinements using anisotropic 
thermal parameters converged at R = 9.00% with 
R, = 8.63% [l/w = a*F + O.O0009F*)] for 3586 
reflections [4’ < 28 < 50’; I > 1.960(I)]. 

Fig. 1. ORTEP plot of 1 in crystals of the [PNP] *[Et&] salt. 

The structure of the trianion is shown in Fig. 1 
with the bond distances and angles collected in Table 
I, where they are compared with analogous data for 

[WMoW213- (2) [61, KWeS2WS212- (3) WI , 
and [MoS4FeC12)2]2- (4) [9]. All three metal atoms 
in I are approximately tetrahedrally coordinated with 
the two tetrathiotungstate ligands acting as bidentate 
chelates to the Fe atom, which lies on a two-fold 
crystallographic axis. The -9” bend in W-Fe-W’ is 
similar to the slight bend observed in [Fe(MoS,)2]3- 
and contrasts with the linearity of Fe-MO-Fe in 4. 
The bend may well be a consequence of reduction 
because, in the series [CO(WS~)~]* (n = 2,3), the 
dianion has a linear W-Co-W arrangement, which 
changes to - 168” in the trianion [lo]. The WS2Fe 
unit is similar to the MS2Fe units in 2 and 3 and is 
close to planarity. The average tungsten-to-bridging 
(Sl and S2) sulfur (W-Su) and iron to bridging sulfur 
(Fe-St,) bond distances of 223.9 pm and 223.7 pm, 
respectively, in I are very similar to the analogous 

§Crystal and refinement data for [(Ph&N] z[EtdN]- 
[Fe@&&] *ZCH$N: orthorhombic witha = 1257.1(3) pm, 
b = 3394.6(13) pm, c = 1079.8(3) pm and (Y = p = 7 = 90.00- 
(3)“; space group P21212; Z = 2; dde= 1.42 g/cm3; crystal 
dimensions, 0.7 X 0.5 X 0.45 mm. 
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TABLE I. Interatomic Distances (pm), Bond Angles (Degrees) and Standard Deviations in [Fe0VS&13- (I), [Fe(MoS&13- 
(2)a, [(Ss)FeSzWS,]Z-(3)b, and [MoS4FeC1s)s1”(4)C. 

M-Fe 
M-S1 
M-S2 
M-S3 
M-S4 
Fe-S1 
Fe-S2 
M-Fe-M’ 
Sl-Fe-S2 
Sl-M-S2 
M-Sl-Fe 
M-S2-Fe 

aFrom ref. 6. 

I(M=w) 2 (M = MO) 3(M=W) 4 (M = Mo)~ 

274.9(l) 274.0(l) 275.3(3) 277.5(6) 
223.5(8) 226.0(4) 224.0(6) 
224.2(9) 225.1(S) 226.9(7) 

220.4(5) 

215.9(7) 216.9(5) 214.2(6) 
217.2(10) 217.3(S) 217.2(8) 
223.8(10) 224.5(4) 226.0(7) 
223.5(9) 226.8(4) 228.0(7) 

229.5(5) 

171.2(3) 172.64(6) 179.38(7)e 
103.9(3) 104.9(2) 100.9(2.0) 
104.0(3) 105.0(2) 105.4(2) 109.5(1.9) 
75.8(3) 74.90(12) 
75.8(3) 74.64(13) 

74.9(6)d 76.05(9) 

bFrom ref. 10. CFrom ref. 11. dMean values with standard deviation from the mean in parenthesis. 
eAngle for Fe-MO-Fe. 

distances of 2 (225.6 pm and 225.7 pm) and 3 (225 5 
pm and 227.0 pm). The tungsten-to-terminal (S3 and 
S4) sulfur (W--St) distance in I is distinctly shorter 
(216.6 pm) than W-S, but similar to M-S, in 2 
(217.1 pm),3 (215.7 pm) and WSi-(217.7pm [ll]). 
The tungsten-iron distance of 274.9 pm in 1 is also 
similar to the corresponding distances in 2 @lo-Fe = 
274.0 pm [6]) and 3 (W-Fe = 275.3 pm [S]) and not 
much different from the MO-Fe distance (277.5 pm) 
in 4, where “Fe Mossbauer and magnetic data [9] 
indicate a Fe(I1) and, thus, Mo(V1) formulation. For 
l-4, the M-&,--Fe angles are all between 74.6” and 
76.1’, a variation of only 1.5’. This small variation 
may indicate a controlling influence for this angle on 
the M-Fe separation because the S,-M-S, and 
$,-Fe--S, angles vary more, from 103.7”~to-109.5” 
and 101”-to-104.9°, respectively. However, these 
structural data are not very definitive in gaining 
insight into the distribution of electron density over 
the three metal atoms in these complex anions. 

The electronic absorption spectra of [Fe(WS&]“- 
(n = 2,3) in CH3CN solution are presented in Fig. 2. 
A comparison of the two spectra shows that the for- 
mation of I from [Fe(WS,),]2- (5) cannot be inter- 
preted as a reduction of only the Fe center (Fe” + 
Fe’). Not only is there a shift of the L + d(Fe) type 
[lo] absorption band from 16.2 kK to 18.0 kK, but 
a second intense band appears at these lower energies 
(20.3 kK) on reduction and a pronounced change in 
the L + L* bands occurs (from 23.4 and 26.7 kK in 
5 to 22.9 and 27.6 kK in I). The spectrum of I shows 
a very similar pattern to that of its molybdenum 
analog 2 [5, 61. The infrared spectrum of I contains 
a strong band at 470 cm-r (v,W-S,) and a medium 
intensity band at 431 cm-’ (‘VW-S,,‘). The strong 
W-S bands in the infrared appear as only weak 
shoulders in the Raman spectrum (excitation frequen- 
cy of 647.1 mn) as shown in Fig. 3, where the 
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Fig. 2. Electronic absorption spectrum of [Et$J]r 

IFe(ws&l ( -) and [Et4N]2[Fe(WS4)2] (-.- .-) in 
acetonitrile solution. 

strongest bands are observed at 422, 475 and 496 
cm-‘. The symmetric VW-S, and the VW-$, vibra- 
tions are much less characteristic for I than for 5 (see 
ref. 10 for a short discussion of this topic). The 475 
cm-’ band shows a strong enhancement in the 
resonance Raman spectrum [ 121 using the 514.5 or 
488.0 nm lines of an Ar laser. The latter spectrum 
also shows a remarkable combination (v,Fe-S + 
v,W-S,) band and two overtones of v,W-S,. The 
“Fe Mossbauer spectrum of I at room temperature 
exhibits a value of 0.45(2) mm/s for the isomer (IS) 
with a quadruple splitting (QS) of 1.03(2) mm/s. 
These values are similar to 2 (IS = 0.42 and QS = 
1.04 mm/s at 77 K) [ 151 and comparable to those for 
5 (IS = 0.44 and QS = 2.65 mm/s). These isomer shift 
data indicate extensive charge delocalization from Fe 
to the two bidentate MS:- ligands producing similar 
electron density at Fe for all three complexes. The 
magnetic moment and EPR spectral data for 1 are 
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Fig. 3. Raman and Resonance Raman spectra of solid 

lPN%lEttil lFe(WS&l. 

consistent with the presence of a S = 3/2 spin system 
and a detailed analysis of these data has been sub- 
mitted [ 161. 

The interpretation of the electronic absorption 
and Mossbauer data as indicating only minor changes 
in the relative charge (or electron density) at Fe on 
reduction of 5 to give I is supported by EH-SCCC- 
MO calculations on the complexes [M1(WS4)2]n- 
(M’ = Fe, Co; n = 2,3), which show a high electron 
delocalization (M’ + WS$-,) as inferred from the MO’s 
with predominant 3d(Mr) character [2]. These 
studies show that, upon reduction: (i) the net charge 
on each of the three metal centers remains almost 
unchanged with the additional charge located mainly 
at the terminal S atoms (for more details, see ref. 10); 
and (ii) the W-S+, overlap population and, thus, bond 
order decreases (see structural data on the related Co 
complexes [lo]) which is exemplified by the shift of 
vasW-S, from 493/484 cm-’ in 5 to 470 cm-’ in 1. 

[Fe(WS&13- and its molybdenum analog provide 
good, simple prototypes with which to initiate studies 
of the charge delocalization in clusters of MO(W)-- 
Fe-S atoms. It is of special interest to compare these 
effects, together with structural data, in two species 
differing only in their electron populations. Unfor- 
tunately, the appropriate pairs of MOO-Fe-S com- 
plexes have, so far, eluded isolation and/or crystal- 
lization. However, we have been able to obtain single 
crystals of [Co(WS,),]“- (n = 2,3) and such studies 
in this series are ongoing [lo]. These complexes 
continue to be important in our efforts to understand 
the properties of, and indeed even identify, multi- 
metal clusters in protein and enzymes. 
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