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Combination of Cytochrome c Peroxidase and Car- 
bon Monoxide 

TABLE I. Recombin;tF Rate Constants for P(H) + CO 

after Flash Photolysis. ’ 
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Introduction 

The kinetics of CO binding by heme and heme- 
substituted proteins has been the focus of recent 
attention [ 1, 21. The CO combination rate has been 
correlated with both the electron-withdrawing power 
[l] and the bulkiness of the porphyrin side chains 
[2]. A comparison of the protein rate data with free 
heme data shows that the CO combination rates 
follow the reverse order in the absence of the pro- 
tein [3]. This suggests that the protein structure has 
a considerable effect on the l&and-binding properties 
of the heme. Indeed, such an effect is evident from 
the combination rates of myoglobin (Mb) and horse- 
radish peroxidase (HRP) with CO; although both 
enzymes contain a protoheme group coordinated to 
the protein via a histidine residue, their CO binding 
rate constants differ by two orders of magnitude 
(Table I). 

Cytochrome c peroxidase (CCP), whose biological 
function is believed to involve the catalysis of ferro- 
cytochrome c oxidation by H20, [4], also contains 
a protoheme group bonded to the protein via a histi- 
dine residue. Thus, a comparison of its CO combina- 
tion rate with those of Mb and HRP is of interest, 
since this would indicate whether the peroxidases 
exhibit similar ligand-binding properties. We present 
below our results for the combination of CO with 
CCP and Mb. Because of the extreme photosensiti- 
vity of carboxyheme complexes, flash photolysis is 
used to generate the reactants in situ, and a probe 
beam monitors their recombination after the 
photolyzing flash. 

Experimental 

CCP was isolated from baker’s yeast by the proce- 
dure of Nelson etal. [5]. Horse heart Mb was obtain- 
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aP(II) represents the Fe(H) form of the protein; Mb = myo- 

globin, CCP = cytochrome c peroxidase, HRP = horse- 

radish peroxidase. bExperimental conditions: phosphate 
buffer, 0.1 hf, pH 7.0, 20 “C. 

ed from Sigma (type III). The proteins were transfer- 
red to sodium phosphate buffer (0.1 M, pH 7.0), 
and reduced with sodium dithionite. CO was bubbled 
into the protein solutions in lo-mm sealed cuvettes 
at a pressure of 1 atm, giving a CO concentration 
of 10e3 M [6]. The visible absorption spectra of the 
proteins were recorded on a Perkin Elmer 552 
spectrophotometer. A coaxial flashlamp pumped 
dye laser (Model DL-2100C, Phase-R) was used to 
photolyse the samples. With rhodamine 6G in the 
dye cell, a 30-nsec, 500-mJ pulse with a maximum 
at 590 nm was obtained. The photoflash was screen- 
ed from the detector by means of a CuSO4 solution. 
Changes in the Soret region of the proteins follow- 
ing the flash were monitored using a 250-W quartz 
tungsten-halogen lamp. A grating monochromator 
was placed between the sample and the photomulti- 
plier, the output of which was displayed on a storage 
oscilloscope and recorded photographically. Trans- 
mittance changes were measured at the absorbance 
maxima of both the reduced and carboxy forms of 
the proteins to ascertain the wavelength depen- 
dence of the recombination rates. 

Results and Discussion 

The absorption spectra of carboxy- and ferroCCP 
have Soret maxima at 423 and 438 nm, respectively 
(Fig. 1). Thus, following the photoflash, an increase 
in absorbance is expected at 423 nm correspond- 
ing to the growth of the carboxy peroxidase, while 
the 438-nm peak should decrease due to the decay 
of the reduced enzyme. Pseudo first order kinetics 
are expected because of the excess CO present, and 
Fig. 2 shows the first order plot of the oscilloscope 
trace at 438 nm. A similar plot was obtained for the 
growth of the 423-nm signal. Table I gives the 
bimolecular rate constant obtained from this data, 
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Fig. 1. Soret region of the absorption spectrum of dithionite- 
reduced cytochrome c peroxidase in the presence (solid line) 
and absence of CO (dotted line). 

Fig. 2. Kinetic plot of the recombination of dithionite- 
reduced cytochrome c peroxidase (lo4 M) and CO (low3 
M) in phosphate buffer (0.1 M, pH 7.0, 20 “C). Ac and A, 
are the absorbance changes at 438 nm at times 0 and t ms, 
respectively (in the above plot, t = 0 corresponds to 50 ms 
after the photoflash). 
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and also our value for Mb which is in good agree- 
ment with the values obtained previously [ 11. 

The literature value for the combination of HRP 
with CO [7] is also given in Table I. The rate cons- 
tants for the combination of the two peroxidases 
with CO are almost identical. This suggests that the 
ligand-binding sites of the two proteins are some- 
what similar, which is not surprising since peroxi- 
dase catalysis is believed to involve a number of 
invariant residues at the heme site [4]. Thus, the 
heme pockets should be similar in the two peroxi- 
dases, giving rise to similar electronic and steric 
effects on the CO recombination rates. 

The rate constants extracted from the changes in 
the 423- and 438~nm signals agree within 10% 
(the expected experimental error). This suggests that 
only one process is occurring, viz., the recombina- 
tion of the peroxidase with CO following the photo- 
flash. Hence, the photodissociated form of CCP 
is presumed to remain five-coordinate before recom- 
bination (as was presumed previously for Mb [3]), 
since no absorbance changes corresponding to the 
formation of an aquo ligand appear after photo- 
lysis. 
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