Dioxygen Evolution from Inorganic Systems. Reactions and Catalytic Properties of Loaded TiO₂ Particles in Photochemical Dioxygen Generation

ENRICO BORGARELLO

Institut *de Chimie Physique, Ecole Polytechnlque F&d&ale, Lausanne, Switzerland*

and EZIO PELIZZETTI

Istituto di Chimica Analitica, Universitd di Torino, Turin, Italy

Received July 1, 1983

cles in photochemical water splitting through band photodecomposition of water on semiconductor *gap irradiation of aqueous suspensions has been* particles has received considerable interest recently *investigated. The effect of pH and loading with noble investigated. The effect of pH and loading with noble* and several papers report on water photolysis by *metals and RuO₂ has been examined. Particular at*- illuminating suspensions of TiO₂ [7–15], SrTiO₃ *the dus and KaO₂ has been examined, furticular at* intuining suspensions of $102 \frac{1}{-1}$, 31103 *photography in the consistence of non-Tip-Gap crominon and* [23]. Consistence of a TiO_J Cap [23].

Introduction

During the last few years there has been increasing interest in the use of semiconductors in photosynthetic and photocatalytic processes [1]. In particular, since the work of Fujishima and Honda with TiO? electrodes [2], the photochemical cleavage of water has received considerable attention [3]. The water splitting was then achieved photoelectrochemiwater spiritung was their achieved photoelectrochemithe semiconductor-liquid interface can initiate the the semiconductor-liquid interface can initiate the reactions.

It now seems possible to carry out many reactions previously carried out with electrodes using the semiconductors in powder or colloidal form [3, 51. Sufficient surface and are surface and are simpler surface and are simpler $\frac{1}{2}$ and $\frac{1}{2}$ is the construction of construction that the correction of construction of constructi and less expensive to construct and use than the corresponding photoelectrochemical cells.

The irradiation of a semiconductor with light of energy equal to or higher than the band gap creates an electron-hole pair near the surface [6].

$$
semiconductor + h\nu \longrightarrow h^+ + e^-
$$
 (1)

The generated electron and hole can be used to drive a thermodynamically uphill reaction (heterogeneous photosynthesis) or to increase the rate of a thermophotosynthesis) or to increase the rate or a thermocatalysis) [1]. The *C*_{ut} two of reaction is of concatalysis) [1]. The first type of reaction is of considerable interest in energy storage and the use of semiconductor particles, eventually loaded with semiconductor particles, eventually loaded with w_i is v_i included values, has been investigated in a wide variety of processes involving numerous substrates, e.g. water $[7-17]$, hydrogen sulphide [18],

The efficiency of differently prepared TiO₂ parti- and dehydrogenation of alcohols [29–21]. Indeed the

Since some aspects of the process are still unclear, of the process are sum unclear
d present paper reports on the use of unterent. μ clear attention to the photoeneincal particular at the set of μ cleavage of water, with particular attention to dioxygenevolution.

Experimental

Materials

All reagents were analytical grade and were used as supplied. RuO_4 (Alfa) and $RuCl_3 \cdot H_2O$ (Fluka) were purissimum grade. The following TiO₂ were used: μ *u* issimum grade. The following μ σ ₂ were used, μ ₂ and μ $T_1 \cup T_2$ British Tionari are commercially them are commercially the commercial theorem are commercially the c $TiO₂$ British Tioxide. Most of them are commercially available; more details on TiO₂ Montedison have been previously reported [24].

Deionized water was refluxed over alkaline perperomized water was remaked over and the permanganate an

Preparation of the Catalysts

 $TiO₂$ were used as supplied without any further modification of the surface. In Table I the surface area and the pH of a solution containing 0.5 g I^{-1} of t and the prior a solution containing 0.5 g r -0.01 the university $110₂$ preparations are reported. Each experiment was performed with 0.5 or 1.0 g l^{-1} of TiO₂. T_1 .
The logic of TiO can be can be can be can be can be calculated by can be calculated by can be calculated by ca

The loading of $110₂$ with $KuU₂$ can be called out via RuO₄ decomposition, according to RuO₄ \rightarrow $RuO₂ + O₂$. The process is catalyzed by light. When the surface is not modified by temperature treatment the surface is not modified by temperature treatment In the same presence is preparation to the second state. In this preparation the sample is treated at up to 320 °C for two hours in the presence of air. The $RuO₄$ method is mainly used for colloidal $TiO₂$ [25], while the

TABLE I. Characteristics of Differently Prepared TiO₂.

RuC13 method is used for powders. A modification of the $RuCl₃$ method was employed to load $TiO₂$ Montedison with $RuO₂$; in this preparation $RuCl₃$ is dissolved in KOH and the mixture $RuCl₃-TiO₂$ is dissolved in KOH and the initiate KuCl3⁻¹102 is $[241 \text{ The event } 4 \text{ The event } 2 \text{ and } 1 \text{ and } 2 \text{ and } 2 \text{ are } 0.100$ [24]. The resultant $RuO₂$ loading is 0.1%.
The final step of the catalyst preparation consisted

of loading with Pt particles. An aqueous solution of H_2PtCl_6 is prepared and reduced with citrate as $\frac{1}{2}$ rci $\frac{1}{6}$. Belgiance and reduced with chrate a previously described [20]. The resultant unitalli Pt sol (particle diameter is ≤ 30 Å) is subsequently mixed with the solution containing TiO₂ or TiO₂-Ru02 particles and sonicated. The final Pt concentration was 40 mg l^{-1} , except for cyclic water splitting experiments where the Pt loading was 1%.

The activities of Cu, Ag, Pd, Rh and Pt loading on $TiO₂$ were compared using the following procedure: a solution of the chloride or nitrate salt of the metal a solution of the choride of intrate said of the fileta was founded in Fig. on Fio₂. The powder was subsequently neate

Apparatus

Continuous illumination was carried out with an Ω_{max} X BO 450 W X_e l_{am} equipped with an $\frac{1}{2}$ with $\frac{1}{2}$ to $\frac{1}{2}$ radiation. The solution of $\frac{1}{2}$ radiation. The solution. The solution of $\frac{1}{2}$ radiation. water jacket to remove IR radiation. The solution volume for O_2 uptake experiments was 15 ml and was contained in a Pyrex flask equipped with optically flat entry and exit window. The filter effect of the Pyrex for *W* light is significant. The transmission of the entry window is 50% at 325 nm and virtually zero below 300 nm. σ below 500 mm.
Ferminents and the 25 ml solution was a 25 ml solution

For H_2 evolving experiments a 25 iiii solution was employed. H_2 production was analyzed by gas chromatography with a Gow Mac system, carbosieve column (35 °C) and Ar as carrier gas. O_2 was analyzed using a Teledyne Bl oxygen-specific microfuel cell. The setup has also has already in a previous control of the previous control o paper $[25]$. Alternatively a gas chromatographic and $[25]$ paper [25]. Ancinatively a gas chromatographic m culou, B BET measurements were performed by a Micro-Microsoft were performed by a Micro-

nerities 2205 High Speed Surface Area Analyzer neritics 2205 High Speed Surface Area Analyzer, using Ar and assuming the area of an Ar atom to be $13.8 A^2$.

Results **and Discussion**

Dioxygen Photoadsorption

This process has been found to occur efficiently on highly hydroxylated anatase [27] and evidence of on inginy hydroxylated anatase $\lfloor 2/3 \rfloor$ and evidence of HO_2 radicals [11] leads to the suggestion that dioxygen may be preferentially reduced at the conduction band of the semiconductor.

The amount of O_2 taken up by differently $\frac{1}{2}$ and $\frac{1}{2}$ was determined by contracting out blanks prepared TO_2 was determined by earlying out biain experiments; Table II lists the $O₂$ percentage detected 1 hour after the injection of a known amount of O_2 .
The Table offers evidence that O_2 is adsorbed by the particles [28] and that W light and the deposited redox catalysts (Pt and $RuO₂$) favour the photoadsorption. Besides, differently prepared $TiO₂$ exhibit different properties in this process as in other α hotocatalytic reactions 1211; a possible explanations α photocataly the teachers [21], a possible explanation may be the different surface properties, outlined in Table I, which strongly affect the catalytic behavior [291. The kinetics of O2 photouptake are illustrated in

Fig. 1. It is evident that **can be added** that **can be added** that **can can be added** that **c** $\frac{11}{6}$, 1. It is evident that $\frac{u}{2}$, $\frac{50}{v}$ or the $\frac{1}{2}$ is adsorbed α , so minutes under the reported experimental conditions, in the presence of $TiO_2/RuO_2/Pt$ (Monte-
dison). After 1 hour of illumination, O₂ decreased to

Fig. 1. Kinetics of 02 uptake (measured with microfuel cell). 1 g. 1. Kinetics of O2 uptake (measured with inicionaer cen) 1 ml of O₂ injected in 15 ml of solution containing 0.5 g 1^{-1}
of TiO₂(Nb)/RuO₂/Pt(8%) Montedison.

TABLE II. $O₂$ Photouptake by TiO₂ Dispersions.⁸

Sample	$% O2$ detected			
	no light no Pt	with light no Pt	with light Pt 40 mg l^{-1}	
$TiO2$ Degussa P25	77	75	45	
$TiO2$ Bayer sol	75	75	44	
$TiO2/RuO2 Bayer sol$	74	50	44	
$TiO2$ Montedison	75	75	30	
$TiO2(Nb)/RuO2$ Montedison	77	50	20	

Experimental conditions: $110₂$ 0.5 g i \cdot ; 15 mi solution; pH adjusted to 4.5 by addition of HCI of NaOH. Injection of 0.2 mol of O_2 and measurements performed after 1 hour of irradiation. In absence of TiO₂, the solubility of O₂ in water allows only ca.
78-80% of O₂ injected to be detected.

20% of its initial value. Further injection of 0, leads zo $\%$ of its initial value, Further injection of O_2 leads again to photoadsorption till the limiting capacity
is reached. In order to check the possibility of preventing α

In order to check the possibility of preventing \mathbf{U}_2 adsorption, the effect of added anions was investigated. The $TiO₂/RuO₂$ (Montedison) catalyst was prepared in a solution containing H_3PO_4 (2%) or HCl (2%) , stirred for some hours and then the pH was raised to 4.7. The photouptake (UV light) of $O₂$ was 50% for untreated catalyst and 30% and 20% when phosphate and chloride, respectively, were present.

Phosphate ions are known to be strongly adsorbed at TiO₂ surfaces [30] and the concentration used. allows a very high surface coverage. Many other anions, such as sulphate, carbonate, perchlorate, are adsorbed in a similar manner; however little adsorption is reported for nitrate and chloride $[30]$.

The treatment of $TiO₂/RuO₂$ (Montedison), by heating at 600 °C overnight, does not however change significantly the O_2 photouptake.

Sacrificial Dioxygen Generation rijicial Dioxygen Generation
-

To test the efficiency of the photocatalyst for O_2 evolution, an electron acceptor (A) can be added to scavenge the electron generated in the conduction. band by irradiation of the semi-conductor. This allows the hole which remains to be available at the semiconductor surface where the oxidation process
takes place

$$
A + e^- \longrightarrow A^-
$$
 (2)

$$
2H_2O + 4h^+ \longrightarrow O_2 + 4H^+ \tag{3}
$$

As sacrificial agents, AgNOs, K,PtCl,, FeCls and As sacrificial agents, $AgNO_3$, K_2PtCl_6 , $FeCl_3$ and $Co(NH₃)₅Cl²⁺$ were used. Table III reports the O₂ evolution rates with $TiO₂$ Degussa P 25 as catalyst. The effect of several parameters was explored using AgNO₃. In this system the conduction band electrons reduce Ag⁺ to elemental silver, which is deposited onto the TiO₂ particles [31]. The decrease of $Ag⁺$ concentration during photolysis can be followed with the aid of a $Ag⁺$ specific electrode.

EABLE III. σ_2 evolving systems. **1**

рH	$[Ag^{\dagger}]_0$ ^b	$\Delta[Ag^+]^b$	O_{2calc} ^c	O_{2det}°
1.0	2.8×10^{-2}	4.0×10^{-3}	350	50
3.5	5.0×10^{-2}	6.3×10^{-3}	520	170
4.9	3.3×10^{-2}	9.6×10^{-3}	780	290
4.9	5.3×10^{-2}	7.6×10^{-3}	630	220
3.5	7.2×10^{-3}	4.9×10^{-3}	410	180
3.5 ^d	7.2×10^{-3}	4.2×10^{-3}	350	280

 ${}^{\mathbf{a}}\mathrm{TiO}_{2}$ 1 g l⁻¹; 1 hour of irradiation.
NaNO₃ 5 × 10⁻² *M*.

Table III shows the effect of pH, Ag+ initial conrable in shows the effect of pri, Ag initial concentration and ionic strength on O_2 generation. In the presence of 5 \times 10⁻² M NaNO₃ the evolved O₂ accounts for 80% of the reduced $Ag⁺$. Also with $TiO₂/RuO₂$ (Montedison), after irradiation in the presence of $AgNO₃$ and $NaNO₃$, 80% of the stoichiometric quantity of O_2 can be detected.

Table IV lists the O_2 detected with different TiO_2 preparations: also in this case the influence of the method of preparation and hence of the surface chemistry is evident.

Figures 2 and 3 show the effect of $TiO₂$ concentration and $RuO₂$ loading on $O₂$ evolution. The trend of Fig. 2 can be explained by the increase in absorbed light with increasing $TiO₂$ concentration. When all the incident light is absorbed a further increase in the particle concentration only reduces the penetration
of incident light. ncident light.
The Run 2 loading shows how version is a moderate a moderate a moderate and shows how version is a moderate an

 $\ln e$ $RuO₂$ loading shows nowever a moderate beneficial effect up to 2%; further increase of $RuO₂$ does not improve the O_2 evolution rate. This acceleration can be attributed to a selective function of $RuO₂$ as a hole-transfer catalyst [14]. $RuO₂$ colloids [32] and $RuO₂$ deposited onto TiO₂ [33, 34] were also shown to increase strongly the reaction rate of oxidizing agents with water or hydroxide
ion.

Sample	pН	$[Ag^{\dagger}]_0$ ^b	$\Delta[Ag^+]^b$	$O_{2 \text{ calc}}^{\text{c}}$	O_{2det} ^c
$TiO2$ Degussa P 25	3.5	5.0×10^{-2}	6.3×10^{-3}	520	170
TiO ₂ Montedison	3.2	6.9×10^{-2}	7.6×10^{-3}	630	50
$TiO2$ Bayer sol	3.9	5.8×10^{-2}	5.2×10^{-3}	435	40
$TiO2/RuO2$ Bayer sol	3.5	4.4×10^{-2}	1.8×10^{-3}	150	15
$TiO2(Nb)/RuO2$ Montedison	3.5	5.0×10^{-2}	2.2×10^{-3}	185	25

TABLE IV. Comparison of Differently Prepared TiO₂ in O₂ Evolving Systems with Ag⁺ as Electron Acceptor.^a

 ${}^{\bf a}$ TiO₂ 1 g l⁻¹; 1 hour of irradiation. ${}^{\bf b}M$. ${}^{\bf c}$ μ l.

Fig. 2. Effect of the amount of $TiO₂$ Degussa P 25 on the $O₂$ (measured with microfuel cell) evolution (ml in 1 hour) (pH 3.5; 15 ml sample; $[Ag^+]_0 = 5 \times 10^{-2} M$.

Fig. 3. Effect of $RuO₂$ loading on $O₂$ (measured with microfuel cell) evolution (ml in 1 hour) (TiO₂ Degussa P 25 1 g Γ^1 ; pH 3.5; 15 ml sample; $[Ag^+]_0 = 5 \times 10^{-2} M$.

The deposition of Pt or Pd onto the catalyst has no relevant effect on $O₂$ evolution rate. In experiments carried out at pH 4.9 with Ag⁺ 2.5 \times 10⁻² *M* and 12.5 mg of catalyst in 25 ml, the O_2 evolution rate was 150 μ l h⁻¹ with TiO₂ Degussa P 25; 230 μ l h^{-1} with TiO₂ Degussa P 25 loaded 1% Pt and 150 μ l h^{-1} loaded 1% Pd; 45 μ l h⁻¹ with TiO₂ Bayer and 30 μ l h⁻¹ loaded 1% Pd.

The results concerning $FeCl₃$ as sacrificial agent are reported in Table V. The crucial effect of the

TABLE V. O₂ Evolving Systems. TiO₂ Degussa P 25 in the Presence of FeCl₃ as Electron Acceptor.^a

$[Fe3+]0$ ^b	pH	O_{2det} ^c
2.5×10^{-2}	0.5	40
	1.9	160
	2.5	95
	3.0	85
	4.9	20
2.5×10^{-2}	2.6	100
1.25×10^{-2}		90
2.5×10^{-3}		80

 a TiO₂ 1 g l⁻¹; 1 hour of irradiation. b M. ^cµl.

presence and type of semiconductor and UV light as well as pH dependence is evident from these results.

Sacrificial Dihydrogen Generation

The activity of different photocatalysts was tested by addition of an electron donor (EDTA) to scavenge the hole generated on irradiation of the semiconductor with band-gap light. The remaining electron in the conduction band can give rise to reduction process

$$
EDTA + h^+ \longrightarrow products \tag{4}
$$

$$
2H^+ + 2e^- \longrightarrow H_2 \tag{5}
$$

Table VI reports the effect of the loading with metals (Cu, Ag, Pd, Rh, Pt) on differently prepared $TiO₂$. While Pt exhibits a strong increase in the H_2 evolution rate [25, 35-381 only Pd and Rh appear to enhance appreciably the photocatalytic activity. $RuO₂$ deposition shows only a moderate effect although it has been recently reported that $RuO₂$ can also be an effective redox catalyst for H_2 evolution [39].

Nonsacrificial Systems

It has been shown in the preceding sections that TiO₂ can reduce or oxidize water in the presence of a proper electron donor or acceptor, respectively. If a cyclic system is the goal, reactions (3) and (5)

TABLE VI. H₂ Evolution by Band Gap Irradiation in Sacrificial Systems.^a

Sample	H_2 ml h^{-1}
$TiO2$ Degussa P 25	0.32
$TiO2$ Degussa P 25 + 1% Cu	0.76
$TiO2$ Degussa P 25 + 1% Ag	0.22
$TiO2$ Degussa P 25 + 1% Pd	4.0
$TiO2$ Degussa P 25 + 1% Rh	2.0
$TiO2$ Degussa P 25 + 1% Pt	2.4
$TiO2$ Degussa P 25 + 1% RuO ₂	0.50
TiO ₂ Bayer sol	0.26
$TiO2$ Bayer sol + 1% Pt	7.0
$TiO2$ Bayer sol + 1% Pd	3.6

 a TiO₂ 0.5 g 1⁻¹; 25 ml sample; pH 4.7; EDTA 0.1 M.

TABLE VII. H₂ Evolution by Band Gap Irradiation in Nonsacrificial System.^a

^aTiO₂ 0.5 g 1^{-1} ; 25 ml flask; pH 4.7; Pt citrate method; H₂ evolution rate averaged over 5 hours.

would occur simultaneously. Water splitting on $TiO₂$ $[7-14]$ and SrTiO₃ [16] powders has been observed before, although with low efficiency.

Table VII reports the H_2 evolution rate with different photocatalysts under different conditions. Again the H_2 evolution rate is influenced by the origin of the $TiO₂$; RuO₂ is moderately beneficial and Pt deposit has a considerable effect on the efficiency. The effects of semiconductor concentration, of pH and of Pt deposition are similar to those observed in related photosynthetic processes [13-15].

The presence of anions which can be adsorbed at the particle surface strongly inhibits H_2 formation. Similar effects due to the occupation of surface sites have already been reported $[15, 40]$. It is noteworthy that if $TiO₂/RuO₂$ (Montedison) is saturated with $O₂$

(a sample was irradiated in the presence of $O₂$ until no more O_2 was adsorbed), even after 12 hours of exposure to UV light no H_2 is detected.

Only traces of $O₂$ can be observed after some hours of irradiation, and this can be attributed to the $O₂$ adsorption and photoadsorption at the catalyst surface, as reported above. Attempts to desorb $O₂$ after addition of an inert salt were only partially successful, and, if the adsorbed species are added before photolysis, they prevent H_2 evolution.

When prolonged irradiations are performed, the rate of H_2 evolution levels off. This effect could be due to H_2 and O_2 recombination [8, 10, 13, 14]. In fact if the system is allowed to stay in the dark, H_2 is slowly consumed; after addition of 3% of NaClO₄ the decrease in H_2 starts again (see Fig. 4).

Fig. 4. H₂ + O₂ recombination rate on TiO₂/Pt(4%) Bayer sol (TiO₂ 0.5 g 1^{-1} ; 25 ml sample irradiated for several hours).

Conclusions

Several basic features concerning the properties of semiconductor particles relevant to H_2 and O_2 evolution from water have been reported. The crucial aspects of $TiO₂$ preparation and the consequent surface chemical properties as well as the importance of noble metal and $RuO₂$ loading (and of the method of bifunctional catalyst preparation) have been demonstrated.

Photouptake of $O₂$ has also been investigated and appears as an important phenomenon in the process.

Understanding of these fundamental parameters is essential in the development of more efficient catalysts for water cleavage devices.

Acknowledgements

Work partially performed with financial support of Progetto Finalizzato Chimica Fine e Secondaria, CNR (Rome). The authors thank Prof. Gratzel for stimulating discussions.

References

- 1 A. J. Bard, J. *Photochem., 10, 50* (1979) and J. *Phys. 2* A. Fujishima and K. Honda, *Nature (London), 238, 31* **Chem.**, 86, 172 *Chem.*, *Chem.*, *Chem.*, *Chem.* Chem. *Chem. Res.* 14, *Chem.* **Chem. Chem.** 24, **14** 316 (1981) and *Biochim. Biophys. Acta, 683, 221* (1982): T. Sakata and T. Kawai. Nouv. J. *Chim.. 5. 279* (1982); T. Sakata and T. Kawai, *Nouv. J. Chim., 5,* 279 (1981); S. Sato and F. M. White, J. Phys. Chem., 85, 336 (1981).
- *3* 'Solar Energy Photochemical Conversion and Storage', (1972).
- *4* M. S. Wrighton, *Act. Chem. Res., 12, 303* (1979); R. Solar Energy Holochemical Conversion and Storage, S. Claesson and B. Holstrom eds., National Swedish Board for Energy Source Development, NE 1982:14, Stockholm, 1982.
- *Fure Appli, Chemi, J2, 2047* (1700).
J. Kimi, E. Borgarello, M. Vista and M. Vista and M. Vista and M. Vista and M. ming, *Helena, Act. Chem. Res., 12, 303* (1979), R. *Pure Appl. Chem., 52, 2649 (1980).*
- *M.* Gratzel ed., Academic Press, New York, 1965. \mathbf{F} Kiwi, E. Botgarello, E. Felizzelli, M. Visca allu M. and M. A. M. Thologeneration of Hydrogen, A. Harriman and M. A. West, Academic Press, London, 1982; J. Kiwi, K. Kalyanasundaram and M. Gratzel, *Struct. Bonding (Berlin), 49, 39* (1982); E. Pelizzetti and M. Vista, in $Berny$, 49 , $39(1982)$, E. Fenzzetti and M. Visca, if 'Energy Resources by Photochemistry and Catalysis', M. Gratzel ed., Academic Press, New York, 1983.
- *110 Chim. ACu, 25*, 1117 (1976). (1, T. Matuska and A. K. Gosn, *Sol. Energy, 20, 443* (1978); M. A. Butler and D. S. Ginley, *J. Mat. Sci.*, 15, *trochim. Acta, 23, 1117* (1978).
- *8* G. N. Schrauzer and T. D. Guth, J. *Am.* Chem. Sot., 99, *SSSR, Ser. Khim., 1902* (1976).
- **11** *and 11**CSS*, CIII (011, 18.3., p. 201. $7.18.$ Schrauzer and T. D. Guth, J. Am. Chem. Soc., 99, 103 (1377), G. IV. Schlauzer, I. D. Guin, M. K. Fanner nu *s.* Satem, in Solar Energy. Chemical Conversion and Storage', R. R. Hautala, R. B. King and C. Kutal, The Humana Press, Clifton, N.J., p. 261.
- *10 S.* Sato and J. M. White, *Chem. Phys. Lett., 72, 83 4373 (1979).*
- 11 T. Kawai and T. Sakata, *Chem. Phys. Lett., 72, 87* $.980$
- 12 P. C. Jaeger and A. J. Bard, J. *Phys.* Chem., 83, 3164 . **Adv**
- $(13/3)$.
A J. Kiwi, M. B. B. B. B. H. G. And M. Vista (1979).
- $\overline{4}$ Gratin, *C.* borgareno, *C. Fenzzetti, M. Visca and M.* Gratzel, Angew. Chem., Int. Ed. Engl., 19, 646 (1980); E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca and M. Gratzel, J. *Am. Chem. Sot., 103, 6324 (1981).* E ratzel, J. Am. Chem. BOC., 105, 6324 (1761).
- v isca, *J. Am. Chem. Soc., 104, 299* (1982). Visca,J. *Am. Chem. Sot., 104, 2996* (1982).
- (1982).
16 J. M. Lehn, J. P. Sauvage and R. Ziessel. Nouv. J. Chim.. *(1982).*
- 4, 623 (1980); K. Domen, S. Naito, T. Onishi and K. *Chem. Comm.*, 1019 (1980); P. Keller, A. Moradpour and Tamaru, *Chem. Phys. Lett., 93*, 433 (1982). *F. T. Wagner* E. Amouyal, *J. Chem. Soc. Faraday I, 78*, 3331 (1982) and G. A. Somorjai, *J. Am. Chem. Soc.*, 102, 5494 40 M. A. Malat (1980). 231 (1981).
- J. R. Darwent and G. Porter, J. Chem. Sot. Chem. \mathcal{L} . Darwent and G. Porter, J. Chem. Soc. Chem. *Comm.*, 145 (1981); J. R. Darwent, J. Chem. Soc. Faraday *II*, 77, 1703 (1981); J. R. Harbour, R. Wolkow and M. L. Hair, *J. Phys. Chem.*, 85, 4026 (1981); K. *Chim. Acta, 64, 362 (1981).* μ m. Acia, 04, 302 (1901).
. \overline{a} \overline{a}
- Pelizzerti, *Heiv. Chim. Acta, 65, 243 (1982).* Pelizzetti, *Helv. Chim. Acta*, 65, 243 (1982). \overline{a}
- *694 (1980) formalies and T. Sakata, J. Chem. Soc. Chem. Comm., Comm.* 694 (1980); T. Sakata and T. Kawai, *Chem. Phys. Lett.*, 80, 341 (1981). P , P +1 (1701). 20
- M. N. Mozzanega, *Nouv. J. Chim., 5, 627* (1981). M. N. Mozzanega, *Nouv. J. Chim.*, 5, 627 (1981). 21
- *4* bolgaren H. Honeyama, M. Koizumi and H. Tamura, *Bull. Chem.* \overline{a}
- *Sot. Japan, 52, 3449* (1979). *OC. Jupun, 32, 3*449 (1979). ²⁰, 567 (1977). \overline{a}
- E. J. NOZIK, Appl Phys. Lett., 50, 50 (1911). $\ddot{ }$
- 24 E. Pelizzetti, M. Visca, E. Borgarello, E. Pramauro and A. Palmas, Chim. Ind. (Milan), 63, 805 (1981). 25
- L. Duongnong, E. Borgareud J urkevich, JU , 4003 (1901). 26
- 2^{1701} . J. *Res. Inst. Catal. Hokkaido Univ., 24, 54 (1976);P.* A. J. Res. Inst. Catal. Hokkaido Univ., 24, 54 (1976); P. A. Brugger, P. Cuendet and M. Gratzel, *J. Am. Chem. Soc.*, 103, 2423 (1981); E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca and M. Gratzel, *Nature (London)*, 289, 158
- \overline{a} *Faraday L 71, Farada* R, **Faraday**, *Faraganty*, *J. Chem. Soc.* Faraday I, 71, 194 (1975); A. H. Boonstra and C. A. H. A. Mutsares, J. Phys. Chem., 79, 1694 (1975); G. *Chem. Sot. Faraday I, 76, 1535* (1980). hem. Soc. *Faraday 1, 70, 1333* (1980).
- $\frac{8}{2}$ G. Stradella and E. Pelizzetti, *J. Mol. Catal.*, in press.
- $\frac{3}{2}$ 29 G. D. Parfitt, *Progr. Surf. Membr. Sci., 11,* 181 (1976).
- 0 H. F. boenin, *Disc. Faraday Soc.*, 32, 204 (1971).
- 32 E. Pramauro and E. Pelizzetti, Inorg. *Chim. Acta, Lett.,* 31 B. Kraeutler and A. J. Bard, *J. Am. Chem. Soc.*, 100, 4317 (1978).
- 33 R. Humphrey-Baker, J. Lilie and M. Gratzel, J. *Am. 4* L 131 **131 132 14** 152 153 154 155
- μ Chem. Soc., 104, 422 (1982). *Chem. Sot., 104, 422* (1982).
- 35 *htmeto, E. Lorenzi, E. Framat*. Inorg. Chim. Acta, preceding paper.
- 36 D. Miller and G. McLendon, J. *Am. Chem. Sot., 103, (1979).*
- 37 M. S. Matheson, P. C. Lee, D. Meisel and E. Pelizzetti, *6791 (1981).*
- J. *Phys. Chem., 87, 394 (1983). J. Phys. Chem., 87, 394 (1983).*
- 38 E. Borgarello, E. Pelizzetti, W. A. Mulac and D. Meisel, in preparation. J. M. Lehn, J. P. Sauvage and R. Ziessel, Nouv. J. *Chim.,* 39 E. AmouyaI, P. Keller and A. Moradpour, J. Chem. Sot.
- *4, 633 (1980); <i>A, F. Sauvage and K. Ziessei, Nouv. J. Chim.,* 259 E. Amouyai, P. Keller and A. Moradpour, J. Chem. Soc.
	- and G. A. Somorjai, J. *Am. Chem. Sot., 102, 5494 40* M. A. Malati and N. J. Saeger,J. *Oil Cal.* Chem. *Ass.,* 64,