Single-Flask Synthesis of $(C_5H_5)W(CO)_3Cl$ from $W(CO)_6$

NORRIS W. HOFFMAN*

Union Carbide Corporation, P.O. Box 8361, South Charleston, W. V. 25303, U.S.A.

Received January 4, 1984

 $\langle C_5H_5/W|CO\rangle_3 Cl$ has been prepared in $>90\%$ *yield from W(CO),, cyclopentadiene, and CCL, in a single-flask synthesis involving the intermediates* $W(CO)_{3}/CH_{3}CN$ ₃ and $(C_{5}H_{5})W(CO)_{3}H$.

Introduction

Cyclopentadienylmolybdenumtricarbonyl halides can be relatively simply prepared by stoichiometric oxidation of the readily accessible metal-metal bonded dimer I (Cp = cyclopentadienyl) with elemental halogen (eqn. 1) $[1, 2]$. The analogous tungsten halide complexes have been less easily

[ChMo(CO)₃]₂ + X₂ = 2CpMo(CO)₃X X = I, Br, Cl
\n
$$
\begin{array}{cc}\n1\n\end{array}
$$

prepared using commonly available starting materials, since the tungsten analog of the molybdenum dimer I is not readily made from $W(CO)_{6}$ and cyclopentadiene or the cyclopentadienyl anion [3]. As a result, fewer reactions of the cyclopentadienyltungsten halides have been reported. We report herein a high-yield single-flask synthesis of $CpW(CO)₃Cl$ from $W(CO)₆$ and cyclopentadiene involving the known $W(CO)_{3}$ - $(CH_3CN)_3$ and $CpW(CO)_3H$ as intermediates.

W(CO)₆ was shown by Tate *et al.* [4] to be slowly converted in boiling CH₃CN to $W(CO)_{3}(CH_{3}CN)_{3}$. The latter compound when treated with cyclopentadiene afforded $CpW(CO)_{3}H$ in moderately good yields after purification by sublimation $[5, 6]$. That hydride could in turn be converted into CpW(CO)_3 . Cl in nearly quantitative yield by $CCl₄$ [7]. We have now shown that not only can $W(CO)_{3}(CH_{3}CN)_{3}$ be transformed in high yield in a single vessel to $CpW(CO)₃Cl$ but that a single-flask synthesis starting with $W(CO)_{6}$ also proceeds smoothly.

Experimental

All compounds were handled under argon unless otherwise described. $W(CO)_{6}$ was used as purchased from Strem Chemicals. $CH₃CN$ (reagent, J. T. Baker) was stored over Mol Sieve 4A and degassed before use. Tetrahydrofuran (THF) was freshly distilled under argon from sodium/benzophenone. Cyclopentadiene was used shortly after its preparation under argon via thermal cracking of technical grade dicyclopentadiene (Aldrich). CCl₄ (Aldrich) was used as received. $CHCl₃$ (MCB reagent) was passed through silica gel (10 ml through 2 cm diameter by 15 cm height column) to remove the ethanol preservative to preclude any effect due to presence of alcohol. $W(CO)_{3}(CH_{3}CN)_{3}$ was prepared after the manner of Keppie and Lappert $[6]$. A mixture of W(CO)₆ (7.0 g) and CH₃CN (75 ml) was heated at reflux for 7 days. The resulting bright yellow solution was cooled and stored at 0° C for 36 h to afford bright yellow crystals; these were filtered, washed with cold CH₃CN, and dried by oil-pump vacuum (20 μ) at 20° C for 1 h.

Preparation of CpW(CO), Cl from W(CO)₃(CH₃CN)₃

A mixture of $W(CO)_{3}(CH_{3}CN)_{3}$ (4.45 g, 11.4) mmol), cyclopentadiene (10 ml), $CHCl₃$ (5.0 ml), and THF (50 ml) in a Schlenk tube fitted with magnetic stir-bar and reflux condenser was heated with a water bath from ambient to 50° C. The initially yellow slurry became a moderately dark orange solution in 0.4 h. Stirring at 50 \pm 3 °C was continued a total of 3 h. Then the bath was removed and CCl_4 (6 ml) was added to the warm orangebrown solution. The resulting solution darkened over several minutes to blood-red. It was allowed to cool to ambient and stir 4 h [8]. The clear, darkred solution was concentrated by pump vacuum to afford dark red-orange crystals. Degassed heptane (20 ml; Aldrich) was added to ensure more complete precipitation; the resulting solid was filtered in air and washed with hexanes to afford 3.52 g of redorange crystals. Stripping the combined filtrate and washings (aerobic procedure) gave a red oil; the latter was taken up in a small amount of $CH₂Cl₂$ and passed through a short, thick silica gel column to afford a red solution. Upon its concentration, a second crop of red-orange crystals was formed (0.44 g). The identity of the material as $CpW(CO)₃Cl$ was confirmed [9] by its infrared $(\nu(CO))$ in CHCl₃ 2053(s) and 1968(vs, broad) cm^{-1}) and proton nmr (singlet

^{*}Present address: Department of Chemistry, University of South Alabama, Mobile, Ala. 36688, U.S.A.

at 5.75 δ in CDCl₃) spectra. That the solids were not solvates was shown by ${}^{1}H$ nmr (no signal with intensity greater than 2% that of the Cp resonance observed) and GLC (no peak with retention time consistent with the presence of CCl₄ seen when a concentrated solution of the solids in $CH₂Cl₂$ injected). The combined yield of 3.96 g corresponded to 94.5% conversion of $W(CO)_{3}(CH_{3}CN)_{3}$ into CpW(CO)₃Cl.

Preparation of Cp W(COJ3 Cl from W(CO),

A mixture of $W(CO)_{6}$ (7.02 g, 20.0 mmol) and $CH₃CN$ (75 ml) in a 250 ml Schlenk flask fitted with Friedrich condenser and magnetic stir-bar was heated at reflux 7 days. The resulting yellow solution was cooled to ambient temperature and stripped by oilpump vacuum to a bright-yellow solid containing a small amount of gray-green impurity. The resulting material was treated in THF (90 ml) with cyclopentadiene (20 ml) and CHCl₃ (10 ml) followed by CCl₄ (12 ml) in a manner essentially identical to that described in the immediately preceeding preparation (same times). A similar work-up afforded two crops of red-orange crystals (combined yield of 6.65 g or 90.3%) with the appropriate 1 H nmr spectrum and infrared carbonyl stretching pattern.

Results and Discussion

 $W(CO)_{6}$ has been converted into CpW(CO)₃Cl in a high-yield (>90%) single-flask synthesis employing simple anaerobic apparatus and an uncomplicated procedure. The preparation apparently involves combination of three known reactions (eqns. 2-4) $[4-7]$.

$$
W(CO)_6 + 3CH_3CN = W(CO)_3(CH_3CN)_3 + 3CO \qquad (2)
$$

$$
W(CO)_{3}(CH_{3}CN)_{3} + C_{p}H = C_{p}W(CO)_{3}H + 3CH_{3}CN
$$

(3)

$$
CPW(CO)3H + CCl4 = CPW(CO)3Cl + CHCl3
$$
 (4)

Based on reports by Keppie and Lappert [6] of low yields of $CpW(CO)_{3}H$ for reaction 3 in $CH_{3}CN$ solvent [10], we opted for running that portion of the synthesis in THF, even though it required stripping off the initial solvent and introducing another. CHCls was added as a potential chlorine donor since it was unlikely to react with $W(CO)_{3}(CH_{3}CN)_{3}$ but might react with the hydride $CpW(CO)₃H$. Visual evidence (orange solution consistent with the presence of $CpW(CO)₃H$ [6] maintained for 3 h at 50 \degree C with CHCl₃ present but lost within minutes when CCl₄ added) suggests that little if any chlorination was due to $CHCl₃$ [11]. $CCl₄$ was not added until $W(CO)_{3}(CH_{3}CN)_{3}$ had apparently been completely converted into the hydride for fear of oxidizing the reactive zerovalent tris-acetonitrile complex.

Kubas [12] has recently reported that higher homologs of $CH₃CN$ are superior to $CH₃CN$ in convenience of preparation of $W(CO)_{3}(RCN)_{3}$ from $W(CO)_{6}$ and in reactivity (solubility and ease of displacement of coordinated nitrile by incoming ligand). Our single-flask synthesis of $CpW(CO)₃Cl$ should be even simpler using propionitrile or butyronitrile. If the steric bulk of $CH_3CH_2CH_2CN$ [13] (PrCN) makes it a sufficiently poor ligand, then it might be possible to prepare $CpW(CO)_{3}H$ from the crude reaction product mixture of $W(CO)_{6}$ plus excess PrPN (solvent) directly without removal of nitrile solvent; i.e., in PrPN solvent the equilibrium of eqn. 3 might lie sufficiently far to the right to produce acceptable yields of $CpW(CO)₃Cl$ upon addition of CCl₄.

The single-flask synthetic technique successful for $CpW(CO)₃Cl$ should be extendable to its halide analogs (instead of $CCl₄$ as the halogenating agent for $CpW(CO)₃H$, CHBr₃, CBr₄, or N-bromosuccinimide to afford the bromide and $CH₂I₂$ or CHI₃ to give to different of stemmed and $\frac{\text{cm}}{\text{cm}}$ C_pW(NO)(CO)^{cm} $\frac{1}{100}$ (i.e. $\frac{1}{100}$ and the nitrosylating agent Diazald[®] \overline{C} H₂CH₃ CC_{H4}, the introsymming agent Diazard, $\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$ might also be extended to preparation of the [15] might also be extended to preparation of the chromium and molybdenum analogs of the halides and nitrosyls, for $CpCr(CO)_3H$ and $CpMo(CO)_3H$ have been prepared from the respective hexacarbonyls via tris-acetonitrile intermediates [6].

Acknowledgements

The author thanks Union Carbide Corporation for permission to publish this work and Ms. Illene Henson and Drs. Arnold Harrison and Dave Busby for experimental assistance.

References

- $16M(20)$ 3 is a moderately-priced chemical (air-priced chemical (air-priced chemical (air-priced chemical (air-priced chemical chem μ_{M0} (σ_{M1}) is a moderately-priced chemical (and σ_{M1}) inert as solid and in solution in the dark) available from several vendors of organometallic compounds. It can be prepared from inexpensive $Mo(CO)₆$ and cyclopenta-
diene in good yield: R. B. King and F. G. A. Stone, *Inorg. Syntheses, 7, 99 (1963). 2007, Symmeses, 7, 77* (170*3)*,
F. W. Abel, A. G. A. A. G. Wilkinson, J. Chem. Sot.,
- $13.7001, 7$ $\frac{1321}{1321}$ (1900).
- neared-rupe reaction has arrorded a 50% yield (based $W(2)$). on W) of $[CPW(CO₃)]₂$ from W(CO)₆ and cyclopenta-
diene; G. Wilkinson, *J. Am. Chem. Soc.*, 76, 209 (1954). $\mu_{\text{F}}(t) = \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{$
- *I, 433 (1962). 5* R. B. King and A. Fronzaglia, *Irwrg.* Chem., 5, 1831
- (1966).
- 6 S. A. Keppie and M. F. Lappert,J. *Chem. Sot. (A), 3216* (1971).

7 (a) E. 0. Fischer and K. Fichtel, *Chem. Ber., 94, 1200* (1961).

(b) T. S. Piper and G. Wilkinson, J. Inorg. Nucl. *Chem., 3, 104* (1956).

- 8 The air-inertness of CpW(CO)₃Cl allows aerobic handling of the material from this point, even though this particular procedure maintained inert-atmosphere conditions through isolation of the first crop of crystals.
- 9 T. E. Sloan and A. Wojcicki, *Inorg.* Chem., 7, 1268 (1968).
- 10 CpMo(CO)₃H is converted in CH₃CN solution at 25 °C to $Mo(CO)_{3}(CH_{3}CN)_{3}$ and CpH, the reverse of eqn. 3. R. F. Jordan and J. R. Norton. J. *Am. Chem Sot.. 104. 1255* (1982). A similar phenomenon would explain the low yield of CpW(CO)_3 H from W(CO)₃(CH₃CN)₃ and excess CpH in $CH₃CN$ in ref. 6.
- 11 CHC13 did appear to improve solubility, a factor of unknown importance in the synthesis.
- 12 G. J. Kubas, Inorg. *Chem., 22, 692* (1983).
- 13 Kubas (ref. 12) reported that isobutyronitrile reacted much slower with $W(CO)_{6}$ than did its linear analog but provided no information as to whether $W(CO)_{3}$ (i-PrCN)₃ could be prepared in good yield with extended heating. If so, the sec-alkyl nitrile should be bulkier than its nalkyl analog and thus an even better prospect for singlesolvent conversion of $W(CO)_6$ to $CpW(CO)_3$ Cl.
- 14 @ Trademark of Aldrich Chemical Co., Inc. The reaction of transition-metal hydrides with Diazald to generate metal nitrosyls appears quite general, as illustrated in formation of $CpMo(CO)_2(NO)$ (ref. 7b) and Rh(NO)- $(PPh₃)₃$ and $Ru(NO)₂(PPh₃)₂$ (J. J. Levison and S. D. Robinson, Chem. Ind., 1514 (1969).
- 15 Single-flask conversions of $Ru_3(CO)_{12}$ with CpH into $CPRu(CO)₂X$ (X = Cl, Br) (A. Eisenstadt, R. Tannenbaum and A. Efraty, J. *Organometal. Chem., 221, 317* (1981)) and $CpRu(CO)(PPh₃)Cl$ (A. F. Humphries and S. A. R. Knox, *J. Chem. Soc. Dalton*, 1710 (1975)) have been reported.