Substituent Effect of Chelated Cobalt. Part VII. A ¹⁹F-NMR Study of p- and m-Fluorophenylcobalt Chelates [1]

KENNETH L. BROWN*, EDWARD P. KIRVEN [2] and LI-YOUNG LU

The *Department of Chemistry, Box 19065, The University of Texas at Arlington, Arlington, Tex. 76019. U.S.A.*

Received August 25,1983

Introduction

In an earlier study **[3] we** attempted to assess the inductive and resonance interactions of cobaloxime (Scheme 1, chelate I) chelated cobalt centers on covalently bound organic groups by investigation of the 19 F-NMR chemical shifts of m - and p -fluorophenological situation with p -independent W pricity reported these chemical shifts with those of noncorrelated these chemical shifts with those of non-
cobalt substituted fluorobenzenes via the Taft dual substituent parameter equation [4] (eq. 1) in which Pi is a

 $P^i = \sigma_T \rho_T^i + \sigma_B \rho_B^i$

correlatable property of a substituted benzene derivative (such as the NMR chemical shifts of substituted relative to unsubstituted compounds), σ_{I} and σ_{R} relative to disdustriated compounds), of and σ are the mututive and depocantation parameters of the substituent, respectively, ρ_I and ρ_R are the susceptibilities of the correlatable parameter to the susceptionities of the correlation parameter to it i refers to the substitution position (meta or para). i refers to the substitution position (meta or para).
These results showed that all neutral and anionic cobaloximes are strongly electron donating both by induction and π -delocalization, that both kinds of electron donation vary considerably with the nature of the *truns* axial ligand, and that a linear relation existed between the π and π and under these tion existed between the σ_R and σ_I values for these cobaloxime chelated cobalt centers. We have now extended this work into an investigation of the effects of equatorial ligand structure on the inductive and resonance substituent parameters of chelated cobalt centers by synthesis and NMR measurements of fluorophenylcobalt chelates in five additional et incorplicity legal chelates in the additional including two additional bis(dioximato) chelates and three Schiff's base chelates.

used in this study. I, bis(dimethylglyoximato)cobalt (cobaloxime); 2, bis(diphenylglyoximato)cobalt; 3 , bis(boron α ditluoride), derivative of α diffuorme) definative of T (DT)-cobaloximine, τ , bis(salice)-ofaldehyde)ethylenediimine cobalt; 5, bis(salicylaldehyde)-o-
phenylenediimine cobalt; 6, bis(acetylacetone)ethylenediimine cobalt.

0 Eisevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

10.568

10.625

9.707

11.585

12.171

12.000

11.300

2.397

2.329

0.311

2.537

3.211

2.719

1.504

py

py **DMSO**

DMSO

 $CHCl₃$

MeOH

 $CHCl₃$

TABLE I. ¹⁹F-NMR Chemical Shifts of m- and p-FC₆H₄Co(Chel) and Calculated Substitutent Constants for Cobalt Chelates.²

^bStructures given in Scheme 1. ^cIn parts per million from internal monofluorobenzene. Positive shifts are upfield rence. σ Calculated from eqn. 1 using the ρ values appropriate for each solvent. $a_{27} \pm 1$ °C. and negative shifts are downfield from the reference. ${}^{\,6}E_{1/2}$ (vs. S.C.E.) for one electron reduction of the CH₃Co(Chel) at 0° in DMF. ${}^{\,1}E_{1/2}$ (vs. Ag/AgCl) for one electron oxidation of the CH₃Co(Chel) at -20° in DMF, ref. 19. ⁸Pearson nucleophilicity constant [20] of the aquo cobalt(I) chelate anion in
methanolic base. ^hAdditional ¹⁹F-resonances are seen upfield due to the equatorial fluorine $n_{\text{Ref. 23}}$. 0 Ref. 24. PRef. 25. 0 For the CH₃CH₂Co(Chel) complex, ref. 26. ^rRef. 27.

 -0.497

 -0.479

 -0.054

 -0.451

 -0.657

 -0.558

 -0.290

 -0.207

 -0.218

 -0.308

 -0.240

 -0.215

 -0.242

 -0.303

 $-1.97^{\rm r}$

 $+0.45$

Experimental

 $Co(BAE)$, 6

Fluorophenylcobalt chelates were, in general, obtained as their aquo complexes by synthesis of the equatorial ligand system, insertion of cobalt-(II) and oxidation to the cobalt(III) chelate, followed by arylation with the appropriate fluorophenylmagnesium bromide in THF. The only exceptions were the $FC_6H_4Co(D_2B_2F_4)OH_2$ chelates $(3,$ Scheme 1) which were prepared by direct reaction of the $FC_6H_4Co(D_2H_2)OH_2$ compounds with boron trifluoride etherate [5]. $HOCo(P₂H₂)OH₂$ (chelate 2, Scheme 1) was prepared from diphenylglyoxime and cobaltous chloride by the procedure of Ablov, et al. [6] for the analogous cobaloxime. The Schiff's base ligands and their cobalt complexes were obtained by literature procedures [7-9] or slight modifications thereof. All of the purified fluorophenylcobalt chelates were homogeneous on thin layer chromatography, had the expected ¹H-NMR spectra, and gave satisfactory elemental analysis.

¹⁹F-NMR spectra were obtained on a Nicolet NT-

200 superconducting NMR spectrometer operating at 188.23 MHz and 27 °C. 8192 Data points were collected over an 8000 Hz sweep width. Anywhere from several hundred to 150,000 transients were
collected with 4.9 μ sec 60[°] pulses and a cycle time of 0.5 sec. Samples (5 mm NMR tubes) were 0.01 M or less in fluorophenylcobalt chelate and contained 10-98% deuterated solvent to provide an internal frequency lock. All samples contained monofluorohenzene in three-fold molar excess over cobalt chelate as an internal reference. Chemical shifts from proton-coupled ¹⁹F-spectra were determined from the midpoint of the fluorine multiplet envelope of the sample to that of the reference. For internal consistency with previous work, all chemical shifts are reported in parts per million from monofluorobenzene with positive values being upfield and negative values being downfield from the reference, in keeping with the definition of Taft and coworkers $[10, 11].$

Fig. 1. A. Plots of q for Co(Che1) in pyrldine (*), and methanol (m) vs. E~/L for the one electron reduction of the CH3Co(Chel) ϵ . S. Flots of of for Co(Chel) in pyriume (0), and methanol (0) vs. E_{1/2} for the one electron reduction of the CH₃Co(Chel) (vs. S.C.E. in DMF at 0° C), and in pyridine (\circ) and methanol (\circ) vs. E_{1/2} for the one electron oxidation of the CH₃Co(Chel) (vs. Ag/AgCl in DMF at -20 °C). The solid lines are linear regression lines. B. Plot of σ_I for Co(Chel) in pyridine (\bullet) vs. n_{CH_3I} , the Pearson nucleophilicity constant for the anionic Co^(I)(Chel)⁻. The

Results and Discussion

All of the purified fluorophenylcobalt chelates had An or the purifical nuorophericional cherates had on set the FC₁H C₂/D₂B²F₄² chelates **(3, 8,1** cm⁻D₄² which show additional resonances due to the equa-
 $\frac{1}{2}$ then show additional resonances due to the equatorial fluorines. For example, in methanol, both the p - and m -FC₆H₄Co(D₂B₂F₄) chelates had additional and m - r ζ_1 ζ_2 ζ_3 ζ_4 ζ_5 ζ_7 ζ_8 ppm each of r ζ_8 sonances at about $\frac{1}{2}$, and $\frac{1}{2}$, ppin each of twice the intensity of the fluorophenyl resonances listed in Table I. This indicates that the two fluorine atoms on each half of the equatorial ligand are non-equivalent, as expected. In DMSO the situation is even more complex, each of these resonances being doubled due to formation of O-liganded and S-liganded isomers which are evidently in slow exchange on the NMR time scale. For example, p -FC₆- $H_4Co(D_2B_2F_4)$ DMSO had two sets of three resonances, one set at $+8.320$, $+20.508$ and $+38.184$ ppm, and one set at $+9.298$, $+24.947$ and $+40.259$
ppm, the former set being more intense than the latter by a factor of the *memor* and *meta- compound simi-* $\frac{1}{2}$ had two sets of the more resonances with the more resonance with the more resonance with the more resonance wit larly had two sets of three resonances with the more downfield set more intense than the upfield set by a factor of 3.6. We have tentatively assigned the more downfield, more intense members of each such pair of resonances to the S-liganded isomer and the upfield, less intense member to the O-liganded isomer in analogy to the previous assignments of the N- and S-liganded isomers of cobaloximes with

 $\begin{array}{ccc} \n\text{1} & \text{1} & \text{$ $\frac{1}{2}$ is consistent with the known preference of $\frac{1}{2}$ of ment is consistent with the known preference of such chelated organocobalt centers for sulfur vs. on chelated biganocoball centers for suitur *vs.* the observed light of the *meta-resonances* of both the *meta- and meta- and p p p parameter in the methanol where both compounds of both changements and in the methanol.* para-compounds in methanol where both compounds
must be O-liganded, the resonances assigned to the $\frac{1}{2}$ compared $\frac{1}{2}$ complements assigned to the t_{total} t_{total} . The those obtained in methods of the $\frac{1}{2}$. to those obtained in methanol (Table I). All of the other fluorophenylcobalt chelates had only a single ¹⁹F-resonance in DMSO indicating either that only a single adduct is formed in the case of these chelates, or that the $O-$ and S-liganded isomers are in fast exchange on the NMR time scale, the latter explanation being the more reasonable. V_{CMB} and V_{CMB} are inductive (unit) and resonance (unit) and resonance (unit) and resonance (unit) and $(0, 0)$

values for the muuttive (of) and resonance (σ_{R}) substituent parameters for each chelate (Table I) were calculated from the observed fluorine chemical shifts and eqn. 1 (in the *meta*- and *para*-forms) using the ρ values previously determined [3] from Taft's data [10, 11] on substituted fluorobenzene μ chemical shifts in CHCls, μ CHCls, μ CHCls, and methods in methods in the m the values in errors, P_{NLO} , and including, and the values for pyridine (also from fitting Taft's data equently of $p_1 = -3.11$, $p_1 = 0.00$ (n = 12, f = \log_{10} and $p_1 = -0.71$, $p_R = -0.00$ (if -1.0 , i.e. (0.07) , where n is the number of data points in the correlation and f is the ratio of the root mean square of the deviations to the root mean square of the data points $[4]$. Both of the new correlations in pyridine are adequate using Topsom's criterion $[18]$ of 0.1 <

Fig. 2. Plot of $\sigma_{\mathbf{R}^{\circ}}$ vs. $\sigma_{\mathbf{I}}$ for Co(Chel) in various solvents. Solid symbols are for the dioximato chelates; (\bullet), Co(D₂B₂F₄); (m), Co(PzHz); (A), Co(DzH2); slope = -0.0963, intercept = -0.269, n = 10, f = 0.025. The open symbols are for the Schiffs (b), Co(F_2n_2), (b), Co(D_2n_2), slope = -0.0905, intercept = -0.209, n = 10, f = 0.025. The open symmols are for the Schiff? base chelates; (o), Co(SALEN), slope = -0.111, intercept = -0.288, n = 3, f = 0.011; (\Box), Co(SALOPH), slope = -0.222, intercept = -0.317, n = 4, f = 0.024; (\triangle), Co(BAE), slope = -0.224, intercept = -0.360, n = 4, f

 $f \leq 0.2$ for an acceptable fit and $f \leq 0.1$ for an excellent fit, and the ρ values in pyridine are quite α similar to the α -similar to those previously obtained in the other solution. ا viima artist
تصدر Inspection of the calculated substituent para-

mspection of the calculated substituent parameters shows that of all the neutral cobalt chelates studied only the extremely electron deficient $Co(D_2 B_2F_4$) chelates can be inductively electron withdrawing at least with strongly donating (N or S) axial
ligands. All of the remaining cobalt centers are extremeanus. An or the remaining cobalt centers are extremented. being by factorized by a most inductively donating, the schill substitute being by far the most inductively donating substituents ever quantitated. The trend of increasing inductive donation among the cobalt chelates is best seen for the pyridine complexes which show the following order: $Co(D_2B_2F_4)py < Co(P_2H_2)py <$ $Co(D_2H_2)$ py < $Co(SALEN)$ py < $Co(SALOPH)$ < Co(BAE). The same trend is seen for the DMSO liganded complexes but here it must be remembered that the complexes but here it must be remembere $\frac{1}{2}$ in these probably consist of inixtures of $Q -$ and Q $b_{\rm F}$ the trend in the Pearson nucleophilicity constants bout the trend in the realison nucleophinency constant $[19]$ of the anionic cobalt (I) chelates, and the trend in the relative ease of one electron oxidations
and one electron reductions of the methylcobalt chelates (Table) except that the SALEN and chelates (Table) except that the SALEN and DALOTH CHEMICS (WHOSE OF VALUES III PYTRUME AND DMSO are very similar) fall in reverse order for these redox potentials. Examples of these correlations of iedox potentials. Examples of these correlations of p ¹ philipines are shown graphical in Fig. 1. It is also the shown as p is also the shown as p philicities are shown graphically in Fig. 1. It is also interesting to note that for each cobalt chelate except $Co(D_2B_2F_4)$ the cobalt center is more inductively donating in strongly coordinating solvents (DMSO, pyridine) than in methanol or CHCl₃, as might be pyriume) than in incritation or Cricis, as inight or ϵ corporate the transmit inductive effects from ϵ

one axial ligand to the other $[16, 28]$. The reason for the inverse behavior of the $Co(D_2B_2F_4)$ chelates is not clear.

The overall range of $\sigma_{\mathbf{R}}^{\circ}$ values for all the chelates is extremely small (with the exception of the two values in chloroform) as was the case for the cobaloximes in our previous study [3]. However, there is clearly a trend among the chelates for less π -electron donation in the same order as the trend for increased inductive donation pointed out above. The values obtained in the non-coordinating CHCl3 solvent for Co(SALOPH) and Co(BAE) are of interest in that these cobalt centers show substantially diminished inductive donating ability (relative to that in coordinating solvents) but increased resonance donating ability. The possible involvement of 5-coordinate species in these cases must be considered $[8, 9]$. However, although we were able to observe the formation of the green, supposedly 5-coordinate fluorophenylcobalt compounds from the reddish, 6-coordinate aquo complexes of the BAE and SALEN chelates by warming *in vacuo* $[8, 9]$, the SALOPH complexes failed to give the green compounds. While even the red forms of the BAE complexes gave stable green solutions in chloroform, the green solids showed evidence of water in the 'H-NMR spectra of their chloroform solutions. The green forms of the SALEN complexes initially gave green solutions in chloroform which soon precipitated red solids, possibly dimers $[29]$, preventing observation of their ¹⁹Fresonances. Hence, the possible involvement of Scoordinate Schiff's base species in non-coordinating solvents remains unclear.

As was the case with the cobaloximes [3], there is an apparent correlation between $\sigma_{\mathbf{R}}^{\circ}$ and $\sigma_{\mathbf{I}}$ for the cobalt chelates presently under study. As seen in Fig. 2, all of the data for the dioximato chelates

¹⁹F-NMR of *p,m-Fluorophenylcobalt Chelates* 203

 ζ such a line of symbols) fall closely about a line of slopes about a line of s $\frac{1}{2}$ (solid symbols) fair closely about a fille of stop -0.0202 and intercept -0.202 (if -10 , $1 - 0.022$) atthough this stope is somewhat fess negative than $\frac{1}{2}$. It is a cobal cobal contract contract to contract the correction of correction $\frac{1}{2}$. It is a contract to contract to contract to contract to contract the correction of contract of contract to contract the of condition the data for all α all α the Schiffs base chemical states base chemical states of the Schiffs relate the data for all of the Schiff's base chelates
(open symbols; slope = -0.168 , intercept = -0.314 , $n = 11$, $f = 0.073$). However, despite the limited $a = 11, 1 - 0.073$, nowever, uespite the military amount of data for each chefate, the benning ba compounds appear to correlate better individually, with the slopes and intercepts decreasing in the order $Co(SALEN) > Co(SALOPH) > Co(BAE)$ (Fig. 2, legend). These interesting phenomena are currently under further investigation.

Acknowledgements

This research was supported by the Robert A. Welch Foundation, Houston, Texas, Grant Y-749.

References

- For part VI see K. L. Brown and M. Ngamelue, J. *Organom m metal. L. Brown* and *a*₂₄₃ (1983). m eral, Chem., 243, 339 (1983).
- On sabbatical leave K. Sewanee, Tennessee.
- \mathbf{K} . \mathbf{L} . $\frac{1981}{2}$
- *Phys. Entenson, R. I. C. Brow.* Phys. Org. Chem., 10, 1 (1973).
- 5 A. V. Cartaño and L. L. Ingraham, Bioinorg. Chem., 7, 351 (1977). A. V. Ablov, B. A. Samus and N. M. Samus, *Russ. J.*
- *A. V. Ablov, B. A. Samu. Inorg. Chem., S.* 410 (1960).
- A. E. Martell, K. L. Bell
- *8* G. Costa, G. Mestroni, G. Tauzher and L. Stefani, J. *Organomet. Chem., 0, 101* (1700). *Organomet. Chem., 6, 181* (1966).
- μ (*Rem., 1,* 493 (190*1*). *Chem., 7, 493* (1967).
- 11 R. W. Taft, E. Price, I. R. Fox, I. C. Lewis, K. K. Ander-Anderson and G. T.Davis, J. *Am. Chem. Sot., 85, 709* Anders
- $\overline{12}$ son and G. T. Davis, J. *Am. Chem Sot., 85, 3146* son and G. T. Davis, J. Am. Chem. Soc., 85, 3146
(1963). L. G. Marzilli, Znorg. Chem., *11, 2504* (1972).
- $\frac{1}{2}$ L. G. Marzilli, *Inorg.* Chem., 11, 2504 (1972).
- 14 K. L. Brown and R. G. Kallen, J. Am. Chem. Soc., 94, 13 J. A. Kargol, K. D. Lavin, R. W. Crecely and J. L. Burmeister, *Inorg. Chem.*, 19, 1515 (1980).
- $1594(19/2)$.
15 $K \times R$ R S S R N , N , $N = 1$ R S K N 1894 (1972).
- 16 K. L. Brown and E. Zahonyi-Budo, *Inorg.* Chem., 20, *J. A. L. Brown, D. Chemon, D. J. Ke*
- 17 K. L. Brown and E. Zahonyi-Budo, *J. Am. Chem. Sot.,* **1264 (1981)**.
- 18 R. T. Topsom,PTog. *Phys. Org. Chem., 12,* l(1976). **104.4117 (1993).**
- 10 K. I. I Opsom, *Frog. Fnys. Org. Chem.*, 12, 1 (1770).
- \overline{a} Rabackai, *J. Electroanal. Chem., 133, 45* (1982). Rabackai, *J. Electroanal. Chem.*, 133, 45 (1982).
- 21 G. N. Schrauzer and E. Deutsch, J. *Am Chem. Sot.,* **R.** G. Pearson, **H.** 3
- $\frac{91}{221}$, 3341 (1909).
22 Mei 12 Mei 12 Mei 12 Mei 12 Mei 12 Charles and **91, 3341(1969).**
- m. D. Leitoany, Y. Room, J. Derynck, C. Bied-Charleton and A. Gaudemer, J. Organomet. Chem., 222, 311 (1981). $G \sim 1.5$ Separate and R. D. S. Windows $\frac{1}{2}$. \overline{a}
- *Am.* **Schrauzer**, **E.** Deutsch and Am. Chem. Soc., 90, 2441 (1966).
C. C. Chem. **Chem.** *Chem. Chem.* **Chem. Chem. Chem.** \overline{a}
- *Sot. Dalton Trans.,* 1519 (1972). G. Dalton Irans., 1519 (1972).
25 G. N. *A*. *A. Am. N. Sibert, J. Am. Chem. Sot.*
- *92, 1022* (1970). G. Costa, *Pure Appl. Chem., 30, 335* (1972). \overline{a}
- $G.$ Costa, Pure Appl. Chem., 50, 555 (1972). $\frac{20}{27}$
- *J. P. Costes, G. Cros, M. H. Da.* I rans. Met. Chem., 7, 219 (1962). \overline{a}
- J. P. FOX, R. Banninger, R. I. Pro. Ingraham, *Inorg. Chem.*, 11, 2379 (1972).
- 29 C. Floriani, J. Organometal Chem., 12, 209 (1968).